Visibly Pushdown Transducers
with Look-Ahead

Emmanuel Filiot and Frédéric Servais

Université Libre de Bruxelles
University of Hasselt

SOFSEM 2012

(ULB) SOFSEM 2012 1 /25

Plan

@ Transducers: Finite State and Pushdown
@ Visibly Pushdown Transducers

@ VPT with Look-ahead

@ Open Problems and Future Work

(ULB) SOFSEM 2012 2 /25

Transducers

Automata with output

R

Finite State Automaton

L(A): amb" for all m,n>0

Define regular languages which are closed under (nearly) everything and all
decision problems are decidable.

(ULB) SOFSEM 2012 4 /25

Finite State Transducers

Figure: Two finite state transducers: T; (left) and T; (right).

R(Ty) : amb" —c™ for all m,n >0

R(T2) : amb" —c" for all m,n >0

(ULB) SOFSEM 2012 5 /25

Finite State Transducers

Figure: Two finite state transducers: T (left) and T, (right).

R(T1) : amb" —c™ for all m,n >0
R(T2) : amb" —c" for all m,n >0

What about closure and decision problems ? Not as good as for regular
languages.

Y

Finite State Transducers

Figure: Two finite state transducers: T; (left) and T; (right).

R(T1) : amb" —c” for all m,n >0
R(T2) : amb" —c" for all m,n >0

Not closed under intersection:

R(T1) N R(T2) ={(a"b",c") | n >0}

(ULB) SOFSEM 2012 5/25

Finite State Transducers

@ Closed under union, composition, lookahead.
@ Not closed under intersection, complement.
@ Decidable emptiness, functionality, determinizability, type checking.

@ Undecidable inclusion, equivalence.

(ULB) SOFSEM 2012 6 / 25

Finite State Transducers

@ Closed under union, composition, lookahead.
@ Not closed under intersection, complement.
@ Decidable emptiness, functionality, determinizability, type checking.

@ Undecidable inclusion, equivalence.

Functional (and finite-valued) finite state transducers:
@ Closed under (union), composition, lookahead.
@ Not closed under intersection, complement.

@ Decidable emptiness, (functionality), determinizability, type checking.

@ | Decidable inclusion, equivalence. ‘

R

Pushdown Transducers

Adding a stack

(ULB) SOFSEM 2012 7/25

Pushdown Transducers

@ Closed under union.

@ Not closed under intersection, complement, composition, (lookahead).

@ Decidable emptiness.

@ Undecidable inclusion, equivalence, functionality, determinizability,
type checking.

R

Pushdown Transducers

@ Closed under union.

@ Not closed under intersection, complement, composition, (lookahead).
@ Decidable emptiness.

@ Undecidable inclusion, equivalence, functionality, determinizability,
type checking.

Functional (and finite-valued) pushdown transducers:
@ Closed under (union).
@ Not closed under intersection, complement, composition, (lookahead).
@ Decidable emptiness.

@ Undecidable inclusion, equivalence, functionality, determinizability,
type checking.

(ULB) SOFSEM 2012 8 /25

Visibly Pushdown Automata

R. Alur and P. Madhusudan 2004

The alphabet drives the stack

SO ©)7

Looking for a good subclass of pushdown automata

Partition the input alphabet into two types of symbols:
@ Call symbols (opening): <a>, , <c>...
@ Return symbols (closing): , , </c>...

This partition induces a nesting structure on the words.

<a<a><a> <a> <a> <a><a>

<a> - -t <a> - -

TR

Visibly Pushdown Automata (VPA)

A Visibly Pushdown Automaton is a Pushdown Automaton such that:
@ When it reads a call it must push one symbol on the stack.
@ When it reads a return it must pop the top of the stack.

Product construction is possible because the stack operations are
synchronized on the input word (stack can be simulated).

Proposition - Visibly Pushdown Languages [Alur and Madhu., 2004]

The class of VPL is closed under all Boolean operations.
Equivalence, inclusion, emptiness, universality are all decidable.

TR

Visibly Pushdown Automata (VPA)

<a>
push_1
<a> push 0 pop 0

pop 1
<a> -
<a> - <a> - -
<@> - <a> - <a> ----- - -
B > I
q >
(ULB) SOFSEM 2012

11/ 25

Visibly Pushdown Automata (VPA)

<a>
push_1
<a> push 0 pop 0

pop 1
<a> -
<a> - <a> - -
<@> -t <a> - <a> -------
=
a-gq >
) SOFSEM 2012

11/ 25

Visibly Pushdown Automata (VPA)

<a>
push_1
<a> push 0 pop 0

pop 1
<a> -
<a> - <a> - -
<@> -t <a> - <a> -------
K@D - n sttt ts s esseeceeseee e
a -9 -q >
) SOFSEM 2012

11/ 25

Visibly Pushdown Automata (VPA)

<a>
push_1
<a> push 0 pop 0

pop 1
<a> -
<@> - - <a> - -
<@> -t <a> - <a> -------
<@> - T
9 -9 -9 -4q >
) SOFSEM 2012

11/ 25

Visibly Pushdown Automata (VPA)

<a>
push_1

<a> push 0 S:;? pop 0

> d

pop 1
<a> - -
<a> <a> - <a> -------
<a> -
9 "9 -9 "q - >
(ULB) SOFSEM 2012

11/ 25

Visibly Pushdown Automata (VPA)

<a>
push_1

<a> push 0 S:;? pop 0

> d

pop 1
<a> - -
<a> <a> - <a> -------
<a> - |- -
9 "9 -q - >
(ULB) SOFSEM 2012

11/ 25

Visibly Pushdown Automata (VPA)

<a>
push_1

<a> push 0 S:;? pop 0

> g

pop 1
-
----- <a> - <a> - ------
..... I |I
"qa T q - 'q9 —g9g "9 — 49 — 49 9 -9 97499~
(ULB) SOFSEM 2012

11/ 25

VPA properties

Closure L LiUly Linly LiL, LNREG
Finite state yes yes yes yes
Visibly pushdown | yes yes yes yes
Pushdown no yes no yes
Decision problems | emptiness equivalence universality
membership inclusion
Finite state PTIME PSpPACE-C PSPACE-C
Visibly pushdown PTIME ExpTiME-¢ EXPTIME-C
Pushdown PTiME undec undec

SOFSEM 2012

12 /25

Visibly Pushdown Transducers

(ULB) SOFSEM 2012 13 /25

Visibly Pushdown Transducers

Input alphabet:

e Call symbols: {c}

@ Return symbols: {r}
Output alphabet: {x,y,z}.

c/x, 4+ rly,—

c"r" — x"zy" forall 1<n

(ULB) SOFSEM 2012 14 /25

Visibly Pushdown Transducers - Properties

@ Closed under union, (composition), lookahead (this paper).
@ Not closed under intersection, complement.

@ Decidable emptiness, functionality, (determinizability 7), type
checking.

@ Undecidable inclusion, equivalence.

(ULB) SOFSEM 2012 15/ 25

Visibly Pushdown Transducers - Properties

@ Closed under union, (composition), lookahead (this paper).
@ Not closed under intersection, complement.

@ Decidable emptiness, functionality, (determinizability 7), type
checking.

@ Undecidable inclusion, equivalence.

Functional (and finite-valued) finite state transducers:
Closed under (union), composition, lookahead (this paper).
@ Not closed under intersection, complement.

@ Decidable emptiness, (functionality), (determinizability ?), type
checking.

@ | Decidable inclusion, equivalence. ‘

TRy

Functional (and k-valued) Transducers

Finite State Transducers:
@ Closed under (union), composition, lookahead (this paper).
@ Not closed under intersection, complement.

@ Decidable emptiness, functionality, determinizability, type checking,
inclusion, equivalence.

Pushdown Transducers:
@ Closed under (union).
@ Not closed under intersection, complement, composition, (lookahead).
@ Decidable emptiness.
@ Undecidable inclusion, equivalence, functionality, determinizability,
type checking.
Visibly Pushdown Transducers:
@ Closed under (union), composition, lookahead (this paper).
@ Not closed under intersection, complement.
@ Decidable emptiness, (functionality), (determinizability ?), type
checking, inclusion, equivalence.
SOFSEM 2012 16 / 25

Look-Ahead

Useful syntactic sugar

TR

Determinism vs Functional

@ Determinism is too restrictive to define all functional transduction.

@ To stay determinist but express all functional transductions we need
some look-ahead.

@ What look-aheads are necessary to capture all functional VPT?

@ Are VPT with look-ahead more expressive than VPT?

TRy

VPT with Look-Ahead

Definition

A VPT with look-ahead is a VPT s.t. call transitions are guarded by VPL.
A call transition guarded by L can be fired if the longest well-nested
sub-word starting at the call is in L.

|
[|
<a>
<a> <a>
<a> <a> <a>

<a>

(ULB) SOFSEM 2012 19 /25

VPT with Look-Ahead

<a>
<a>
<a>
<a>
| |
[|
<a>
<a>
<a>
<a>
<a>
<a>
<a>
<a>

(ULB)

<a>
<a> <a>

<a>
<a> <a>

| |
I
<a>
<a> <a>

SOFSEM 2012 19 / 25

VPT with or without Look-Ahead

Theorem

VPT and VPT with look-ahead are equally expressive
(but exponentially more succinct).

Challenge: Unbounded number of running look-aheads.
Unbounded 1: <c1></r1> <co></ro> ... <cp> </rp>
» when reading <c1> a new look-ahead is triggered, this look-ahead will
run until <r,>.
» — after reading k successive <c> </r> there are (at least) k
simultaneous running look-aheads.

Unbounded 2: <c> <c> <c>...<r> <r>...<r>.
Idea 1: Simulate all look-aheads with a subset construction.
Idea 2: Deal with the stack using summaries (Alur 2004).

Cost: Exponential blow-up.

RS

Deterministic VPT with Look-Ahead

Theorem

Functional VPT and deterministic VPT with look-ahead are equally
expressive.

@ Challenge: Unbounded number of runs.

@ Idea: All accepting runs have the same output (functional).
Order the runs of the VPT (lexicographic ordering).
Choose the smallest accepting one using look-ahead.

@ Careful: when entering a new nesting level, thanks to look-ahead
choose the smallest run that is compatible with the chosen global run!

@ Cost: Exponential blow-up.

RN

VPT with Look-Ahead

Corollary
Functional VPT and unambiguous VPT are equally expressive.
@ Idea: apply successively the two previous theorems.
functional VPT — deterministic VPT; — VPT

The resulting VPT is unambiguous.

@ Cost: Doubly exponential blow-up.

Theorem

Equivalence and inclusion of VPT; is EXPTIME-C.
(Same as for VPT despite being exponentially more succinct).
Functionality, emptiness are EXPTIME-C.

RS

Conclusion

Finally.

TR

Conclusion

We showed:

Closure under look-ahead.
Characterization of functional VPT by deterministic VPT,.

Characterization of functional VPT by unambiguous VPT.
Complexity of decision problems for VPT),.

Discussion on variants of look-ahead (shorter, longer...).

— VPT form a robust class of transducers.

TRy

Open Problems and Future Work

Open problems

Deciding determinizability, determinization procedure (coming soon).
@ Deciding equivalence of k-valued transducers.

@ Deciding finite-valuedness.

@ k-valued VPT = k-ambiguous VPT?

TR

	Pushdown Transducers
	Visibly Pushdown Automata
	Visibly Pushdown Transducers
	VPT with Look-Ahead
	conclusion

