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Abstract:  We describe how to extend the bandwidth of the supercontinuum 
generated in uniform fibers pumped at 1064nm.  The spectra extend to 
~400nm, some 50nm deeper into the blue than previously with the same 
pump source.   
©2008 Optical Society of America  
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1. Intoduction 

Broadband supercontinuum generation [1, 2, 3] is one of the most successful applications of 
photonic crystal fibers (PCF) [4], with compact supercontinuum sources becoming an 
indispensible piece of equipment in many optical laboratories.  More potential applications of 
supercontinua would be enabled if the spectra were extended further into the infrared or 
especially into the ultraviolet.    

The generation of new optical frequencies in supercontinua is due to several simultaneous 
or sequential non-linear processes.  A principal mechanism for generating the short 
wavelength “blue” edge was recently identified by Gorbach et al. [5, 6].  A self frequency-
shifting soliton propagating in the anomalous-dispersion (infrared) regime effectively traps 
blue radiation propagating with the same group index on the other arm of the group index 
curve (which has the shape of a “U” with respect to wavelength) in a potential well and 
scatters the blue radiation to shorter wavelengths in a cascaded four-wave mixing process. 
The long- and short-wavelength edges of the supercontinuum are thus intimately related, with 
the shortest wavelength generated being limited by index matching to the longest co-
propagating wavelengths.  In order to generate continua with deeper blue frequencies one can 
modify the group index profile of the fiber in the infrared to rise more steeply with 
wavelength, and thus to group-index-match to a deeper blue. 

2. Experiment 

The response of a strand of silica surrounded by air is better in this regard than fibre designs 
with smaller air holes (Fig. 1a) whereas conventional supercontinuum sources utilize 
‘endlessly single mode’ (ESM) fibers with small air holes as shown in Fig 1c.  We can 
therefore expect to generate shorter wavelengths using a high-Δ fiber (with a similar zero-
dispersion wavelength and core size) as shown in Fig 1d.   

A high-Δ fiber (d/Λ=0.77, Λ=3.7μm and a core size of ~4.7μm) was fabricated and 
compared with a conventional ESM (d/Λ=0.43, Λ=3.0μm and again a core size of ~4.7μm) 
fiber for supercontinuum generation [2].  Ten meter sections of both fibers were pumped with 
a sub-ns microchip laser at 1064 nm, with the input power varied by means of an ND wheel 
placed before the fiber input.  The extension into the blue and ultraviolet from the high-Δ fiber 
is visually quite striking giving the output a bright and visually white appearance.  The 
dispersed output spectra of the two fibers can be seen in Fig. 1e, with the high-Δ fiber 
(bottom) clearly generating deeper blue frequencies under identical pump conditions. 

The output spectra of both of the fibers were recorded as a function of power on an 
optical spectrum analyzer and near infrared spectrometer and the ultraviolet and infrared 
edges identified.  The group index curves of the fibers were modeled [7] and plotted as 
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functions of wavelength. The position of the supercontinuum edges as a function of 
wavelength were then marked on top of the modeled curves with the corresponding edges 
joined together, Fig. 1b. The agreement is good (that is, the lines joining the corresponding 
short and long wavelength edges are almost horizontal on the plot), this gives strong support 
to the concept of group-index matching between the longest and shortest wavelengths being a 
limiting factor in blue and ultraviolet supercontinuum generation. 
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c)   d)  
 

e)  
Fig. 1 a) Modeled group index curves as a function of wavelength, for silica (green), an 
endlessly single mode fiber typically used for supercontinuum generation (blue) and a 5 micron 
strand of silica in air (black).  b) Modeled group index curves for the two fibers, and the 
experimentally observed long and short wavelength supercontinuum edges as a function of 
power.  c and d) Scanning electron micrographs of the compared fibers, c) is a conventional 
endlessly single mode fiber and d) a high air filling fraction fiber. e) The dispersed 
supercontinua generated from the two fibers, as indicated by arrows, under identical pump 
conditions.  
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