
 Open access Book Chapter DOI:10.1007/11874683_6

Visibly pushdown automata: from language equivalence to simulation and
bisimulation — Source link

Jiri Srba

Institutions: Aalborg University

Published on: 25 Sep 2006 - Computer Science Logic

Topics: Nested word, Pushdown automaton, Preorder and Bisimulation

Related papers:

 Visibly pushdown languages

 Visibly Pushdown Automata: From Language Equivalence to Simulation and Bisimulation

 Beyond Language Equivalence on Visibly Pushdown Automata

 Event-Clock Visibly Pushdown Automata

 On the Complexity of Bisimulation Problems for Pushdown Automata

Share this paper:

View more about this paper here: https://typeset.io/papers/visibly-pushdown-automata-from-language-equivalence-to-
3rn97vnv0v

https://typeset.io/
https://www.doi.org/10.1007/11874683_6
https://typeset.io/papers/visibly-pushdown-automata-from-language-equivalence-to-3rn97vnv0v
https://typeset.io/authors/jiri-srba-no0dvbk1ra
https://typeset.io/institutions/aalborg-university-3tb7qjr4
https://typeset.io/conferences/computer-science-logic-2yvt1sre
https://typeset.io/topics/nested-word-zhb19he2
https://typeset.io/topics/pushdown-automaton-3hmg6gj9
https://typeset.io/topics/preorder-3qxo0o1t
https://typeset.io/topics/bisimulation-6bgigjsp
https://typeset.io/papers/visibly-pushdown-languages-4wbafpk2oq
https://typeset.io/papers/visibly-pushdown-automata-from-language-equivalence-to-35j5nwejo4
https://typeset.io/papers/beyond-language-equivalence-on-visibly-pushdown-automata-565gkjtp9n
https://typeset.io/papers/event-clock-visibly-pushdown-automata-11bkwntopb
https://typeset.io/papers/on-the-complexity-of-bisimulation-problems-for-pushdown-1kzj8amwqi
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/visibly-pushdown-automata-from-language-equivalence-to-3rn97vnv0v
https://twitter.com/intent/tweet?text=Visibly%20pushdown%20automata:%20from%20language%20equivalence%20to%20simulation%20and%20bisimulation&url=https://typeset.io/papers/visibly-pushdown-automata-from-language-equivalence-to-3rn97vnv0v
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/visibly-pushdown-automata-from-language-equivalence-to-3rn97vnv0v
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/visibly-pushdown-automata-from-language-equivalence-to-3rn97vnv0v
https://typeset.io/papers/visibly-pushdown-automata-from-language-equivalence-to-3rn97vnv0v

Visibly Pushdown Automata: From Language
Equivalence to Simulation and Bisimulation

Jǐŕı Srba⋆

BRICS⋆⋆, Department of Computer Science
Aalborg University, Fredrik Bajersvej 7B, 9220 Aalborg, Denmark

srba@cs.aau.dk

Abstract. We investigate the possibility of (bi)simulation-like pre-
order/equivalence checking on the class of visibly pushdown automata
and its natural subclasses visibly BPA (Basic Process Algebra) and
visibly one-counter automata. We describe generic methods for prov-
ing complexity upper and lower bounds for a number of studied pre-
orders and equivalences like simulation, completed simulation, ready
simulation, 2-nested simulation preorders/equivalences and bisimulation
equivalence. Our main results are that all the mentioned equivalences
and preorders are EXPTIME-complete on visibly pushdown automata,
PSPACE-complete on visibly one-counter automata and P-complete on
visibly BPA. Our PSPACE lower bound for visibly one-counter automata
improves also the previously known DP-hardness results for ordinary
one-counter automata and one-counter nets. Finally, we study regularity
checking problems for visibly pushdown automata and show that they
can be decided in polynomial time.

1 Introduction

Visibly pushdown languages were introduced by Alur and Madhusudan in [4]
as a subclass of context-free languages suitable for formal program analysis, yet
tractable and with nice closure properties like the class of regular languages.
Visibly pushdown languages are accepted by visibly pushdown automata whose
stack behaviour is determined by the input symbol. If the symbol belongs to the
category of call actions then the automaton must push, if it belongs to return
actions then the automaton must pop, otherwise (for the internal actions) it
cannot change the stack height. In [4] it is shown that the class of visibly push-
down languages is closed under intersection, union, complementation, renaming,
concatenation and Kleene star. A number of decision problems like universality,
language equivalence and language inclusion, which are undecidable for context-
free languages, become EXPTIME-complete for visibly pushdown languages.

Recently, visibly pushdown languages have been intensively studied and ap-
plied to e.g. program analysis [2], XML processing [20] and the language theory

⋆ The author is supported in part by the research center ITI, project No. 1M0545.
⋆⋆ Basic Research in Computer Science,

Centre of the Danish National Research Foundation.

of this class has been further investigated in [3, 6]. Some recent results show for
example the application of a variant of vPDA for proving decidability of contex-
tual equivalence (and other problems) for the third-order fragment of Idealized
Algol [18].

In this paper we study visibly pushdown automata from a different perspec-
tive. Rather than as language acceptors, we consider visibly pushdown automata
as devices that generate infinite-state labelled graphs and we study the questions
of decidability of behavioral equivalences and preorders on this class. Our results
confirm the tractability of a number of verification problems for visibly pushdown
automata.

We prove EXPTIME-completeness of equivalence checking on visibly push-
down automata (vPDA) for practically all preorders and equivalences between
simulation preorder and bisimulation equivalence that have been studied in the
literature (our focus includes simulation, completed simulation, ready simula-
tion, 2-nested simulation and bisimulation). We then study two natural (and
incomparable) subclasses of visibly pushdown automata: visibly basic process
algebra (vBPA) and visibly one-counter automata (v1CA). In case of v1CA we
demonstrate PSPACE-completeness of the preorder/equivalence checking prob-
lems and in case of vBPA even P-completeness. For vBPA we provide also a
direct reduction of the studied problems to equivalence checking on finite-state
systems, hence the fast algorithms already developed for systems with finitely
many reachable states can be directly used. All the mentioned upper bounds are
matched by the corresponding lower bounds. The PSPACE-hardness proof for
v1CA moreover improves the currently known DP lower bounds [13] for equiv-
alence checking problems on ordinary one-counter automata and one-counter
nets and some other problems (see Remark 2). Finally, we consider regularity
checking for visibly pushdown automata and show P-completeness for vPDA
and vBPA, and NL-completeness for v1CA w.r.t. all equivalences between trace
equivalence and isomorphism of labelled transition systems.

Related work. The main reason why many problems for visibly pushdown lan-
guages become tractable is, as observed in [4], that a pair of visibly pushdown
automata can be synchronized in a similar fashion as finite automata. We use
this idea to construct, for a given pair of vPDA processes, a single pushdown
automaton where we in a particular way encode the behaviour of both input
processes so that they can alternate in performing their moves. This is done in
such a way that the question of equality of the input processes w.r.t. a given
preorder/equivalence can be tested by asking about the validity of particular
(and fixed) modal µ-calculus formulae on the single pushdown process. A simi-
lar result of reducing weak simulation between a pushdown process and a finite-
state process (and vice versa) to the model checking problem appeared in [17].
We generalize these ideas to cover preorders/equivalences between two visibly
pushdown processes and provide a generic proof for all the equivalence checking
problems. The technical details of our construction are different from [17] and in
particular our construction works immediately also for vBPA (as the necessary
bookkeeping is stored in the stack alphabet). As a result we thus show how to

handle essentially any so far studied equivalence/preorder between simulation
and bisimulation in a uniform way for vPDA, vBPA as well as for v1CA.

In [6] the authors study language regularity problems for visibly pushdown
automata. Their line of research is orthogonal to ours because they define a
visibly pushdown automaton as regular if it is language equivalent to some visibly
one-counter automaton. We study the regularity problems in the context of
the standard definitions from the concurrency theory, i.e., whether for a given
vPDA process there is a behaviorally equivalent finite-state system. Though, as
remarked in more detail in the conclusion, questions of finding an equivalent
v1CA and in particular vBPA for a given vPDA could be also interesting to
investigate.

Note: full version of this paper will appear as BRICS technical report.

2 Definitions

A labelled transition system (LTS) is a triple (S,Act,−→) where S is the set of
states (or processes), Act is the set of labels (or actions), and −→⊆ S ×Act× S

is the transition relation; for each a ∈ Act, we view
a

−→ as a binary relation on
S where s

a
−→ s′ iff (s, a, s′) ∈−→. The notation can be naturally extended to

s
w

−→ s′ for finite sequences of actions w ∈ Act
∗. For a process s ∈ S we define

the set of its initial actions by I(s)
def
= {a ∈ Act | ∃s′ ∈ S. s

a
−→ s′}.

We shall now define the studied equivalences/preorders which are between
simulation and bisimilarity. Given an LTS (S,Act,−→), a binary relation R ⊆
S × S is a

– simulation iff for each (s, t) ∈ R, a ∈ Act, and s′ such that s
a

−→ s′ there is

t′ such that t
a

−→ t′ and (s′, t′) ∈ R,
– completed simulation iff R is a simulation and moreover for each (s, t) ∈ R

it holds that I(s) = ∅ if and only if I(t) = ∅,
– ready simulation iff R is a simulation and moreover for each (s, t) ∈ R it

holds that I(s) = I(t),
– 2-nested simulation iff R is a simulation and moreover R−1 ⊆ R, and
– bisimulation iff R is a simulation and moreover R−1 = R.

We write s ⊑s t if there is a simulation R such that (s, t) ∈ R, s ⊑cs t if
there is a completed simulation R such that (s, t) ∈ R, s ⊑rs t if there is a ready
simulation R such that (s, t) ∈ R, s ⊑2s t if there is a 2-nested simulation R

such that (s, t) ∈ R, s ∼ t if there is a bisimulation R such that (s, t) ∈ R. The
relations are called the corresponding preorders (except for bisimilarity, which is
already an equivalence). For a preorder ⊑ ∈ {⊑s, ⊑cs,⊑rs, ⊑2s} we define the
corresponding equivalence by s = t iff s ⊑ t and t ⊑ s. We remind the reader of
the fact that ∼ ⊆ ⊑2s ⊆ ⊑rs ⊆ ⊑cs ⊆ ⊑s and ∼ ⊆ =2s ⊆ =rs ⊆ =cs ⊆ =s and
all inclusions are strict.

We shall use a standard game-theoretic characterization of (bi)similarity. A
bisimulation game on a pair of processes (s1, t1) is a two-player game between

Attacker and Defender. The game is played in rounds on pairs of states from
S×S. In each round the players change the current pair of states (s, t) (initially
s = s1 and t = t1) according to the following rule:

1. Attacker chooses either s or t, a ∈ Act and performs a move s
a

−→ s′

or t
a

−→ t′.
2. Defender responds by choosing the opposite process (either t or s)

and performs a move t
a

−→ t′ or s
a

−→ s′ under the same action a.
3. The pair (s′, t′) becomes the (new) current pair of states.

A play (of the bisimulation game) is a sequence of pairs of processes formed by
the players according to the rules mentioned above. A play is finite iff one of the
players gets stuck (cannot make a move); the player who got stuck lost the play
and the other player is the winner. If the play is infinite then Defender is the
winner.

We use the following standard fact.

Proposition 1. It holds that s ∼ t iff Defender has a winning strategy in the
bisimulation game starting with the pair (s, t), and s 6∼ t iff Attacker has a
winning strategy in the corresponding game.

The rules of the bisimulation game can be easily modified in order to capture
the other equivalences/preorders.

In the simulation preorder game, Attacker is restricted to attack only from
the (left-hand side) process s. In the simulation equivalence game, Attacker can
first choose a side (either s or t) but after that he is not allowed to change
the side any more. Completed/ready simulation game has the same rules as the
simulation game but Defender is moreover losing in any configuration which
brakes the extra condition imposed by the definition (i.e. s and t should have
the same set of initial actions in case of ready simulation, and their sets of initial
actions should be both empty at the same time in case of completed simulation).
Finally, in the 2-nested simulation preorder game, Attacker starts playing from
the left-hand side process s and at most once during the play he is allowed to
switch sides (the soundness follows from the characterization provided in [1]). In
the 2-nested simulation equivalence game, Attacker can initially choose any side
but he is still restricted that he can change sides at most once during the play.

We shall now define the model of pushdown automata. Let Act be a finite
set of actions, let Γ be a finite set of stack symbols and let Q be a finite set of
control states. We assume that the sets Act, Γ and Q are pairwise disjoint. A
pushdown automaton (PDA) over the set of actions Act, stack alphabet Γ and

control states Q is a finite set ∆ of rules of the form pX
a

−→ qα where p, q ∈ Q,
a ∈ Act, X ∈ Γ and α ∈ Γ ∗.

A PDA ∆ determines a labelled transition system T (∆) = (S,Act,−→)
where the states are configurations of the form state×stack (i.e. S = Q×Γ ∗ and
configurations like (p, α) are usually written as pα where the top of the stack
α is by agreement on the left) and the transition relation is determined by the
following prefix rewriting rule.

(pX
a

−→ qα) ∈ ∆, γ ∈ Γ ∗

pXγ
a

−→ qαγ

A pushdown automaton is called BPA for Basic Process Algebra if the set
of control states is a singleton set (|Q| = 1). In this case we usually omit the
control state from the rules and configurations.

A pushdown automaton is called 1CA for one-counter automaton if the stack
alphabet consists of two symbols only, Γ = {I, Z}, and every rule is of the form

pI
a

−→ qα or pZ
a

−→ qαZ, where α ∈ {I}∗. This means that every configuration
reachable from pZ is of the form pInZ where In stands for a sequence of n

symbols I and Z corresponds to the bottom of the stack (the value zero). We
shall simply denote such a configuration by p(n) and say that it represents the
counter value n.

Assume that Act = Actc ∪Actr ∪Acti is partitioned into a disjoint union of
finite sets of call, return and internal actions, respectively. A visibly pushdown
automaton (vPDA) is a PDA which, for every rule pX

a
−→ qα, satisfies additional

three requirements (where |α| stands for the length of α):

– if a ∈ Actc then |α| = 2 (call),
– if a ∈ Actr then |α| = 0 (return), and
– if a ∈ Acti then |α| = 1 (internal).

Hence in vPDA the type of the input action determines the change in the height
of the stack (call by +1, return by −1, internal by 0).

The classes of visibly basic process algebra (vBPA) and visibly one-counter
automata (v1CA) are defined analogously.

Remark 1. For internal actions we allow to modify also the top of the stack.
This model (for vPDA) can be easily seen to be equivalent to the standard
one (as introduced in [4]) where the top of the stack does not change under
internal actions. However, when we consider the subclass vBPA, the possibility
of changing the top of the stack under internal actions significantly increases the
descriptive power of the formalism. Unlike in [4], we do not allow to perform
return actions on the empty stack.

The question we are interested in is: given a vPDA (or vBPA, or v1CA)
and two of its initial configurations pX and qY , can we algorithmically decide
whether pX and qY are equal with respect to a given preorder/equivalence and
if yes, what is the complexity?

3 Decidability of Preorder/Equivalence Checking

3.1 Visibly Pushdown Automata

We shall now study preorder/equivalence checking problems on the class of vis-
ibly pushdown automata. We prove the decidability by reducing the problems

to model checking of an ordinary pushdown system against a fixed µ-calculus
formula.

Let ∆ be a vPDA over the set of actions Act = Actc ∪ Actr ∪ Acti, stack
alphabet Γ and control states Q. We shall construct a PDA ∆′ over the actions

Act
′ def

= Act∪Act∪{ℓ, r} where Act
def
= {a | a ∈ Act}, stack alphabet Γ ′ def

= G×G

where G
def
= Γ ∪ (Γ × Γ)∪ (Γ ×Act)∪ {ǫ}, and control states Q′ def

= Q×Q. For
notational convenience, elements (X, a) ∈ Γ ×Act will be written simply as Xa.

The idea is that for a given pair of vPDA processes we shall construct a
single PDA process which simulates the behaviour of both vPDA processes by
repeatedly performing a move in one of the processes, immediately followed by
a move under the same action in the other process. The actions ℓ and r make it
visible, whether the move is performed on the left-hand side or right-hand side.
The assumption that the given processes are vPDA ensures that their stacks are
kept synchronized.

We shall define a partial mapping [. , .] : Γ ∗×Γ ∗ → (Γ ×Γ)∗ inductively as

follows (X, Y ∈ Γ and α, β ∈ Γ ∗ such that |α| = |β|): [Xα, Y β]
def
= (X, Y)[α, β]

and [ǫ, ǫ]
def
= ǫ. The mapping provides the possibility to merge stacks.

Assume a given pair of vPDA processes pX and qY . Our aim is to effectively
construct a new PDA system ∆′ such that for every ⊲⊳ ∈ {⊑s,=s,⊑cs,=cs,⊑rs,

=rs,⊑2s,=2s,∼} it is the case that pX ⊲⊳ qY in ∆ if and only if (p, q)(X, Y) |=
φ⊲⊳ in ∆′ for a fixed µ-calculus formula φ⊲⊳. We refer the reader to [16] for the
introduction to the modal µ-calculus.

The set of PDA rules ∆′ is defined as follows. Whenever (pX
a

−→ qα) ∈ ∆

then the following rules belong to ∆′:

1. (p, p′)(X, X ′)
ℓ

−→ (q, p′)(α, X ′
a) for every p′ ∈ Q and X ′ ∈ Γ ,

2. (p′, p)(X ′, X)
r

−→ (p′, q)(X ′
a, α) for every p′ ∈ Q and X ′ ∈ Γ ,

3. (p′, p)(β, Xa)
r

−→ (p′, q)[β, α] for every p′ ∈ Q and β ∈ Γ ∪ (Γ × Γ) ∪ {ǫ},

4. (p, p′)(Xa, β)
ℓ

−→ (q, p′)[α, β] for every p′ ∈ Q and β ∈ Γ ∪ (Γ × Γ) ∪ {ǫ},

5. (p, p′)(X, X ′)
a

−→ (p, p′)(X, X ′) for every p′ ∈ Q and X ′ ∈ Γ , and

6. (p′, p)(X ′, X)
a

−→ (p′, p)(X ′, X) for every p′ ∈ Q and X ′ ∈ Γ .

From a configuration (p, q)[α, β] the rules of the form 1. and 2. select either
the left-hand or right-hand side and perform some transition in the selected
process. The next possible transition (by rules 3. and 4.) is only from the opposite
side of the configuration than in the previous step. Symbols of the form Xa where
X ∈ Γ and a ∈ Act are used to make sure that the transitions in these two steps
are due to pushdown rules under the same label a. Note that in the rules 3. and
4. it is thus guaranteed that |α| = |β|. Finally, the rules 5. and 6. introduce a
number of self-loops in order to make visible the initial actions of the processes.

Lemma 1. Let ∆ be a vPDA system over the set of actions Act and pX, qY

two of its processes. Let (p, q)(X, Y) be a process in the system ∆′ constructed
above. Let

– φ⊑s
≡ νZ.[ℓ]〈r〉Z,

– φ=s
≡ φ⊑s

∧ (νZ.[r]〈ℓ〉Z),
– φ⊑cs

≡ νZ.
(

[ℓ]〈r〉Z ∧ (〈Act〉tt ⇔ 〈Act〉tt)
)

,

– φ=cs
≡ φ⊑cs

∧ νZ.
(

[r]〈ℓ〉Z ∧ (〈Act〉tt ⇔ 〈Act〉tt)
)

,

– φ⊑rs
≡ νZ.

(

[ℓ]〈r〉Z ∧
∧

a∈Act

(〈a〉tt ⇔ 〈a〉tt)
)

,

– φ=rs
≡ φ⊑rs

∧ νZ.
(

[r]〈ℓ〉Z ∧
∧

a∈Act

(〈a〉tt ⇔ 〈a〉tt)
)

,

– φ⊑2s
≡ νZ.

(

[ℓ]〈r〉Z ∧ (νZ ′.[r]〈ℓ〉Z ′)
)

,

– φ=2s
≡ φ⊑2s

∧ νZ.
(

[r]〈ℓ〉Z ∧ (νZ ′.[ℓ]〈r〉Z ′)
)

, and
– φ∼ ≡ νZ.[ℓ, r]〈ℓ, r〉Z.

For every ⊲⊳ ∈ {⊑s,=s,⊑cs,=cs,⊑rs,=rs,⊑2s,=2s,∼} it holds that pX ⊲⊳ qY if
and only if (p, q)(X, Y) |= φ⊲⊳.

Theorem 1. Simulation, completed simulation, ready simulation and 2-nested
simulation preorders and equivalences, as well as bisimulation equivalence are
decidable on vPDA and all these problems are EXPTIME-complete.

Proof. EXPTIME-hardness (for all relations between simulation preorder and
bisimulation equivalence) follows from [17] as the pushdown automaton con-
structed in the proof is in fact a vPDA.

For the containment in EXPTIME observe that all our equivalence check-
ing problems are reduced in polynomial time to model checking of a pushdown
automaton against a fixed size formula of modal µ-calculus. The complexity of
the model checking problem for a pushdown automaton with m states and k

stack symbols and a formula of the size n1 and of the alternation depth n2 is
O((k2cmn1n2)n2)) for some constant c [25]. In our case for a given vPDA system
with m states and k stack symbols we construct a PDA system with m2 states
and with O(k3 · |Act|) stack symbols (used in the transition rules). Hence the
overall time complexity of checking whether two vPDA processes pX and qY

are equivalent is (k3 · |Act|)2O(m2). ⊓⊔

3.2 Visibly Basic Process Algebra

We shall now focus on the complexity of preorder/equivalence checking for vBPA,
a strict subclass of vPDA.

Theorem 2. Simulation, completed simulation, ready simulation and 2-nested
simulation preorders and equivalences, as well as bisimulation equivalence are
P-complete on vBPA.

Proof. Recall that a vBPA process is a vPDA processes with a single control
state. By using the arguments from the proof of Theorem 1, the complexity of
equivalence checking on vBPA is therefore O(k3 ·|Act|) where k is the cardinality
of the stack alphabet (and where m = 1). P-hardness was proved in [21] even
for finite-state systems. ⊓⊔

X
a

−→ Y

X
b

−→ ǫ

X
c

−→ XY

Y
b

−→ ǫ

X

c

��

b +3

a

!)JJJJJJJJJJJJJJ

JJJJJJJJJJJJJJ
ǫ

(X, Y)

1

DL

2 +3 Y

b

KS

Fig. 1. Transformation of a vBPA into a finite-state system

In fact, for vBPA we can introduce even better complexity upper bounds by
reducing it to preorder/equivalence checking on finite-state systems.

Theorem 3. Simulation, completed simulation, ready simulation and 2-nested
simulation preorders and equivalences, as well as bisimulation equivalence on
vBPA is reducible to checking the same preorder/equivalence on finite-state sys-
tems. For any vBPA process ∆ (with the natural requirement that every stack
symbol appears at least in one rule from ∆), the reduction is computable in time
O(|∆|) and outputs a finite-state system with O(|∆|) states and O(|∆|) transi-
tions.

Proof. Let Act = Actc ∪ Actr ∪ Acti be the set of actions and let Γ be the
stack alphabet of a given vBPA system ∆ (we shall omit writing the control

states as this is a singleton set). Let S
def
= {(Y, Z) ∈ Γ × Γ | ∃(X

a
−→ Y Z) ∈

∆ for some X ∈ Γ and a ∈ Actc }. We construct a finite-state transition system
T = (Γ ∪{ǫ}∪S,Act∪{1, 2},=⇒) for fresh actions 1 and 2 as follows. For every

vBPA rule (X
a

−→ α) ∈ ∆, we add the transitions:

– X
a

=⇒ ǫ if a ∈ Actr (and α = ǫ),
– X

a
=⇒ Y if a ∈ Acti and α = Y ,

– X
a

=⇒ (Y, Z) if a ∈ Actc and α = Y Z,

– (Y, Z)
1

=⇒ Y if a ∈ Actc and α = Y Z, and

– (Y, Z)
2

=⇒ Z if a ∈ Actc and α = Y Z such that Y −→∗ ǫ.

Note that the set {Y ∈ Γ | Y −→∗ ǫ} can be (by standard techniques)
computed in time O(|∆|). Moreover, the finite-state system T has O(|∆|) states
and O(|∆|) transitions. See Figure 1 for an example of the transformation.

Let us now observe that in vBPA systems we have the following decompo-
sition property. It is the case that Xα ∼ X ′α′ in ∆ (where X, X ′ ∈ Γ and
α, α′ ∈ Γ ∗) if and only if in ∆ the following two conditions hold: (i) X ∼ X ′ and
(ii) if (X −→∗ ǫ or X ′ −→∗ ǫ) then α ∼ α′. Hence for any X, Y ∈ Γ we have
that X ∼ Y in ∆ iff X ∼ Y in T . It is easy to check that the fact above holds
also for any other preorder/equivalence as stated by the theorem. ⊓⊔

This means that for preorder/equivalence checking on vBPA we can use the
efficient algorithms already developed for finite-state systems. For example, for
finite-state transition systems with k states and t transitions, bisimilarity can
be decided in time O(t log k) [19]. Hence bisimilarity on a vBPA system ∆ is
decidable in time O(|∆| · log |∆|).

3.3 Visibly One-Counter Automata

We will now continue with studying preorder/equivalence checking problems on
v1CA, a strict subclass of vPDA and an incomparable class with vBPA (w.r.t.
bisimilarity). We start by showing PSPACE-hardness of the problems. The proof
is by reduction from a PSPACE-complete problem of emptiness of one-way al-
ternating finite automata over one-letter alphabet [11].

A one-way alternating finite automaton over one-letter alphabet is a 5-tuple
A = (Q∃, Q∀, q0, δ, F) where Q∃ and Q∀ are finite and disjoint sets of existential,
resp. universal control states, q0 ∈ Q∃ ∪ Q∀ is the initial state, F ⊆ Q∃ ∪ Q∀ is
the set of final states and δ : Q∃ ∪ Q∀ → 2Q∃∪Q∀ is the transition function.

A computational tree for an input word of the form In (where n is a natural
number and I is the only letter in the input alphabet) is a tree where every
branch has exactly n+1 nodes labelled by control states from Q∃∪Q∀ such that
the root is labelled with q0 and every non-leaf node that is already labelled by
some q ∈ Q∃ ∪ Q∀ such that δ(q) = {q1, . . . , qk} has either

– one child labelled by qi for some i, 1 ≤ i ≤ k, if q ∈ Q∃, or

– k children labelled by q1, . . . , qk, if q ∈ Q∀.

A computational tree is accepting if the labels of all its leaves are fi-

nal (i.e. belong to F). The language of A is defined by L(A)
def
= {In |

In has some accepting computational tree }.

The emptiness problem for one-way alternating finite automata over one-
letter alphabet (denoted as Empty) is to decide whether L(A) = ∅ for a given
automaton A. The problem Empty is known to be PSPACE-complete due to
Holzer [11].

In what follows we shall demonstrate a polynomial time reduction from
Empty to equivalence/preorder checking on visibly one-counter automata. We
shall moreover show the reduction for any (arbitrary) relation between simu-
lation preorder and bisimulation equivalence. This in particular covers all pre-
orders/equivalences introduced in this paper.

Lemma 2. All relations between simulation preorder and bisimulation equiva-
lence are PSPACE-hard on v1CA.

Proof. Let A = (Q∃, Q∀, q0, δ, F) be a given instance of Empty. We shall con-

struct a visibly one-counter automaton ∆ over the set of actions Actc
def
= {i},

Actr
def
= {dq | q ∈ Q∃ ∪ Q∀}, Acti

def
= {a, e} and with control states Q

def
=

{p, p′, t} ∪ {q, q′, tq | q ∈ Q∃ ∪ Q∀} such that

– if L(A) = ∅ then Defender has a winning strategy from pZ and p′Z in the
bisimulation game (i.e. pZ ∼ p′Z), and

– if L(A) 6= ∅ then Attacker has a winning strategy from pZ and p′Z in the
simulation preorder game (i.e. pZ 6⊑s p′Z).

The intuition is that Attacker generates some counter value n in both of the
processes pZ and p′Z and then switches into a checking phase by changing
the configurations to q0(n) and q′0(n). Now the players decrease the counter
and change the control states according to the function δ. Attacker selects the
successor in any existential configuration, while Defender makes the choice of
the successor in every universal configuration. Attacker wins if the players reach
a pair of configurations q(0) and q′(0) where q ∈ F .

We shall now define the set of rules ∆. The initial rules allow Attacker (by
performing repeatedly the action i) to set the counter into an arbitrary number,
i.e., Attacker generates a candidate word from L(A).

pZ
i

−→ pIZ p′Z
i

−→ p′IZ

pI
i

−→ pII p′I
i

−→ p′II

pZ
a

−→ q0Z p′Z
a

−→ q′0Z

pI
a

−→ q0I p′I
a

−→ q′0I

Observe that Attacker is at some point forced to perform the action a (an infinite
play is winning for Defender) and switch to the checking phase starting from
q0(n) and q′0(n).

Now for every existential state q ∈ Q∃ with δ(q) = {q1, . . . , qk} and for every
i ∈ {1, . . . , k} we add the following rules.

qI
dqi−→ qi q′I

dqi−→ q′i

This means that Attacker can decide on the successor qi of q and the players in
one round move from the pair q(n) and q′(n) into qi(n − 1) and q′i(n − 1).

Next for every universal state q ∈ Q∀ with δ(q) = {q1, . . . , qk} and for every
i ∈ {1, . . . , k} we add the rules

qI
a

−→ tI q′I
a

−→ tqi
I

qI
a

−→ tqi
I

and for every q, r ∈ Q∃ ∪ Q∀ such that q 6= r we add

tI
dq

−→ q tqI
dq

−→ q′

tqI
dr−→ r .

These rules are more complex and they correspond to a particular imple-
mentation of so called Defender’s Choice Technique (for further examples see
e.g. [15]). We shall explain the idea by using Figure 2. Assume that q ∈ Q∀ and
δ(q) = {q1, . . . , qk}. In the first round of the bisimulation game starting from

q(n) and q′(n) where n > 0, Attacker is forced to take the move q(n)
a

−→ t(n).
On any other move Defender answers by immediately reaching a pair of syntacti-
cally equal processes (and thus wins the game). Defender’s answer on Attacker’s

move q(n)
a

−→ t(n) is to perform q′(n)
a

−→ tqi
(n) for some i ∈ {1, . . . , k}. The

second round thus starts from the pair t(n) and tqi
(n). Should Attacker choose

to play the action dr for some state r such that r 6= qi (on either side), Defender

q(n)

a

��

a

))RRRRRRRRRRRRRRRRRRRRRRRR

a

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

a

,,YYY q′(n)

a

||xxxxxxxxxxxxx

a

""FFFFFFFFFFFFF

a

��
t(n)

dqi

��

dr

))RRRRRRRRRRRRRRRRRRRRRRRR tq1(n) tqi
(n)

dr

||xxxxxxxxxxxxx

dqi

��

tqk
(n)

∀r 6= qi

qi(n − 1) r(n − 1) q′i(n − 1)

Fig. 2. Defender’s Choice: q ∈ Q∀ and δ(q) = {q1, . . . , qk}

can again reach a syntactic equality and wins. Hence Attacker is forced to play
the action dqi

on which Defender answers by the same action in the opposite
process and the players reach the pair qi(n − 1) and q′i(n − 1). Note that it was
Defender who selected the new control state qi.

Finally, for every q ∈ F we add the rule

qZ
e

−→ qZ .

It is easy to see that ∆ is a visibly one-counter automaton. Moreover, if
L(A) = ∅ then pZ ∼ p′Z, and if L(A) 6= ∅ then pZ 6⊑s p′Z. ⊓⊔

Remark 2. The reduction above works also for a strict subclass of one-counter
automata called one-counter nets (where it is not allowed to test for zero, see

e.g. [13]). It is enough to replace the final rule qZ
e

−→ qZ with two new rules

q
e

−→ q and q′I
e

−→ q′I for every q ∈ F . Moreover, a slight modification of
the system allows to show PSPACE-hardness of simulation preorder checking
between one-counter automata and finite-state systems and vice versa. Hence
the previously know DP lower bounds [13] for all relations between simulation
preorder and bisimulation equivalence on one-counter nets (and one-counter
automata) as well as of simulation preorder/equivalence between one-counter
automata and finite-state systems, and between finite-state systems and one-
counter automata are raised to PSPACE-hardness.

We are now ready to state the precise complexity of (bi)simulation-like pre-
orders/equivalences on visibly one-counter automata.

Theorem 4. Simulation, completed simulation, ready simulation and 2-nested
simulation preorders and equivalences, as well as bisimulation equivalence are
PSPACE-complete on v1CA.

Proof. PSPACE-hardness follows from Lemma 2. Containment in PSPACE is
due to Lemma 1 and due to [23] where it was very recently showed that model
checking modal µ-calculus on one-counter automata is decidable in PSPACE.

The only slight complication is that the system used in Lemma 1 is not nec-
essarily a one-counter automaton. All stack symbols are of the form (I, I) or
(Z,Z) which is fine, except for the very top of the stack where more stack sym-
bols are used. Nevertheless, by standard techniques, the top of the stack can be
remembered in the control states in order to apply the result from [23]. ⊓⊔

4 Decidability of Regularity Checking

In this section we ask the question whether a given vPDA process is equivalent
to some finite-state system. Should this be the case, we call the given process
regular (w.r.t. the considered equivalence). The main result of this section is
a semantical characterization of regular vPDA processes via the property of
unbounded popping and a polynomial time decision algorithm to test whether
a given process satisfies this property.

Let Act = Actc∪Actr∪Acti be the set of actions of a given vPDA. We define
a function h : Act → {−1, 0,+1} by h(a) = +1 for all a ∈ Actc, h(a) = −1 for
all a ∈ Actr, and h(a) = 0 for all a ∈ Acti. The function h can be naturally
extended to sequences of actions by h(a1 . . . an) =

∑

i∈{1,...,n} h(ai). Observe

now that for any computation pα
w

−→ qβ we have |β| = |α| + h(w).

Definition 1. Let pX be a vPDA configuration. We say that pX provides un-
bounded popping if for every natural number d there is a configuration qβ and
a word w ∈ Act

∗ such that h(w) ≤ −d and pX −→∗ qβ
w

−→ .

Lemma 3. Let pX be a vPDA configuration which provides unbounded popping.
Then pX is not regular w.r.t. trace equivalence.

Proof (Sketch). By contradiction. Let pX be trace equivalent to some finite-state

system A with n states. Let us consider a trace w1w2 such that pX
w1−→ qβ

w2−→
for some qβ and h(w2) ≤ −n. Such a trace must exist because pX provides
unbounded popping. The trace w1w2 must be executable also in A. However,
because A has n states, during the computation on w2, it must necessarily enter
twice the same state such that it forms a loop on some substring w′ of w2. We can
moreover assume that h(w′) < 0. This means that by taking the loop sufficiently
many times A can achieve a trace w with h(w) < 1. However, this trace is not

possible from pX (any word w such that pX
w

−→ satisfies that h(w) ≥ −1). This
is a contradiction. ⊓⊔

Lemma 4. Let pX be a vPDA configuration which does not provide unbounded
popping. Then pX is regular w.r.t. isomorphism of labelled transition systems.

Proof. Assume that pX does not provide unbounded popping. In other words,
there is a constant dmax such that for every process qβ reachable from pX it is
the case that for any computation starting from qβ, the stack height |β| cannot
be decreased by more than dmax symbols. This means that in any reachable
configuration it is necessary to remember only dmax top-most stack symbols and
hence the system can be up to isomorphism described as a finite-state system
(in general of exponential size). ⊓⊔

Theorem 5. Let pX be a vPDA configuration. Then, for any equivalence rela-
tion between trace equivalence and isomorphism of labelled transition systems,
pX provides unbounded popping if and only if pX is not regular.

Proof. Directly from Lemma 3 and Lemma 4. ⊓⊔

Theorem 6. Regularity checking of vPDA w.r.t. any equivalence between trace
equivalence and isomorphism of labelled transition systems (in particular also
w.r.t. any equivalence considered in this paper) is decidable in deterministic poly-
nomial time. The problems are P-complete for vPDA and vBPA and NL-complete
for v1CA.

Proof (Sketch). We can check for every q ∈ Q and Y ∈ Γ whether the regular
set post∗(qY) ∩ pre∗({rǫ | r ∈ Q}) is infinite. If yes, this means that qY has
infinitely many different successors (with higher and higher stacks) such that all
of them can be completely emptied. To see whether a given vPDA process pX

provides unbounded popping, it is now enough to test whether pX ∈ pre∗(qY Γ ∗)
for some qY satisfying the condition above. The test can be done in polynomial
time because the sets pre∗ and post∗ are regular and computable in polynomial
time as showed e.g. in [7]. The proofs of P-completeness and NL-completeness
are in the full version of the paper. ⊓⊔

5 Conclusion

In the following table we provide a comparison of bisimulation, simulation and
regularity (w.r.t. bisimilarity) checking on PDA, 1CA, BPA and their subclasses
vPDA, v1CA, vBPA. Results achieved in this paper are in bold.

∼ ⊑s and =s ∼-regularity

PDA
decidable [22]

EXPTIME-hard [17]
undecidable [10]

?

EXPTIME-hard [17, 24]

vPDA
in EXPTIME

EXPTIME-hard [17]

in EXPTIME

EXPTIME-hard [17]
P-compl.

1CA
decidable [12]

PSPACE-hard
undecidable [14]

decidable [12]

P-hard [5, 24]

v1CA PSPACE-compl. PSPACE-compl. NL-compl.

BPA
in 2-EXPTIME [8]

PSPACE-hard [24]
undecidable [10]

in 2-EXPTIME [9, 8]

PSPACE-hard [24]

vBPA
in P

P-hard [5]

in P

P-hard [21]
P-compl.

In fact, our results about EXPTIME-completeness for vPDA, PSPACE-
completeness for v1CA and P-completeness for vBPA hold for all preorders and
equivalences between simulation preorder and bisimulation equivalence studied
in the literature (like completed simulation, ready simulation and 2-nested simu-
lation). The results confirm a general trend seen in the classical language theory

of pushdown automata: a relatively minor restriction (from the practical point
of view) of being able to distinguish call, return and internal actions often sig-
nificantly improves the complexity of the studied problems and sometimes even
changes undecidable problems into decidable ones, moreover with reasonable
complexity upper bounds.

All the upper bounds proved in this paper are matched by the correspond-
ing lower bounds. Here the most interesting result is PSPACE-hardness of pre-
order/equivalence checking on v1CA for all relations between simulation preorder
and bisimulation equivalence. As noted in Remark 2, this proof improves also a
number of other complexity lower bounds for problems on standard one-counter
nets and one-counter automata, which were previously known to be only DP-
hard (DP-hardness is, most likely, a slightly stronger result than NP and co-NP
hardness).

Finally, we have proved that for all the studied equivalences, the regular-
ity problem is decidable in polynomial time. Checking whether an infinite-state
process is equivalent to some regular one is a relevant question because many
problems about such a process can be answered by verifying the equivalent finite-
state system and for finite-state systems many efficient algorithms have been
developed. A rather interesting observation is that preorder/equivalence check-
ing on vBPA for preorders/equivalences between simulation and bisimilarity can
be polynomially translated to verification problems on finite-state systems. On
the other hand, the class of vBPA processes is significantly larger than the class
of finite-state processes and hence the questions, whether for a given vPDA (or
v1CA) process there is some equivalent vBPA process, are of a particular interest.
We shall investigate these questions in the future research, as well as a general-
ization of the unbounded popping property for visibly pushdown automata that
enable to perform return actions also on the empty stack.

Acknowledgments. I would like to thank Markus Lohrey for a discussion at
ETAPS’06 and for a reference to PSPACE-completeness of the emptiness prob-
lem for alternating automata over one-letter alphabet. My thanks go also to the
referees of CSL’06 for their useful comments and for suggesting the P-hardness
proof of regularity checking for vPDA and vBPA.

References

1. L. Aceto, W. Fokkink, and A. Ingólfsdóttir. 2-nested simulation is not finitely
equationally axiomatizable. In Proc. of STACS’01, vol. 2010 of LNCS, p. 39–50.
Springer, 2001.

2. R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and
returns. In Proc. of TACAS’04, vol. 2988 of LNCS, p. 467–481. Springer, 2004.

3. R. Alur, V. Kumar, P. Madhusudan, and M. Viswanathan. Congruences for visibly
pushdown languages. In Proc. of ICALP’05, vol. 3580 of LNCS, p. 1102–1114.
Springer, 2005.

4. R. Alur and P. Madhusudan. Visibly pushdown languages. In Proc. of STOC’04,
p. 202–211. ACM Press, 2004.

5. J. Balcazar, J. Gabarro, and M. Santha. Deciding bisimilarity is P-complete.
Formal Aspects of Computing, 4(6A):638–648, 1992.

6. V. Bárány, Ch. Löding, and O. Serre. Regularity problems for visibly pushdown
languages. In Proc. of STACS’06, vol. 3884 of LNCS, p. 420–431. Springer, 2006.

7. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model-checking. In Proc. of CONCUR’97, vol. 1243 of
LNCS, p. 135–150. Springer, 1997.

8. O. Burkart, D. Caucal, and B. Steffen. An elementary decision procedure for
arbitrary context-free processes. In Proc. of MFCS’95, vol. 969 of LNCS, p. 423–
433. Springer, 1995.

9. O. Burkart, D. Caucal, and B. Steffen. Bisimulation collapse and the process
taxonomy. In Proc. of CONCUR’96, vol. 1119 of LNCS, p. 247–262. Springer,
1996.

10. J.F. Groote and H. Hüttel. Undecidable equivalences for basic process algebra.
Information and Computation, 115(2):353–371, 1994.

11. M. Holzer. On emptiness and counting for alternating finite automata. In Proc.

of DLT’95, pages 88–97. World Scientific, 1996.
12. P. Jančar. Decidability of bisimilarity for one-counter processes. Information and

Computation, 158(1):1–17, 2000.
13. P. Jančar, A. Kučera, F. Moller, and Z. Sawa. DP lower bounds for equivalence-

checking and model-checking of one-counter automata. Information and Compu-

tation, 188(1):1–19, 2004.
14. P. Jančar, F. Moller, and Z. Sawa. Simulation problems for one-counter machines.

In Proc. of SOFSEM’99, vol. 1725 of LNCS, p. 404–413. Springer, 1999.
15. P. Jančar and J. Srba. Highly undecidable questions for process algebras. In Proc.

of TCS’04, p. 507–520. Kluwer Academic Publishers, 2004.
16. D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,

27:333–354, 1983.
17. A. Kučera and R. Mayr. On the complexity of semantic equivalences for pushdown

automata and BPA. In Proc. of MFCS’02, vol. 2420 of LNCS, p. 433–445. Springer,
2002.

18. A. Murawski and I. Walukiewicz. Third-order idealized algol with iteration is
decidable. In Proc. of FOSSACS’05, vol. 3441 of LNCS, p. 202–218, 2005.

19. R. Paige and R. E. Tarjan. Three partition refinement algorithms. SIAM Journal

of Computing, 16(6):973–989, December 1987.
20. C. Pitcher. Visibly pushdown expression effects for XML stream processing. In

Proc. of PLAN-X, pages 5–19, 2005.
21. Z. Sawa and P. Jančar. P-hardness of equivalence testing on finite-state processes.

In Proc. of SOFSEM’01, vol. 2234 of LNCS, p. 326–345. Springer, 2001.
22. G. Sénizergues. Decidability of bisimulation equivalence for equational graphs of

finite out-degree. In Proc. of FOCS’98, p. 120–129. IEEE Computer Society, 1998.
23. O. Serre. Parity games played on transition graphs of one-counter processes. In

Proc. of FOSSACS’06, vol. 3921 of LNCS, p. 337–351. Springer, 2006.
24. J. Srba. Strong bisimilarity and regularity of basic process algebra is PSPACE-

hard. In Proc. of ICALP’02, vol. 2380 of LNCS, p. 716–727. Springer, 2002.
25. I. Walukiewicz. Pushdown processes: Games and model-checking. Information and

Computation, 164(2):234–263, 2001.

