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Visibly Pushdown Languages ∗

Rajeev Alur P. Madhusudan

Department of Computer and Information Science
University of Pennsylvania

{ alur, madhusudan }@cis.upenn.edu

ABSTRACT
We propose the class of visibly pushdown languages as em-
beddings of context-free languages that is rich enough to
model program analysis questions and yet is tractable and
robust like the class of regular languages. In our defini-
tion, the input symbol determines when the pushdown au-
tomaton can push or pop, and thus the stack depth at
every position. We show that the resulting class Vpl of
languages is closed under union, intersection, complemen-
tation, renaming, concatenation, and Kleene-∗, and prob-
lems such as inclusion that are undecidable for context-free
languages are Exptime-complete for visibly pushdown au-
tomata. Our framework explains, unifies, and generalizes
many of the decision procedures in the program analysis
literature, and allows algorithmic verification of recursive
programs with respect to many context-free properties in-
cluding access control properties via stack inspection and
correctness of procedures with respect to pre and post con-
ditions. We demonstrate that the class Vpl is robust by
giving two alternative characterizations: a logical charac-
terization using the monadic second order (MSO) theory
over words augmented with a binary matching predicate,
and a correspondence to regular tree languages. We also
consider visibly pushdown languages of infinite words and
show that the closure properties, MSO-characterization and
the characterization in terms of regular trees carry over. The
main difference with respect to the case of finite words turns
out to be determinizability: nondeterministic Büchi visibly
pushdown automata are strictly more expressive than deter-
ministic Muller visibly pushdown automata.
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Categories and Subject Descriptors
F.1.1 [Computation by abstract devices]: Models of
Computation—Automata; F.3.1 [Logics and meanings of
programs]: Specifying and verifying and reasoning about
programs; F.4.3 [Mathematical logic and formal lan-
guages]: Formal languages—Classes defined by grammars
or automata, Decision problems

General Terms
Languages, Verification, Algorithms, Theory

Keywords
Context-free languages, pushdown automata, verification,
logic, regular tree languages, ω-languages

1. INTRODUCTION
Pushdown automata naturally model the control flow of

sequential computation in typical programming languages
with nested, and potentially recursive, invocations of pro-
gram modules such as procedures and method calls. Con-
sequently, a variety of program analysis, compiler optimiza-
tion, and model checking questions can be formulated as
decision problems for pushdown automata. For instance,
in contemporary software model checking tools, to verify
whether a program P (written in C, for instance) satisfies
a regular correctness requirement ϕ (written in linear tem-
poral logic, for instance), the verifier first abstracts the pro-
gram into a pushdown model P a with finite-state control,
compiles the negation of the specification into a finite-state
automaton A¬ϕ that accepts all computations that violate
ϕ and algorithmically checks that the intersection of the lan-
guages of P a and A¬ϕ is empty. The problem of checking
regular requirements of pushdown models has been exten-
sively studied in recent years leading to efficient implemen-
tations and applications to program analysis [21, 5, 6, 3, 15,
14, 13].

While many analysis problems such as identifying dead
code and accesses to uninitialized variables can be captured
as regular requirements, many others require inspection of
the stack or matching of calls and returns, and are context-
free. Even though the general problem of checking context-
free properties of pushdown automata is undecidable, al-
gorithmic solutions have been proposed for checking many
different kinds of non-regular properties. For example, ac-
cess control requirements such as “a module A should be
invoked only if the module B belongs to the call-stack,” and



bounds on stack size such as “if the number of interrupt-
handlers in the call-stack currently is less than 5, then a
property p holds” require inspection of the stack, and deci-
sion procedures for certain classes of stack properties already
exist [17, 13, 14, 12]. A separate class of non-regular, but de-
cidable, properties includes the recently proposed temporal
logic Caret that allows matching of calls and returns and
can express the classical correctness requirements of pro-
gram modules with pre and post conditions, such as “if p
holds when a module is invoked, the module must return,
and q holds upon return” [2]. This suggests that the answer
to the question “which class of properties are algorithmically
checkable against pushdown models?” should be more gen-
eral than “regular.” In this paper, we propose visibly push-
down languages as an answer with desirable closure proper-
ties, tractable decision problems, multiple equivalent charac-
terizations, and adequate for formulating program analysis
questions.

The key feature of checkable requirements, such as stack
inspection and matching calls and returns, is that the stacks
in the model and the property are correlated: while the
stacks are not identical, the two synchronize on when to
push and when to pop, and are always of the same depth.
We formalize this intuition by defining visibly pushdown au-
tomata (Vpa). Such an automaton operates over words over
an alphabet that is partitioned into three disjoint sets of
calls, returns, and internal symbols. While reading a call
symbol, the automaton must push one symbol, while read-
ing a return symbol, it must pop one symbol (if the stack
is non-empty), and while reading an internal symbol, it can
only update its control state. A language over a partitioned
alphabet is a visibly pushdown language if there is such an
automaton that accepts it. While modeling programs as
context-free languages, we have to choose a finite alphabet of
observations (for instance, an observation may denote that
a particular variable is read), and a mapping from states (or
transitions) of the program to observations. To model pro-
grams as visibly pushdown languages, this observation must
include whether the current transition is a call to a mod-
ule or a return from a module. A correctness requirement
is another pushdown automaton over the alphabet with the
same partitioning, and hence refers to the calls and returns
of the model, and updates its stack in a synchronized man-
ner. It is easy to see that all regular requirements, stack
inspection properties, and correctness with respect to pre
and post conditions (in fact, all of Caret definable proper-
ties) are visibly pushdown languages.

After introducing the class Vpl of visibly pushdown lan-
guages, we show that it has many of the desirable properties
that regular languages have. Vpl is closed under union, in-
tersection, renaming, and complementation. Given a nonde-
terministic Vpa, one can construct an equivalent determin-
istic one, and thus Vpl is a subset of deterministic context-
free languages. Problems such as universality, inclusion, and
equivalence are Exptime-complete for Vpas. We show two
alternate characterizations of Vpl. First, every word over
the partitioned alphabet can be viewed as the infix traver-
sal of a corresponding labeled binary tree, where the sub-
word between a call and a matching return is encoded in
the left sub-tree of the call, and the suffix following the re-
turn is encoded in the right sub-tree of the call. With this
correspondence, we show that the class Vpl coincides with
the regular tree languages. Second, we augment the clas-

sical MSO—the monadic second order theory over natural
numbers with successor and unary predicates (which gives
an alternative logical characterization of regular languages),
with a binary matching predicate µ(x, y) that holds if y is a
matching return for the call x. We show that the resulting
theory MSOµ is expressively equivalent to Vpl.

Analysis of liveness requirements such as “every write op-
eration must be followed by a read operation” is formulated
using automata over infinite words, and the theory of ω-
regular languages is well developed with most of the coun-
terparts of the results for regular languages (c.f. [23, 24]).
Consequently, we also define Vpas augmented with accep-
tance conditions such as Büchi and Muller, that accept vis-
ibly pushdown ω-languages. We establish that the result-
ing class ω-Vpl is closed under union, intersection, renam-
ing, and complementation. Decision problems for ω-Vpas
have the same complexity as the corresponding problems
for Vpas. As in the finite case, the class ω-Vpl can be
characterized by regular languages of infinite trees with ex-
actly one infinite path, as well as by MSOµ. The significant
difference in the infinite case is that nondeterministic au-
tomata are strictly more expressive than the deterministic
ones: the language “the stack is repeatedly bounded” (that
is, for some n, the stack depth is at most n in infinitely many
positions) can be easily characterized using a nondeterminis-
tic Büchi ω-Vpa, and we prove that no deterministic Muller
ω-Vpa accepts this language. However, we show that non-
deterministic Büchi ω-Vpa can be complemented and hence
problems such as checking for inclusion are still decidable.

Related work.
The idea of making calls and returns in a recursive program
visible to the specification language for writing properties
appears implicitly in [17] which proposes a logic over stack
contents to specify security constraints, and in [14] which
augments linear temporal logic with regular valuations over
stack contents, and explicitly in our recent work on the tem-
poral logic Caret that allows modalities for matching calls
and returns [2]. There is an extensive literature on push-
down automata, context-free languages, deterministic push-
down automata, and context-free ω-languages (c.f. [1]). The
most related work is McNaughton’s parenthesis languages
with a decidable equivalence problem [20]. A parenthe-
sis language is produced by a context-free grammar where
each application of a production introduces a pair of paren-
theses, delimiting the scope of production. These paren-
theses can be viewed as visible calls and returns. Knuth
showed that parentheses languages are closed under union,
intersection, and difference (but not under complementa-
tion, primarily because parenthesis languages can consist
of only well parenthesized words), and it is decidable to
check whether a context-free language is a parenthesis lan-
guage [18]. These proofs are grammar-based and complex,
and connection to pushdown automata was not studied.
Furthermore, parenthesis languages are a strict subclass of
visibly pushdown languages, even when restricted to lan-
guages of well-bracketed words, and the class of parenthesis
languages is not closed under Kleene-∗. Recently, balanced
grammars are defined as a generalization of parenthesis lan-
guages by allowing several kinds of parentheses and regular
languages in the right hand sides of productions [4]. It turns
out that this class of languages is also a strict subclass of
Vpl. In the program analysis context, the notion of having



unmatched returns (as in Vpl) is useful as calls to proce-
dures may not return.

It has been observed that propositional dynamic logic can
be augmented with some restricted class of context-free lan-
guages, and simple-minded pushdown automata, which may
be viewed as a restricted class of Vpas, have been proposed
to explain the phenomenon [16].

Finally, there is a logical characterization of context free
languages using quantifications over matchings [19]. Also,
properties expressing boundedness of stack, and repeatedly
boundedness, have received a lot of attention recently [10,
8].

2. VISIBLY PUSHDOWN LANGUAGES

2.1 Definition via pushdown automata
A pushdown alphabet is a tuple Σ̃ = 〈Σc,Σr,Σint〉 that

comprises three disjoint finite alphabets—Σc is a finite set
of calls, Σr is a finite set of returns and Σint is a finite set

of internal actions. For any such Σ̃, let Σ = Σc ∪Σr ∪Σint .

We define pushdown automata over Σ̃. Intuitively, the
pushdown automaton is restricted such that it pushes onto
the stack only when it reads a call, it pops the stack only at
returns, and does not use the stack when it reads internal
actions. The input hence controls the kind of operations
permissible on the stack—however, there is no restriction
on the symbols that can be pushed or popped. We call
such an automaton a visibly pushdown automaton, defined
as follows:

Definition 1 (Visibly pushdown automaton). A vis-
ibly pushdown automaton on finite words over 〈Σc,Σr,Σint〉
is a tuple M = (Q,Qin,Γ, δ, QF ) where Q is a finite set of
states, Qin ⊆ Q is a set of initial states, Γ is a finite stack
alphabet that contains a special bottom-of-stack symbol ⊥,
δ ⊆ (Q×Σc×Q×(Γ\{⊥}))∪(Q×Σr×Γ×Q)∪(Q×Σint×Q),
and QF ⊆ Q is a set of final states.

A transition (q, a, q′, γ), where a ∈ Σc and γ 6= ⊥, is a
push-transition where on reading a, γ is pushed onto the
stack and the control changes from state q to q′. Similarly,
(q, a, γ, q′) is a pop-transition where γ is read from the top of
the stack and popped (if the top of stack is ⊥, then it is read
but not popped), and the control state changes from q to q′.
Note that on internal actions, there is no stack operation.

A stack is a nonempty finite sequence over Γ ending in
the bottom-of-stack symbol ⊥; let us denote the set of all
stacks as St = (Γ \ {⊥})∗.{⊥}. For a word w = a1 . . . ak in
Σ∗, a run of M on w is a sequence ρ = (q0, σ0), . . . (qk, σk),
where each qi ∈ Q, σi ∈ St , q0 ∈ Qin, σ0 = ⊥ and for every
i ∈ [1, k] the following holds:

[Push] If ai is a call, then ∃γ ∈ Γ such that (qi, ai, qi+1, γ) ∈
δ and σi+1 = γ.σi.

[Pop] If ai is a return, then ∃γ ∈ Γ such that (qi, ai, γ, qi+1) ∈
δ and either γ 6= ⊥ and σi = γ.σi+1, or γ = ⊥ and
σi = σi+1 = ⊥.

[Internal] If ai is an internal action, then (qi, ai, qi+1) ∈ δ
and σi+1 = σi.

A run ρ = (q0, σ0) . . . (qk, σk) is accepting if the last state
is a final state, i.e. if qk ∈ QF . A word w ∈ Σ∗ is accepted

by a Vpa M if there is an accepting run of M on w. The
language of M , L(M), is the set of words accepted by M .

Vpas cannot even read the top of the stack on internal
actions; however this is not a restriction as for any Vpa with
stack alphabet Γ that can read the top of the stack, one can
build a Vpa (with a stack alphabet Γ′ = (Γ×Γ)∪{⊥}) that
keeps track of the top of the stack in its control state. Note
that acceptance of Vpas is defined by final-state and not
by emptiness of stack as the latter is too restrictive. Also,
ε-transitions are not allowed.

Definition 2 (Visibly pushdown languages). A lan-
guage of finite words L ⊆ Σ∗ is a visibly pushdown language

(Vpl) with respect to Σ̃ (a Σ̃-Vpl) if there is a Vpa M over

Σ̃ such that L(M) = L.

Note that, by definition, a visibly pushdown language

over Σ̃ is a context-free language over Σ. However, visi-
bly pushdown languages are a strict subclass of context-free
languages. For example, the language {anban | n ∈ N}
is not visibly pushdown for any partition of the alphabet
Σ = {a, b} into calls, returns and internal actions. However,
notice that {anbn | n ∈ N} is visibly pushdown if Σc = {a}
and Σr = {b}, but not otherwise.

For every context-free language, we can associate a visibly
pushdown language over a different alphabet in the follow-
ing way. Let P be a pushdown automaton over Σ and let
us assume that on reading any letter, P pushes or pops at
most one letter. Let Σc = Σ × {c}, Σr = Σ × {r} and
Σint = Σ × {int}. Now consider the visibly pushdown au-
tomaton over 〈Σc,Σr,Σint〉 obtained by transforming P such
that every transition on a that pushes onto the stack is trans-
formed to a transition on (a, c), transitions on a that pop the
stack are changed to transitions on (a, r) and the remaining
a-transitions are changed to transitions over (a, int). Then a
word w = a1a2 . . . ak is accepted by P iff there is some aug-
mentation w′ of w, w′ = (a1, b1)(a2, b2) . . . (ak, bk), where
each bi ∈ {c, r, int}, such that w′ is accepted by M . Thus
M accepts the words in L(P ) annotated with information
on how P handles the stack.

We now briefly sketch how to model formal verification
problems using Vpl. Suppose we are given a boolean pro-
gram P (that is, a program where all the variables have finite
types) with procedures (or methods) that can call one an-
other. We choose a suitable pushdown alphabet (Σc,Σr,Σint),
and associate a symbol with every transition of P with the
restriction that calls are mapped to Σc, returns are mapped
to Σr, and all other statements are mapped to Σint . Then, P
can be viewed as a generator for a visibly pushdown language
L(P ). The specification is given as another Vpl S over the
same alphabet, and the program is correct iff L(P ) ⊆ S.
Requirements that can be verified in this manner include
all regular properties, and non-regular properties such as:
partial correctness (if p holds when a procedure is invoked,
then, if the procedure returns, q holds upon return), total
correctness (if p holds when a procedure is invoked, then
the procedure must return and q must hold at the return
state), local properties (the abstract computation within a
procedure obtained by skipping over subcomputations cor-
responding to calls to other procedures satisfies a regular
property, for instance, every request is followed by a re-
sponse), access control (a procedure Pi can be invoked only
if another procedure Pj is in the current stack), and in-
terrupt stack limits (whenever the number of interrupts in



the call-stack is bounded by a given constant, a property p
holds). In fact, all properties from [17, 14, 2] are Vpls.

2.2 Closure properties
Let us define first a renaming-operation. A renaming of

Σ̃ to Σ̃′ is a function f : Σ → Σ′, such that f(Σc) ⊆ Σ′c,
f(Σr) ⊆ Σ′r and f(Σint) ⊆ Σ′int . A renaming f is ex-
tended to words over Σ in the natural way: f(a1 . . . ak) =
f(a1) . . . f(ak).

Recall that context-free languages are closed under union,
renaming, concatenation and Kleene-∗, but not under in-
tersection. Visibly pushdown automata are however closed
under all these operations:

Theorem 1 (Closure). Let L1 and L2 be visibly push-

down languages with respect to Σ̃. Then, L1 ∪ L2, L1 ∩ L2,
L1.L2 and L∗1 are visibly pushdown languages with respect

to Σ̃. Also, if f is a renaming of Σ̃ to Σ̃′, then f(L1) is a

visibly pushdown language with respect to Σ̃′.

Proof. Given L1 and L2 accepted by Vpas M1 and M2,
closure under union follows by taking the union of the states
and transitions of M1 and M2 (assuming they are disjoint)
and taking the new set of initial states (final states) to be
the union of the initial states (final states) of M1 and M2.
L1 ∩ L2 can be accepted by a Vpa M that has as its set

of states the product of the states of M1 and M2, and as its
stack alphabet the product of the stack alphabets of M1 and
M2. When reading a call, if M1 pushes γ1 and M2 pushes
γ2, then M pushes (γ1, γ2). The set of initial (final) states is
the product of the initial (final) states of M1 and M2. Note
that we crucially use the fact that M1 and M2, being Vpas,
synchronize on the push and pop operations on the stack.

Given L accepted by Vpa M and a renaming f , f(L) can
be accepted by simply transforming each transition of M on
a to a transition on f(a).

Given L1 and L2, we can design a Vpa that accepts L1 ·L2

by nondeterministically guessing a split of the input word
w into w1 and w2. The Vpa simulates w1 on M1 and w2

on M2 using different stack-alphabets; when simulating M2,
the stack-alphabet for M1 is treated as bottom-of-stack.

A slightly more involved construction can be done to ac-
cept L∗. Essentially, the automaton will break the word into
arbitrarily many subwords nondeterministically and simu-
late the automaton for L on each such word. To handle the
stack correctly, it must augment the stack alphabet so that
it can demark positions on the stack corresponding to differ-
ent words. While this demarking can be disturbed because
of pop operations, the automaton can detect this and keep
track of this event in its finite control and push the demarker
again at the next push operation.

Note that the restriction that f maps calls to calls, re-
turns to returns, and internal actions to internal actions, is
important for closure of Vpls under renaming. Vpls are
not closed under unrestricted renaming functions. Indeed,

if Σ′ is any alphabet and Σ̃ = 〈Σ′ × {c},Σ′ × {r},Σ′ × int〉,
and f : Σ→ Σ′ is an unrestricted renaming function which
maps each (a, s) to a (where s ∈ {c, r, int}), then, using the
construction we sketched earlier, we can show:

Proposition 1. Let L′ be a context-free language over

Σ′. Then, there is a visibly pushdown language L over Σ̃
such that f(L) = L′.

Proof. Take a pushdown automaton accepting L′ and

change it to a visibly pushdown automaton over Σ̃, by re-
stricting the transitions according to the input read.

Vpas can also be determinized. A Vpa (Q,Qin,Γ, δ, QF )
is said to be deterministic if |Qin| = 1 and for every q ∈ Q:

• for every a ∈ Σint , there is at most one transition of
the kind (q, a, q′) ∈ δ,

• for every a ∈ Σc, there is at most one transition of the
form (q, a, q′, γ) ∈ δ, and

• for every a ∈ Σr, γ ∈ Γ, there is at most one transition
of the form (q, a, γ, q′) ∈ δ.

Theorem 2 (Determinization). For any Vpa M over

Σ̃, there is a deterministic Vpa M ′ over Σ̃ such that L(M ′) =
L(M). Moreover, if M has n states, we can construct M ′

with O(2n
2
) states and with stack alphabet of size O(2n

2
·

|Σc|).

Proof. Let L be accepted by a VpaM = (Q,Qin,Γ, δ, QF ).
We construct an equivalent deterministic Vpa as follows.

The main idea behind the proof is to do a subset con-
struction but postpone handling the push-transitions that
M does; instead, we store the call actions and simulate the
push-transitions corresponding to them later, namely at the
time of the corresponding pop-transition. The construction
will have a component S that is a set of “summary” edges
that keeps track of what state transitions are possible from
a push-transition to the corresponding pop-transition. Us-
ing the summary information, the set of reachable states is
updated.

Let w = w1a1w2a2w3, where w1, w2 and w3 are words
in which all calls and returns are matched, and a1 and a2

are calls (that don’t have matching returns in w). Then af-
ter reading w, the Vpa we construct will have as its stack
(S2, R2, a2)(S1, R1, a1)⊥ and its control state will be (S,R).
Here S2 contains all the pairs (q, q′) such that the Vpa M
can get on w2 from q with stack ⊥ to q′ with stack ⊥. Sim-
ilarly S1 is the summary for w1 and S is the summary for
w3. The set R1 is the set of states reachable by M from any
initial state on w1, R2 is the set of states reachable from any
initial state on w1a1w2 and R is the set of states reached by
the M after w. We maintain such a property of the stack
and control-state as an invariant.

If now a call a3 occurs, we push (S,R, a3), update R us-
ing all possible transitions on a3 to get R′, and go to state
(S′, R′) where S′ = {(q, q) | q ∈ Q} is the initialization of the
summary. On internal actions we update the R-component.
If a return a′2 occurs, we pop (S2, R2, a2), and update S2

and R2 using the current summary S along with a push-
transition on a2 and a corresponding pop-transition on a′2.

Let L be accepted by a Vpa M = (Q,Qin,Γ, δ, QF ).
We construct an equivalent deterministic Vpa M ′ =
(Q′, Q′in,Γ

′, δ′, Q′F ) as follows.
Let Q′ = 2Q×Q × 2Q. If IdQ denotes the set {(q, q) | q ∈

Q}, then Q′in = {(IdQ, Qin)}. The stack alphabet Γ′ is the
set of elements (S,R, a), where (S,R) ∈ Q′ and a ∈ Σc. The
transition relation δ′ is given by:

(Internal) For every a ∈ Σint , ((S,R), a, (S′, R′)) ∈ δ′

where S′ = {(q, q′) | ∃q′′ : (q, q′′) ∈ S, (q′′, a, q′) ∈ δ},
R′ = {q′ | ∃q ∈ R : (q, a, q′) ∈ δ}.



(Call) For every a ∈ Σc, ((S,R), a, (IdQ, R
′), (S,R, a)) ∈ δ′

where R′ = {q′ | ∃q ∈ R, γ ∈ Γ : (q, a, q′, γ) ∈ δ}.

(Return)

• For every a ∈ Σr,
((S,R), a, (S′, R′, a′), (S′′, R′′)) ∈ δ′ if
(S′′, R′′) satisfies the following: Let
Update = {(q, q′) | ∃q1, q2 ∈ Q, γ ∈ Γ :
(q, a′, q1, γ) ∈ δ, (q1, q2) ∈ S, (q2, a, γ, q

′) ∈ δ}.
Then, S′′ = {(q, q′) | ∃q3 : (q, q3) ∈ S′, (q3, q′) ∈
Update} and
R′′ = {q′ | ∃q ∈ R′, (q, q′) ∈ Update}.
• For every a ∈ Σr, ((S,R), a,⊥, (S′, R′)) ∈ δ′ if
S′ = {(q, q′) | ∃q′′ : (q, q′′) ∈ S, (q′′, a,⊥, q′) ∈ δ},
R′ = {q′ | ∃q ∈ R : (q, a, ,⊥, q′) ∈ δ}.

The set of final states is Q′F = {(S,R) | R ∩QF 6= ∅}.
Intuitively, the R-component keeps track of the current

set of reachable states. When a call-action occurs, R is
propagated on all push-transitions and will be used to de-
termine acceptance provided there is no matching return. If
there is a matching return, then the summary of this call-
return segment will be computed in the S-component and
the R-component in the state before the call occurred will
be updated with this summary.

Since deterministic Vpas can be complemented by comple-
menting the set of final states, we have:

Corollary 1. The class of visibly pushdown languages

is closed under complementation. That is, if L is a Σ̃-Vpl,

then L̄ is also a Σ̃-Vpl.

2.3 Decision problems
Turning now to decidability of decision problems for Vpas,

observe that since a Vpa is a PDA, emptiness is decidable in
time O(n3) where n is the number of states in the Vpa. The
universality problem for Vpas is to check whether a given
Vpa M accepts all strings in Σ∗. The inclusion problem is to
find whether, given two Vpas M1 and M2, L(M1) ⊆ L(M2).
Though both are undecidable for PDAs, they are decidable
for Vpas:

Theorem 3. The universality problem and the inclusion
problem are Exptime-complete.

Proof. Decidability and membership in Exptime for in-
clusion hold because, given Vpas M1 and M2, we can take
the complement of M2, take its intersection with M1 and
check for emptiness. Universality reduces to checking inclu-
sion of the language of the fixed 1-state Vpa M1 accepting
Σ∗ with the given Vpa M . We now show that universality
is Exptime-hard (hardness of inclusion follows by the above
reduction).

The reduction is from the membership problem for al-
ternating linear-space Turing machines (TM) and is similar
to the proof in [5] where it is shown that checking push-
down systems against linear temporal logic specifications is
Exptime-hard.

Given an input word for such a fixed TM, a run of the TM
on the word can be seen as a binary tree of configurations,
where the branching is induced by the universal transitions.

Each configuration can be coded using O(n) bits, where n is
the length of the input word. Consider an infix traversal of
this tree, where every configuration of the tree occurs twice:
when it is reached from above for the first time, we write out
the configuration and when we reach it again from its left
child we write out the configuration in reverse. This encod-
ing has the property that for any parent-child pair, there is a
place along the encoding where the configuration at the par-
ent and child appear consecutively. We then design, given
an input word to the TM, a Vpa that accepts a word w iff
w is either a wrong encoding (i.e. does not correspond to a
run of the TM on the input word) or w encodes a run that
is not accepting. The Vpa checks if the word satisfies the
property that a configuration at a node is reversed when it
is visited again using the stack. The Vpa can also guess
nondeterministically a parent-child pair and check whether
they correspond to a wrong evolution of the TM, using the
finite-state control. Thus the Vpa accepts Σ∗ iff the Turing
machine does not accept the input.

The following table summarizes and compares closure prop-
erties and decision problems for CFLs, deterministic CFLs
(DCFLs), Vpls and regular languages. In the context of re-
ducing program analysis questions to inclusion problems for
Vpl, note that the complexity is polynomial in the model
and exponential only in the specification.

Closure under
∪ ∩ Complement Concat. Kleene-∗

Regular Yes Yes Yes Yes Yes
CFL Yes No No Yes Yes
DCFL No No Yes No No
Vpl Yes Yes Yes Yes Yes

Decision problems for automata
Emptiness Univ./Equiv. Inclusion

Regular Nlog Pspace Pspace

CFL Ptime Undecidable Undecidable
DCFL Ptime Decidable Undecidable
Vpl Ptime Exptime Exptime

3. A LOGICAL CHARACTERIZATION
Given a word w over a pushdown alphabet, recall that

there is a natural notion of associating each call in w with
its matching return, if it exists. We can now define a logic

over words over Σ̃ that has in its signature this matching
relation µ.

Fix Σ̃. A word w over Σ can be treated as a structure
over the universe U = {1, . . . , |w|} that denotes the set of
positions and a set of unary predicates Qa, for each a ∈ Σ,
where Qa(i) is true iff w[i] = a. Also, we have a binary
relation µ over U that corresponds to the matching relation
of calls and returns: µ(i, j) is true iff w[i] is a call and w[j]
is its matching return. Let us fix a countable infinite set of
first-order variables x, y, . . . and a countable infinite set of
monadic second-order (set) variables X,Y, . . ..

Then the monadic second-order logic (MSOµ) over Σ̃ is
defined as:

ϕ := Qa(x) | x ∈ X | x ≤ y | µ(x, y) | ¬ϕ | ϕ∨ϕ | ∃x.ϕ | ∃X.ϕ

where a ∈ Σ, x is a first-order variable and X is a set vari-
able.



The models are words over Σ. The semantics is the natu-
ral semantics on the structure for words defined above. The
first-order variables are interpreted over the positions of w,
and the second-order variables range over subsets of posi-
tions. A sentence is a formula which has no free variables.

For example, if Σ̃ = 〈{a}, {b}, {d}〉, then the formula ϕ =
(∀x. Qa(x) ⇒ ∃y.(Qb(y) ∧ µ(x, y))) says “every call must
have a corresponding return”.

The set of all words that satisfy a sentence ϕ is denoted
L(ϕ) and we say ϕ defines this language.

Theorem 4. A language L over Σ̃ is a Vpl iff there is

an MSOµ sentence ϕ over Σ̃ that defines L.

Proof. The proof follows a similar style as in proving
that MSO (without µ) over words defines the same class as
that of regular words (see [23]).

First we show that for any sentence ϕ, L(ϕ) is a Vpl. Let
us assume that in all formulas, each variable is quantified at
most once. Consider any formula ψ(x1, . . . , xm, X1, . . . , Xn)
(i.e. with free variables Z = {x1, . . . , xm, X1, . . . , Xn}).
Then consider the alphabet Σ̃Z where ΣZs = {(a, V ) | a ∈
Σs, V : Z → {0, 1} is a valuation function}, where s ∈ {c, r, int}.
Then a word w′ over ΣZ encodes a word w along with a
valuation for the variables (provided singleton variables get
assigned to exactly one position). Let L(ψ) denote the set
of words w′ over ΣZ such that the underlying word w satis-
fies ψ under the valuation defined by w′. Then we show, by
structural induction, that L(ψ) is a Vpl.

The property that first-order variables are assigned ex-
actly once can be checked using the finite control of a Vpa.
The atomic formulas x ∈ X, Qa(x) and x ≤ y are easy to
handle.

To handle the atomic formula µ(x, y), we build a Vpa that
pushes the input calls onto the stack, and pops the top of
the stack whenever it sees a return. The Vpa accepts the
string if it reads a return (a, v) where v assigns y to 1 and
the popped symbol is of the kind (a′, v′) where v′ assigns x
to 1.

Disjunction and negation can be dealt with using the fact
that Vpls are closed under union and complement. Also,
existential quantification corresponds to restricting the val-
uation functions to exclude a variable and can be done by

renaming the alphabet. Thus we obtain a Vpa over Σ̃ that
accepts precisely the language L(ϕ).

For the converse, consider a Vpa M = (Q, qin,Γ, δ, QF )
where Q = {q1, . . . qn} and Γ = {γ1, . . . , γk}. The corre-
sponding MSOµ formula will express that there is an ac-
cepting run of M on the word and will be of the form:

∃Xq1 . . .∃Xqn ∃Cγ1 . . .∃Cγk ∃Rγ1 . . .∃Rγk

ϕ(Xq1 , . . . Xqn , Cγ1 , . . . Cγk , Rγ1 , . . . , Rγk )

where Xq stands for the positions where the run is in state
q, and Cγ and Rγ stand for the positions where γ is pushed
and popped from the stack, respectively. We can write con-
ditions in ϕ that ensure that the variables Xq, Cγ and Rγ
indeed define a run; the only interesting detail here is to
ensure that when a stack symbol γ is pushed (i.e. when Cγ
holds), at the corresponding return Rγ must hold. We can
state this using the µ-relation by demanding that for every
x and y, if µ(x, y) holds, then there is a γ such that x ∈ Cγ

and y ∈ Rγ . Also, ϕ demands that if y ∈ Rγ and there is
no x such that µ(x, y) holds, then γ = ⊥.

4. RELATION TO REGULAR TREE
LANGUAGES

In this section we describe a mapping from words over

Σ̃ to a particular class of trees, called stack-trees such that
visibly pushdown languages correspond to regular sets of
stack-trees. For technical convenience, we do not represent
the empty-word ε as a tree.

It is well known that context-free grammars and regular
tree languages are related: the derivation trees of a CFG
form a regular tree language and for any regular tree lan-
guage, the yield language of the trees is a CFL [9]. However,
the tree language for a CFL is determined by the grammar
and not the language itself; in this section we associate reg-
ular tree languages with Vpls.

A Σ-labeled tree is a structure T = (V, λ), where V ⊆
{0, 1}∗ is a finite prefix-closed language, and λ : V → Σ is a
labeling function. The set V represents the nodes of the tree
and the edge-relation is implicit: the edges are the pairs of
the form (x, x.i), where x, x.i ∈ V , i ∈ {0, 1}; ε is the root
of the tree. Let TΣ denote the set of all Σ-labeled trees.

Fix Σ̃; we now define a map η : Σ∗ → TΣ. η(w) for any
w ∈ Σ∗ is defined inductively as follows:

• If w = ε, η(ε) is the empty tree—i.e. with an empty
set of vertices.

• If w = cw′, where c is a call, then there are two cases:
If the first position in w (labeled c) has a matching
return, let w = cw1rw2, where the matching return is
the position after w1. Then η(w) has its root labeled c,
the subtree rooted at its 0-child is isomorphic to η(w1),
and the subtree rooted at its 1-child is isomorphic to
η(rw2).

If the first letter in w does not have a matching return,
then η(w) has its root labeled c, has no right-child, and
the subtree rooted at its 0-child is isomorphic to η(w′).

• If w = aw′, where a is an internal action or a return,
η(w) has its root labeled a, has no 0-child, and the
subtree rooted at its 1-child is isomorphic to η(w′).

The trees that correspond to non-empty words in Σ+ are
called stack-trees and the set of stack-trees is denoted by
STree = η(Σ+). If T = η(w), then the labels on an infix
traversal of T recovers w. Hence η is a 1-1 correspondence
between words in Σ+ and STree . In a stack tree, however, a
call and its matching return are encoded next to each other
(if w[i] is a call and w[j] is the corresponding return, then
the node encoding w[j] is the 1-child of the node encoding
w[i]).

Let us now define regular tree languages using automata
over trees. A tree-automaton on Σ-labeled trees is a tuple
A = (Q,Qin,∆) where Q is a finite set of states, Qin ⊆ P is
the set of initial states and ∆ = 〈∆01,∆0,∆1,∆∅〉 is a set of
four transition relations—∆D encodes transitions for nodes
u where D is the set of children that u has:

• ∆01 ⊆ P × Σ× P × P

• For i = 0, 1, ∆i ⊆ P × Σ× P

• ∆∅ ⊆ P × Σ



Let T = (V, λ) be a Σ-labeled tree. A run of A over T
is a Q-labeled tree Tρ = (V, λρ) where λρ(ε) ∈ Qin and for
every node v ∈ V :

• If v has both children, then
(λρ(v), λ(v), λρ(v.0), λρ(v.1)) ∈ ∆01

• If v has one child, say the i-child, then
(λρ(v), λ(v), λρ(v.i)) ∈ ∆i

• If v is a leaf, then (λρ(v), λ(v)) ∈ ∆∅

Tree automata are usually defined using a set of final
states; this has been absorbed into the ∆∅ component of
the transition relation. A tree T is accepted by a tree au-
tomaton A iff there is a run of A over T ; the set of trees
accepted by A is the language of A, denoted L(A). A set of
Σ-labeled trees L is regular if there is some tree automaton
such that L = L(A). The set of trees STree can be shown
to be regular. We can show the following:

Theorem 5. Let L be a set of stack trees. Then η−1(L)
is a Vpl iff L is regular.

Proof. Let L = η−1(L) be accepted by a Vpa M =
(Q,Qin,Γ, δ, QF ). Then we build a tree automaton A =
(P, Pin,∆) of size polynomial in |M | accepting L, where
P = (Q × Q) ∪ (Q × Q × (Γ \ {⊥})) and Pin = {(qin, qf ) |
qin ∈ Qin, qf ∈ QF }. The tree automaton simulates the
Vpa on the word corresponding to the tree. A state of the
form (q, q′) means that the current state of the Vpa that is
being simulated is q and q′ is the (guessed) state where the
run of the Vpa will be when it meets the next unmatched
return or when the word ends (i.e. q′ is the guessed state
of the Vpa when it has finished reading the leaf on the 1-
branch from the current node). The state (q, q′, γ) stands
for the current state of Vpa being q and the commitment
to end in q′ but additionally that the next node to be read
must be a return and the top of the stack is γ.

We start with any state (qin, qf ), where qin ∈ Qin, qf ∈
QF , which means that we want to end in a final state when
we finish the word. The main idea of the construction is in
the call—when reading a call in a state (q, q′) that is going
to return (i.e. the node has both children), if (q, a, q1, γ) is
a transition in the Vpa, the tree automaton can split into
two copies (q1, q2) and (q2, q

′, γ) to the 0-child and 1-child
respectively, for any q2 ∈ Q. Here the tree automaton is
guessing that the portion of the word within the call will
start at q1 and end at q2 and that at the corresponding
return, the Vpa will take the state from q2 to q′. The state
(q2, q

′, γ) will see the return, simulate a transition from q2
that pops γ and continue. Note that the tree automaton is
in general nondeterministic, even if the Vpa is deterministic.

The transition relation ∆ is defined as follows:

Calls: For each push-transition (q, a, q1, γ) ∈ δ, where a is
a call, we have, for every q′ ∈ Q, the transitions:

Calls that immediately return:
((q, q′), a, (q1, q

′, γ)) ∈ ∆1

Calls that return: For every q2 ∈ Q,
((q, q′), a, (q1, q2), (q2, q

′, γ)) ∈ ∆01

Calls that do not return: ((q, q′), a, (q1, q
′)) ∈ ∆0

Returns that have matching calls: For each pop-
transition (q, a, γ, q1) ∈ δ, where a is a return and
γ 6= ⊥, we have, for every q′ ∈ Q, the transitions
((q, q′, γ), a, (q1, q

′)) ∈ ∆1

Internal actions or returns without matching calls:
If a ∈ Σint and (q, a, q1) ∈ δ, or, a ∈ Σr and
(q, a,⊥, q1) ∈ δ, then we have, for every q′ ∈ Q, the
transitions ((q, q′), a, (q1, q

′)) ∈ ∆1.

∆∅ contains the pairs ((q, q′), a) where a ∈ Σ and, either
(q, a, q′) ∈ δ or (q, a, q′, γ) ∈ δ or (q, a,⊥, q′) ∈ δ. Also,
∆∅ contains the pairs ((q, q′, γ), a) where a is a return and
(q, a, γ, q′) ∈ δ.

Intuitively the set of final states (i.e. ∆∅) checks whether
the commitment to end in the state q′ is indeed met. Since
the initial state is of the form (qin, qf ) and the component
qf stays in the second-component along the right-most path
of the tree, we ensure that the entire run ends in qf , i.e. in
a final state. It is easy to show that A accepts exactly L.

For the converse, letA = (P, Pin,∆) accept L. Intuitively,
we construct a Vpa M accepting η−1(L) of size polynomial
in |A| as follows. The Vpa on a word w, simulates a run
of A on η(w). At every call a ∈ Σc, M guesses whether
the call will have a matching return or not. If it will, then
the Vpa picks a transition (q, a, q0, q1) ∈ ∆01 and pushes q1
onto the stack and continues simulating q0. Just before the
matching return is seen, we are at a leaf and M will check
if the current state and the label of the leaf is in ∆∅. When
the matching return is seen, the current state is reset to
the popped state q1 and M continues to simulate A on the
right-branch from the call. The other cases are analogous.
To make sure the guesses made on the structure of the tree
is indeed correct is a bit more involved.

Formally, M = (Q,Qin,Γ, δ, QF ), whereQ = ((P∪{acc})×
(P ∪ {∗,⊥})) ∪ {fin}, Qin = {(p,⊥) | p ∈ Pin} and Γ =
((P ∪ {∗})× (P ∪ {∗,⊥})) ∪ {⊥}.

A state (p, p′) stands for the fact that the current state of
the tree automaton being simulated is p and p′ is the top of
the stack. If p = acc, then this means that a leaf of the tree
has just been read and that we expect to see a return. At
the right-most leaf where the word ends, the Vpa will be in
the state fin if it has successfully checked that there is an
accepting run of the tree automaton.

The stack at any point is of the form
(pn, p

′
n)(pn−1, p

′
n−1) . . . (p1, p

′
1)⊥ where p′1 = ⊥ and

every p′i+1 = pi, i.e. we keep track of the stack content
as a chain where each element of the stack also records
what symbol is below it. Using this structure, the Vpa can
keep track of the top-most symbol of the stack in its finite
control. The ∗ symbol is a special symbol pushed when the
Vpa reads a call and guesses that it is not going to have a
matching return.

The transition relation is defined as follows:

Internal actions: For every a ∈ Σint , (p, a, p1) ∈ ∆1,
p′ ∈ P ∪ {∗,⊥}, we have ((p, p′), a, (p1, p

′)) ∈ δ.
For every a ∈ Σint , (p, a) ∈ ∆∅, we have
((p, ∗), a,fin) ∈ δ, ((p,⊥), a,fin) ∈ δ and for every
p′ ∈ P , ((p, p′), a, (acc, p′)) ∈ δ.

Calls: For every a ∈ Σc,

• For every (p, a, p0, p1) ∈ ∆01 and p′ ∈ P ∪{∗,⊥},
we have ((p, p′), a, (p0, p1), (p1, p

′)) ∈ δ.



• For every (p, a, p0) ∈ ∆0, b ∈ {∗,⊥}, we have
((p, b), a, (p0, ∗), (∗, b)) ∈ δ.
• For every (p, a, p1) ∈ ∆1 and p′ ∈ P ∪ {∗,⊥}, we

have ((p, p′), a, (acc, p1), (p1, p
′)) ∈ δ.

• For every (p, a) ∈ ∆∅ and b ∈ {∗,⊥}, we have
((p, b), a,fin, (∗, b)) ∈ δ.

Returns: For every a ∈ Σr,

• For (p, a, p1) ∈ ∆1, we have
((acc, p), a, (p, p′), (p1, p

′)) ∈ δ and
((p,⊥), a,⊥, (p1,⊥)) ∈ δ.
• For (p, a) ∈ ∆∅, we have

((acc, p), a, (p, p′), (acc, p′)) ∈ δ and
((p,⊥), a,⊥,fin) ∈ δ.

The set QF = {fin}.

5. VISIBLY PUSHDOWN ω-LANGUAGES
We now consider extensions of the results in the previ-

ous sections to infinite words over Σ̃. An ω-Vpa is a tuple
M = (Q,Qin,Γ, δ,F) where Q, Qin, Γ and δ are as in a
Vpa. For any infinite word α ∈ Σω, a run is an ω-sequence
ρ = (q0, σ0)(q1, σ1) . . . that is defined using the natural ex-
tension of the definition of runs on finite words. To de-
termine whether a run ρ is accepting, we consider the set
inf (ρ) ⊆ Q which is the set of all states that occur in ρ
infinitely often.

The acceptance condition F is an infinitary winning con-
dition that can be of two kinds:

• Büchi acceptance condition: F = F ⊆ Q is a set of
states; a run ρ is accepting if F is met infinitely often
along the run, i.e. inf (ρ) ∩ F 6= ∅.

• Muller acceptance condition: F = {F1, . . . , Fk}, where
each Fi ⊆ Q; a run ρ is accepting if the set of states it
meets infinitely often is an element of F , i.e. inf (ρ) ∈
F

An infinite word α is accepted by M if there is some ac-
cepting run of M on α. The language of M , Lω(M), is the
set of all ω-words that it accepts. A language of infinite
words L ⊆ Σω is said to be an ω-Vpl if there is some ω-Vpa

M such that L = Lω(M).
The class of ω-regular languages is well studied and is de-

fined using automata (without stack) on infinite words; the
definition of ω-Vpa extends this definition to visibly push-
down automata and the languages accepted by ω-Vpas is
a subclass of ω-CFLs [11]. It is known that nondetermin-
istic Büchi automata and Muller automata (without stack)
can simulate each other—these constructions can be easily
extended to show that nondeterministic Büchi and Muller
ω-Vpas are equivalent. Hence we take the definition of an ω-
Vpl as that of being accepted by a nondeterministic Büchi
ω-Vpa. The notion of renaming can be extended to infinite
words and we can show:

Theorem 6 (Closure). Let L1 and L2 be ω-Vpls with

respect to Σ̃. Then, L1 ∪ L2 and L1 ∩ L2 are also ω-Vpls

with respect to Σ̃. If f is a renaming of Σ̃ to Σ̃′, then f(L1)

is a visibly pushdown language with respect to Σ̃′. Further,

if L3 is a Vpl over Σ̃, then L3.L1 and (L3)ω are ω-Vpls

over Σ̃.

However, ω-Vpas cannot be determinized. For automata
(without stack) on ω-words it is well known that for any
nondeterministic Büchi automaton, there is a deterministic
Muller automaton that accepts the same language [22, 23].
However, this is not true for visibly pushdown automata
over infinite words. In fact, consider the language Lrepbdd

consisting of all words α in {c, r}ω, (where c is a call and r
is a return), that is repeatedly bounded—i.e. α ∈ Lrepbdd if
there is some n ∈ N such that the stack-depth on reading α
infinitely often is less than or equal to n [10]. We can then
show that this language is not determinizable.

Theorem 7 (Deterministic vs. Nondet. ω-Vpas).

ω-Vpas are not determinizable. In particular, the language
Lrepbdd is an ω-Vpl but cannot be accepted by any
deterministic Muller ω-Vpa.

Proof. We can easily design a nondeterministic Büchi ω-
Vpa that accepts Lrepbdd. The ω-Vpa nondeterministically
chooses a position in the word and checks whether the stack-
depth at that position is the least stack-depth that occurs
infinitely often. The ω-Vpa guesses this point by pushing a
special symbol onto the stack and signals a Büchi acceptance
state whenever the stack reaches that depth.

Now to show that no deterministic ω-Vpa can accept
Lrepbdd, assume the contrary and let M = (Q, {qin},Γ, δ,F)
be a deterministic Muller automaton that accepts Lrepbdd.
Let G1 = (Q,→) be the summary-graph of M where q → q′

iff there exists a word w that is well-matched (every call has
a matching return and vice versa) such that from q and the
empty stack, M reaches q′ (and empty stack) on w (note
that M hence also goes on w from (q, σ) to (q′, σ) for any
stack σ). Note that if q is a state reachable by M on any
arbitrary word, then there must be an edge from q in G1 (we
can append an infinite word wω where w is a well-matched
word; then M must have a run on it as it is repeatedly
bounded and hence there will be a summary edge from q
on w). Also, since concatenation of well-matched words is
well-matched, G1 is transitive-closed.

Consider the strongly connected components (SCC) ofG1.
A sink SCC of G1 is a strongly connected component S′ such
that every edge (q, q′) ∈ G1, if q ∈ S′ then q′ is also in S′.

Now let G2 = (Q,⇒) which is a super-graph of G1 with
additional call-edges: (q, q′) is a call-edge if there is a tran-
sition from q to q′ in M on a call c ∈ Σc. We now want to
show:

(*) there is a sink SCC S of G1 and a state q ∈ S reachable
from qin in G2 such that there is a cycle involving q in
G2 that includes a call-edge.

If (*) is true, then we can show a contradiction. Consider
a word that from qin reaches q using the summary edges and
call-edges in G2 and then loops forever in S. This word is
repeatedly bounded and hence must be accepting and hence
QS , the union of all states reachable using summary edges in
S must be in the Muller set F . Now consider another word
that takes M from qin to q but now follows the cycle that
involves q. Along the cycle, some are words corresponding
to summary edges and some are calls; note that there will
be no returns that match these calls. If Q′ is the set of
states visited from going to q to q along the cycle, then we
can show that Q′ ⊆ QS (after the cycle, if we feed enough
returns to match the calls then we get a summary edge from



q; however summary edges from q go only to S and hence
the states seen must be a subset of QS). Now, consider
the infinite word that first goes from qin to q, and then
alternately takes the cycle in G2 to reach q and takes the
set of all possible summary edges in S to reach q again. This
word is not repeatedly bounded (as it has unmatched calls
during the cycle in G2) but the set of states seen infinitely
often is QS and is hence accepted, a contradiction.

Now let us show (*). Note that from any state, one can
take summary edges in G1 to reach a sink SCC of G1. Let
us take summary edges from qin to reach a state q1 in a sink
SCC S1 of G1 and take the call edge from q1 to reach q′1. If
q′1 ∈ S1, we are done as we have a cycle from q1 to q1 using
a call-edge. Otherwise take summary edges in G1 from q′1 to
reach a state q2 in a sink SCC S2. If S2 = S1, we are again
done, else take a call-edge from q2 and repeat till some sink
SCC repeats.

Though ω-Vpas cannot be determinized, they can be com-
plemented.

Theorem 8 (Complementability). The class of ω-

Vpls over Σ̃ is closed under complement.

Proof. Let M = (Q,Qin,Γ, δ, F ) be a ω-Vpa over Σ̃.
We can assume that there are transitions from every state
on every letter, and that there is a run of M on every word.
Consider a word α ∈ Σω. Then α can be factored into words
where we treat a segment of letters starting at a call and
ending at the matching return as a block. This factorization
can be, say, of the form α = a0a1w0a2w1w2a3 . . . where each
wi is a finite word that is a properly matched word (wi starts
with a call, ends with the matching return). The letters ai
can be calls, returns or internal actions but if some ai is
a call, then aj (j > i) cannot be a return. Consider the
following word which can be seen as a pseudo-run of M on
α: α′ = a0a1S0a2S1S2a3 . . . where each Si is the set of all
triples (q, q′, f) where q, q′ ∈ Q, f ∈ {0, 1} such that there
is some run ρ of M on wi starting at the state q and ending
at the state q′ and ρ meets a state in F iff f = 1.

Let S denote the set of all sets S where S contains triples
of the form (q, q′, f) where q, q′ ∈ Q and f ∈ {0, 1}; the
summary edges used above hence are in S. Then PR =
(Σr ∪Σint ∪S)ω ∪ (Σr ∪Σint ∪S)∗.(Σc ∪Σint ∪S)ω denotes
the set of all possible pseudo-runs. We can now construct
a nondeterministic Büchi automaton (with no stack) that
accepts all accepting pseudo-runs; a pseudo-run is accept-
ing if there is a run of M that runs over the Σ-segments of
the word in the usual way, and on letters S ∈ S, updates
the state using a summary edge in S and either meets F
infinitely often or uses summary edges of the form (q, q′, 1)
infinitely often. Note that a word α is accepted by M iff the
pseudo-run corresponding to α is accepting. Let the lan-
guage of accepting pseudo runs be LR. Now we construct a
deterministic Muller automaton AR that accepts the com-
plement of LR ([23]).

We now construct a nondeterministic Muller ω-Vpa that,
on reading α, generates the pseudo-run of α online and
checks whether it is in LR. The factorization of α into seg-
ments is done nondeterministically and the summary edges
are computed online using the stack (as in the proof of deter-
minization of Vpas on finite words). The resulting automa-
ton can be converted to a Büchi automaton and accepts the
complement of Lω(M).

We can also characterize the class ω-Vpl using MSOµ

which is now interpreted over infinite words, using the fact
that ω-Vpls are closed under union, complement and re-
naming:

Theorem 9 (MSOµ-characterization). A language

L of infinite strings over Σ̃ is an ω-Vpl iff there is an MSOµ

sentence ϕ over Σ̃ that defines L.

The emptiness problem is decidable in polynomial time [7]
and we can show that the universality and inclusion prob-
lems are Exptime-complete.

The connection to regular tree languages also extends to
the infinite-word setting. Given a word α ∈ Σω, we can asso-
ciate with it a unique tree, η(α), where matching calls and
returns occur together with the segment in between them
encoded as a finite tree on the 0-child of the call. This class
of infinite trees has the property that the right-most path
(the path going down from the root obtained by taking the
1-child whenever it exists and taking the 0-child otherwise)
is the only infinite path in the tree. We can define the class of
regular stack-trees using Büchi tree automata on trees[23].1

We can then show:

Theorem 10 (Relation to regular stack-trees).

Let L be a set of infinite stack trees over Σ̃. Then η−1(L) is

an ω-Vpl over Σ̃ iff L is regular.

6. CONCLUSIONS
The class of visibly pushdown languages proposed in this

paper explains, unifies, and extends the known classes of
properties that can be algorithmically checked against push-
down models of recursive programs. While it requires the
model to render its calls and returns visible, this seems nat-
ural for formulating program analysis questions. We have
shown the class to be robust with many of the desirable prop-
erties as those of regular languages. Based on our results,
we believe that this is indeed a basic class that can have
many applications and warrants further investigation. A
characterization via restricted context-free grammars should
be feasible, but has not been explored here. In the case of
ω-languages, the gap between deterministic and nondeter-
ministic variants raises new questions. On the logical side,
identifying expressively complete fragments of MSOµ (and
its first-order counterpart) that can be model checked at
low cost would be fruitful. Finally, it would be interesting
to study games on pushdown structures where the winning
condition is an ω-Vpl.

Acknowledgment: We thank Kousha Etessami and Mi-
halis Yannakakis for fruitful discussions.

1Usually regular classes of trees are defined using Muller
conditions as they are more powerful than Büchi conditions;
however, since we deal with trees that have only one infinite
path, the two definitions coincide.
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