
Visigoth Fault Tolerance

Daniel Porto†, João Leitão†, Cheng Li‡, Allen Clement‡ ∗, Aniket Kate\,
Flavio Junqueira] and Rodrigo Rodrigues†

†NOVA Univ. Lisbon / NOVA LINCS, ‡MPI-SWS,\MMCI/Saarland University,]Microsoft Research

Abstract
We present a new technique for designing distributed pro-
tocols for building reliable stateful services called Visigoth
Fault Tolerance (VFT). VFT introduces the Visigoth model,
which makes it possible to calibrate the timing assumptions
of a system using a threshold of slow processes or mes-
sages, and also to distinguish between non-malicious ar-
bitrary faults and correlated attack scenarios. This enables
solutions that leverage the characteristics of data center
systems, namely their secure environment and predictable
performance, in order to allow replicated systems to be
more efficient with respect to the utilization of resources
than those designed under asynchrony and Byzantine as-
sumptions, while avoiding the need to make a system syn-
chronous, or to restrict failure modes to silent crashes. We
implemented a VFT protocol for a state machine replication
library, and ran several benchmarks. Our evaluation shows
that VFT has comparable performance to existing schemes
and brings significant benefits in terms of the throughput per
dollar, i.e., the server cost for sustaining a certain level of
request execution.

1. Introduction
Techniques have been proposed over the past few years to
make the performance of both data center networks [48, 52]
and data center systems [32] more predictable. Predictability
is important because systems in data centers often comprise
and depend on a number of networked servers and opera-
tions require a subset of those servers to be contacted and to
exchange messages. Without predictable performance, the
quality of the provided service might fall short of the de-

∗ currently working at Google.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EUROSYS ’15, April 21-24, 2015, Bordeaux, France.
Copyright c© 2015 ACM 978-1-4503-3238-5/15/04. . . $15.00.
http://dx.doi.org/10.1145/10.1145/2741948.2741979

manding requirements of users of online services [22], and
even of offline services such as batch processing [51].

However, despite this trend of increasing predictability
in performance within the data center, the design of repli-
cation protocols for stateful services that run inside data
centers is still making the same pessimistic assumptions re-
garding timeliness that are commonly used for unpredictable
environments like the Internet. For example, systems like
Chubby [9], Spanner [14], Megastore [7], or ZooKeeper [25]
use at its core the Paxos [30] consensus algorithm and vari-
ants [27], which assume an asynchronous system, where all
messages and processing events can be arbitrarily slow.

A similar argument to the one made above regarding the
pessimistic assumptions on timeliness can also be made re-
garding non-crash faults. There is increasing evidence that
machines and networks fail in unexpected ways that are not
captured by the crash fault model, particularly at the scale of
a data center, where the unlikely becomes commonplace [3–
5, 26]. While this is addressed by Byzantine Fault Toler-
ance (BFT) techniques, BFT is unnecessarily conservative
for data center environments. This is because BFT is de-
signed to cope with coordinated malice, which is unlikely
to happen within the security perimeter of the data center.
(In fact, this excess of pessimism has been pointed out as
one of the obstacles for the adoption of BFT in data center
environments [45].)

In this paper, we take the position that it is possible to
take advantage of the fact that data centers are more pre-
dictable and controllable than an open Internet environment,
in order to make stateful services more resource efficient.
Furthermore, this can be achieved without having to make
assumptions that might be difficult to meet in practice, such
as assuming a fully synchronous system where all machines
and all messages meet tight deadlines, or that data corrup-
tion never occurs. By resource efficient, we mean cutting the
replication factors of systems like Paxos, which is an im-
portant goal since ultimately this can lead to savings in both
infrastructure and energy costs, which represent the vast ma-
jority of the costs for operating a data center [24].

To demonstrate this, we present a new technique for de-
signing distributed protocols for reliable stateful services
called Visigoth Fault Tolerance (VFT). VFT introduces the

Visigoth model, which provides two important knobs that
can be tuned independently. The first is between an asyn-
chronous system where delays can be arbitrarily large and
a synchronous system where there is a bound on message
transmission and processing delays. More precisely, our
model assumes that, among the machines that communi-
cate in a distributed protocol, there is a subset that can com-
municate in a timely manner, and only a limited number
of machines are perceived as arbitrarily slow, due to either
message transmission or processing delays. Importantly, in
our model, when some machines cannot be contacted, we do
not require the ability to pinpoint which ones have crashed
and which ones are just slow. The second knob is between
the crash model, where processes fail by silently halting, and
the Byzantine model, where faulty processes can collude to
create the worst-case attack scenario. In this respect, while
the Visigoth model can be parameterized to handle arbitrary
commission faults, just like BFT systems, it places a bound
on the number of faulty processes that are coordinated and
work together to intentionally defeat the system.

The Visigoth model has relevant theoretical and practi-
cal implications. From a theoretical standpoint, this model
fills the spectrum between existing techniques, namely be-
tween the synchronous and asynchronous models, and the
crash and Byzantine models. From a practical standpoint,
VFT enables us to design practical systems for predictable
environments like the data centers that support Internet ser-
vices, while taking advantage of that predictability in order
to lower replication factors, thus improving the operational
costs (and in some cases the performance) of these systems.

We designed a VFT protocol for state machine replication
by adapting an existing protocol for the Byzantine model,
and in this process we abstracted some generic constructs
that can be reused for adapting other protocols. One of the
limitations of our initial adaptation is that it can lead the
system to violate safety conditions when the assumptions
on the level of synchrony are not met. Since there may, in
practice, occur scenarios where more than a given threshold
of machines behave asynchronously, it is desirable that in
those cases the system halts instead of violating safety. We
achieve this through an extension to our initial VFT protocol,
which reintroduces more resource expensive majority-based
quorums, but only for a tiny fraction of protocol steps.

To gain some insight into how to set the parameters used
by our model, we measured the message transmission and
processing time in a small research cluster and in Amazon
EC2. In addition, we conducted an experimental evaluation
of our prototype, which shows significant benefits compared
to conventional approaches in terms of throughput per dol-
lar, i.e., the cost one has to pay to rent virtual servers for
sustaining a certain level of request execution.

The remainder of this paper is organized as follows. In
Section 2 we formalize the Visigoth model and discuss its
fundamental properties. Section 3 reports on our experi-

ence adapting an existing replication protocol to the Visig-
oth model, and we discuss an extension to the protocol to
preserve safety despite arbitrary asynchrony in Section 4. In
Section 5 we analyze some measurement data to understand
how to parameterize the model. We provide and discuss ex-
perimental results in Section 6. Section 7 overviews relevant
related work, and we conclude in Section 8.

2. Visigoth Fault Tolerance
In this section, we present the Visigoth model for imple-
menting replicated systems.

2.1 Relaxing the asynchrony assumptions
Our model builds on the observation that data centers typ-
ically operate a well provisioned network [44], leading to
fast and predictable response times, as observed in previ-
ous measurement studies [50]. Furthermore, modern and up-
coming network technologies enable the implementation of
a network fabric that makes the probability of experiencing
arbitrary latencies negligible [48, 52], while various hyper-
visor and OS-level techniques allow for the mitigation of in-
terference effects, which can increase message processing
times [32, 39]. It is therefore reasonable to expect that most
messages are delivered and processed in a timely fashion.

We consequently assume that there is a bound on the
time the network takes to deliver a message. This assump-
tion brings us close to what the distributed computing liter-
ature calls a synchronous system. A synchronous model as-
sumes a maximum delay T for transmitting and processing
a message. This assumption allows a synchronous algorithm
to proceed in rounds with a duration of T , where in each
round all processes can communicate with each other. In this
case, it is safe for an algorithm to assume that if a message
is not received from a given process in a given round, then
that process has clearly crashed.

However, the complexity of the software stack running at
each server makes it difficult to guarantee that all processes
generate or consume messages in a timely fashion. Occa-
sionally, latency spikes can still be introduced by processes
themselves due to operating system effects (e.g., scheduling)
and programming language features (e.g., garbage collection
stalls). In light of this observation, it is unwise to assume that
the delivery bound always holds.

To capture these two effects, we assume a bound on the
number of processes that are slow simultaneously. Since
slowness might be perceived differently by distinct pro-
cesses, we assume that the set of slow processes towards
different processes is possibly different.

More precisely, to quantify the amount of synchrony, the
model makes the following assumption: for any process p,
at most s processes are “slow but correct” from the point of
view of p, such that it takes longer than T time units for p’s
messages to and from those processes to be transmitted and
processed. Note that this formulation requires a fixed set of

s processes to be correct but slow from the point of view
of each process throughout the execution. In practice, this
can be relaxed to say that this set only needs to be fixed for
sufficiently long (e.g., for a consensus instance to conclude).

Note that, in contrast to the synchronous model, there
is no possibility to detect if a process has crashed in this
model, since among the processes whose messages were not
received within the bound T , there is a mix of faulty and
up to s slow but correct processes. However, we can use
timeouts to determine that some number of processes must
have crashed, even if we cannot pinpoint who they were.

2.2 Relaxing the assumptions on non-crash faults
This aspect of the model is motivated by the need to handle
non-crash faults, i.e., faults such as bit flips that originate in
the hardware, or, more generally, any type of data corruption
in memory, storage, or the I/O path. These faults are much
more rare than crashes, and, when they occur, it is often hard
to map them to the root cause. As such, they are typically not
considered part of the fault model. Instead, the implementa-
tion of fault tolerant systems often resorts to digests of both
state and messages to protect against simple data corruption.
However, wrong outputs that are not caught by these digests
may lead to severe outages [3].

While BFT offers a principled approach for handling non-
crash faults, several practical concerns push back its adop-
tion [45]. First, the complexity and overheads of BFT, par-
ticularly in terms of increased replication factor compared
to using crash fault tolerance (CFT) and additional adminis-
tration overheads, such as managing server keys. Second, the
fact that BFT targets a worst case scenario where all arbitrary
faults are generated by a malicious attacker or by colluding
machines aiming at defeating the system. Such an attack sce-
nario is considered unlikely by practitioners, since data cen-
ters have several well managed security measures, such as
firewalls, reverse proxies to limit exposure, or sandboxing.

Therefore, our objective is to find a model that provides a
principled approach for handling non-crash faults that stem
from bit flips or other forms of data corruption, while being
less pessimistic than the Byzantine model, which allows
for arbitrary and correlated faults. This, however, entails an
apparent contradiction due to the fact that bit flips and data
corruption can also be arbitrary.

The key observation to solve this contradiction is the fol-
lowing: what distinguishes data corruption from an attack
scenario is not the behavior of a single faulty process, but the
fact that data corruption is unlikely to affect the same part of
the state across faulty processes and consequently generate
the same incorrect manifestation at all faulty machines. We
also observe that a collusion attack where an adversary con-
trols all faulty replicas and forces their outputs to be com-
patible is, in practice, the worst-case scenario that Byzantine
fault tolerance protocols must address.

Thus, the Visigoth model sets a maximum threshold o of
correlated faulty behavior. In this case, the total number of

n total number of processes
u threshold on the total of faults (arbitrary + crash)
r threshold on the number of arbitrary faults
s threshold on size of any set of slow but correct procs.
o threshold on correlated faulty behavior
T max transmission time between non-slow processes

Table 1. Parameters used by the Visigoth model.

arbitrary faults in the system may exceed o, without endan-
gering safety. The question then becomes what do we mean
by correlated faults. To define this, we observe that algo-
rithms for replicating stateful services follow a typical pat-
tern of collecting a set of messages from different processes
and, upon reaching a threshold (e.g., a quorum), an action
is performed. For example, in the PBFT algorithm, the pri-
mary for a given view sends a new view message after gath-
ering 2f + 1 valid view change messages for that view [11].
Similarly, the ABD crash fault tolerant algorithm [6], which
provides a simple read/write storage interface, uses two RPC
rounds driven by the client, where the client collects answers
for the pending RPC from a majority of replicas to conclude
each round. Therefore, the model states that when an algo-
rithm collects a set S of messages from different processes
and, based on those messages, performs an action, it can as-
sume a bound o on the number of correlated messages that
are arbitrarily faulty. This implies that at least |S| − o mes-
sages can be assumed to be generated by processes that cor-
rectly followed the protocol.

2.3 Visigoth model definition
Following the notation of UpRight [13], we divide the space
of faults into two types of manifestations: a process that
sends a message that does not follow the protocol is said to
have suffered a commission fault; and a process that either
crashes or fails to send a message it should have sent is
said to suffer an omission fault. The maximum number of
commission faults tolerated is r and the maximum number
of total faults is u.

The Visigoth model can be precisely defined as follows.
1. The system consists of a set of n processes. Each pair
of processes communicate by sending and receiving mes-
sages over a bidirectional link. The network can lose, du-
plicate, and arbitrarily delay messages (subject to some
additional constraints below). Network links are pairwise-
authenticated, which guarantees that if process i receives a
messagem in the incoming link from process j, then process
j sent message m to i beforehand.
2. Each process executes a sequence of steps (actions) trig-
gered upon either: receiving a message, an internal timer ex-
piring, receiving an external input, or a condition in the state
becoming true.
3. Processes may fail by crashing permanently, or by suf-
fering a commission fault, otherwise they are non-faulty.

Commission-faulty processes may send any number of arbi-
trary faulty messages throughout the entire execution (sub-
ject to the remaining model constraints).
4. In the definition of the actions of a process for implement-
ing a given protocol, some of these actions can be anno-
tated by the protocol writer as “message collection steps”.
These must be internal actions resulting from a condition
over the state becoming true, and the precondition that trig-
gers these actions must be that the process collected, in its
internal state, a sufficiently large threshold t of messages that
meet a certain conditionC from distinct processes. (Both the
threshold t and the condition C are protocol-specific.) For
example, a message collection step can be triggered by gath-
ering a majority (or a quorum) of messages that have the
same type and contain the same answer from distinct pro-
cesses.
5. There are at most u faulty processes (either crash or
commission-faulty), out of which at most o processes may
suffer commission faults that are correlated. We say that
commission faults are correlated if they lead to sending
incorrect messages that can be used to trigger the same
message collection step. More precisely, assuming that S
is a state variable, that is local to a process and maintained
by the protocol, if the precondition that triggers a message
collection step is of the form:
|{m ∈ S from distinct pi : C(m) = true}| ≥ t

then there are up to o commission faults that can lead to
incorrect messages m that belong to the set above.
6. We define that process i is slow with respect to j if one
or more messages from i to j or j to i take longer than T
time units to be transmitted. (By not taking longer than T to
be transmitted, we mean that the time from the execution of
the action that sent a message to the corresponding message
receive action does not exceed T .) For any process, there is
a maximum number s of other processes that are slow with
respect to it.
7. Processes and clocks need not be synchronized, but we
assume a bounded clock drift, so that timers can be used to
safely determine if T has elapsed.

For quick reference, the parameters of the Visigoth model
are summarized in Table 1.

2.4 Consensus: Sliding scale between existing models
To understand the fundamental benefits of this model, we
show that it leads to a tight lower bound on the replication re-
quirements that fills the spectrum between existing models.
The lower bound we state here is on finding a solution to the
majority consensus problem. This problem has a practical
relevance, since it is at the core of state machine replication,
a practical replication technique [43]. Such a solution must
obey the following safety (S) and liveness (L) properties.

L1 If a correct process p proposes a value, then that process
decides a value;

L2 if a correct process p decides a value, then all correct
processes eventually decide a value;
S1 if two correct processes decide v and v′, then v = v′;
S2 if all correct processes propose v and a correct process
decides v′ then v = v′;

Given this formulation, we prove that the following num-
ber of replicas is required to solve this problem under the
Visigoth model.
THEOREM 1. In a VFT system following the model pre-
sented above, there is no solution for consensus when n <
u+ min(u, s) + o+ 1.

We prove this Theorem in a separate technical report [40],
and in the next section we show a transformation of an
existing algorithm to the Visigoth model that shows that this
bound is tight, i.e., that we can solve the majority consensus
problem with n = u+ min(u, s) + o+ 1.

This replication factor represents a smooth transition be-
tween existing models, where the extreme cases correspond
to well-known results: at f = u = o; s = n, this is equiv-
alent to asynchronous BFT; at f = u = o, s = 0 to syn-
chronous BFT with signatures; at f = u, s = o = 0, to
synchronous CFT; and at f = u, s = n, o = 0 to asyn-
chronous CFT.

Throughout the remainder of the paper we focus on the
case where u > s. This not only has the advantage of sig-
nificantly simplifying the notation and the proofs (since the
u ≤ s case needs to be handled separately), but also focuses
on the interesting case where the Visigoth model is advanta-
geous. Furthermore, the u ≤ s case is very similar and leads
to the same solutions as in the well-studied asynchronous
setting, since one cannot in that case improve the algorithms
by inferring how many processes have crashed after a time-
out.

2.5 Discussion
The previous result highlights one of the key benefits of
VFT, which is that it reduces the replication factor to solve
the fundamental consensus problem from n ≥ 2u+r+1 (or
n ≥ 3f+1 in the traditional formulation) to n ≥ u+s+o+1
(or n ≥ f + s + o + 1) compared to an asynchronous BFT
system. This benefit comes at a cost of making additional as-
sumptions compared to the asynchronous model, and there-
fore the overall correctness is at stake when these assump-
tions are not met. In particular, when a partition splits the
set of processes into two halves, the bound on s could be
violated, and the two halves could proceed independently
assuming the other half has crashed. This is a fundamen-
tal point associated with our gains on replication factor, and
cannot be circumvented. To understand why this is the case,
one should consider that (1) u can be greater or equal to half
of the system size (e.g., when o = 0), (2) protocols must be
able to make progress despite u crashed processes, and (3) a
situation with half of the processes crashed is indistinguish-
able from a network partition that splits the system in half.

The problem with this is that the two sides of the partition
could make progress without coordination, possibly leading
to a violation of agreement on the current system state, and
consequent violations of the safety guarantees of the repli-
cated system. In Section 4, we show how to transform those
safety violations into liveness violations, through an exten-
sion to our base replication protocol presented in the next
section.

3. VFT-SMaRt design
In this section we demonstrate the practicality and the tech-
nical challenges of Visigoth fault tolerance by adapting an
existing replication protocol and its implementation to the
Visigoth model.

3.1 BFT-SMaRt overview
We chose to adapt the BFT-SMaRt state machine replication
library1 because state machine replication is a generic and
widely used method for replicating stateful services [7, 9,
14], and because BFT-SMaRt is a stable software library that
is regularly maintained by its developers.

BFT-SMaRt follows the BFT state machine replication
protocol presented in [10], whose normal case operation
is close to the PBFT protocol proposed by Castro and
Liskov [11]. BFT-SMaRt uses n = 3f + 1 replicas to toler-
ate f Byzantine faults. From these replicas, there is a distin-
guished leader replica, elected by an epoch change protocol
that moves the system through a sequence of epochs. The
leader for each epoch drives the epoch change protocol in
order to start a new epoch, transferring the necessary state
concerning requests executed in prior epochs. In general,
most protocol steps initiate an action after collecting a quo-
rum of 2f + 1 messages; such quorums have the property
that any two quorums intersect in at least one non-Byzantine
faulty replica. In particular, within an epoch, the normal
case operation for BFT-SMaRt to execute a client request
proceeds as follows.

1. The client sends a PROPOSE message to the leader
replica.

2. Upon receiving the request, the leader broadcasts a READ
message to all replicas.

3. Upon receiving a READ from the current leader, each
replica replies to it with a copy of its state in a READ-
REPLY. (A common optimization is to run steps 2 and 3
only once at the beginning of each epoch for all future re-
quests that may execute in that epoch [30], and therefore
the common case replication protocol starts in the next
step.)

4. Upon receiving 2f +1 READ-REPLIES, the leader broad-
casts a STATE message to every replica.

5. Upon receiving the STATE message from the leader, each
replica inspects the set of states and adopts a value v

1 http://github.com/bft-smart/

leader

p1

p2

p3

WRITESTATEREAD ACCEPTREAD-
REPLY

Conditional
Collect

Quorum
Gathering

Quorum
Gathering

Figure 1. VFT-SMaRt communication pattern.

shown to be locked in a previous instance, or, if no
such value exists, it adopts the proposal of the leader.
Then each replica broadcasts a WRITE message with the
adopted value.

6. Upon receiving 2f + 1 WRITEs, each replica broadcasts
an ACCEPT message to all replicas.

7. Upon receiving 2f + 1 ACCEPTs, each replica executes
the client request and sends a REPLY message to the client
containing the execution outcome.

8. The client collects f + 1 matching REPLY messages and
returns that outcome.

3.2 VFT protocol design
3.2.1 Overview
BFT-SMaRt was used as a starting point to design a VFT
state machine replication protocol: VFT-SMaRt. The proto-
col uses the set of message exchanges between replicas in
Figure 1. This is identical to the message pattern of BFT-
SMaRt, which we just described. Note that there are two
core message patterns in Figure 1: (1) the first two message
steps, corresponding to epoch changes and executed infre-
quently, where the leader collects information from previous
epochs, and forms a certificate consisting of all the informa-
tion collected and the signatures from the processes that sent
it, which can be disseminated to other replicas; and (2) the fi-
nal sequence of two all-to-all communication steps after the
leader relays the client request, which drive the “common
case” execution.

To modularize the protocol transformation, we designed a
few primitives that can be plugged into different parts of the
protocol. These are then composed to form the state machine
replication protocol implemented in the VFT-SMaRt library.
In particular, the most basic one is the Quorum Gathering
Primitive (QGP), which forms the basis for the all to all
communication pattern of the normal case operation. The
QGP primitive is also used as a building block to construct
the conditional collect primitive, which is the primitive that
maps to the first core message pattern in Figure 1. For a
complete description of these primitives, their composition
to form a complete protocol, and all the proofs, we refer the
reader to a separate technical report [40].

3.2.2 Quorum gathering primitive
When adapting the protocol to VFT, we spent a large frac-
tion of our time adapting the QGP primitive to work with
the Visigoth assumptions. Therefore, instead of trying to de-
scribe the entire protocol, we will provide a more thorough
treatment of QGP, since it is illustrative of the challenges and
the techniques developed to design protocols in the Visig-
oth model. Considering QGP enables a simpler and more fo-
cused discussion of how the new model influences protocol
design. We conclude with a brief overview of the remaining
main challenges in our protocol design.

Specification. The QGP is initiated by every process asyn-
chronously and consists of every process sending a message
to a distinguished gatherer process, allowing this process to
collect a quorum of messages. As such, this implements an
all to one message pattern, and, if we instantiate a QGP in
every process, then we obtain an all to all message pattern
such as the one in the last two steps of the protocol in Fig-
ure 1. Furthermore, the quorums returned by the gatherer
form a dissemination quorum system [34], i.e., a set of sub-
sets (quorums) with the property that any two quorums in-
tersect in at least one correct replica (where correct is de-
fined as non-commission faulty). Another important aspect
of this specification is that it is parameterized by a timeout
value used by the gatherer (TQGP). To satisfy the intersec-
tion property, this timeout must be set in a way that any cor-
rect process that satisfies the synchrony bound T is able to
convey its message to the gatherer before the timeout. More
precisely, the correctness properties of QGP are specified as
follows.

DEFINITION 2 (Quorum Gathering Primitive). A Quorum
Gathering Primitive is parameterized by a timeout value
TQGP , takes as input at each process p a statement m and
outputs at a distinguished gatherer process g a quorum M ,
consisting of a vector of messages, guaranteeing the follow-
ing properties:

• Liveness: if the gatherer is correct, then the primitive
eventually returns.

• Safety–Integrity: if the gatherer is correct and deliversM
such that someM [p] 6= UNDEFINED and p is correct, then
p has statement M [p] as an input.

• Safety–Intersection: if there are two instances of QGP,
such that all correct processes that are not crashed and not
slow towards the respective gatherer processes initiate
the protocol within a maximum δ time window such that
T + δ < TQGP , then, if the two correct gatherers p and
p′ gather M and M ′ respectively, M and M ′ intersect in
at least one correct replica.

Note that the intersection property is vital for the correct-
ness of any replication protocol that uses QGP, but it is also
possibly untenable under the traditional design of quorum-
based protocols. This is because a process cannot expect to

receive messages from more than n− u processes (since up
to u processes may crash), which is not sufficient to ensure
the required intersection with other quorums of size n − u.
Next, we explain how the implementation of QGP in our
model overcomes this challenge.

Implementation in the Visigoth model. The first step in
our VFT implementation of QGP is simple: the gatherer
waits for a quorum of replies and returns that quorum. Given
the assumptions of point-to-point authenticated links and
by having messages carry a tag that uniquely identify each
primitive, this suffices to ensure the integrity property (mes-
sages in the returned quorum match the input of the respec-
tive processes). However, the central question that needs to
be answered by QGP is how large should the quorum size be
in order to implement a dissemination quorum system, i.e.,
ensure the intersection of any two quorums in at least one
correct replica.

The initial quorum size that the gatherer tries to collect in
QGP is n − s. This is sufficient to ensure the intersection
property, since any two sets of n − s intersect in more
than o replicas, and one of those must be correct. This,
however, raises the problem that when there are u faults
it may be impossible to gather this quorum size, which
would preclude liveness. To address this problem, we can
leverage the assumption about the existence of at most s
slow processes. This allows us to reduce the quorum size
when timeouts ensure that a subset of the replicas that were
excluded from the quorum have permanently crashed. In
particular, the timing requirements in the specification of the
intersection property of QGP allow us to determine that, if a
set of x replicas did not reply by the timeout of TQGP , and
since at most s of those processes are slow, then at least x−s
of those processes must have crashed before the timeout and
will not participate in future quorums. Thus, collecting a set
of at least n−u replies after the timeout is sufficient to ensure
intersection. (If n−u replies are not gathered by the timeout
then the gatherer must wait until this number is reached.)

However, the fact that these processes will not participate
in future quorums does not mean that they have not partic-
ipated in a concurrent invocation of QGP, which could lead
to safety violations. To understand why this is the case, con-
sider the following example with u = 2, s = 1, o = 0, n =
4, and processes a, b, c, d. Suppose that a and b initiate QGPs
in parallel, that a is slow towards b and vice-versa, that c
crashes after only replying to a, and that d crashes after only
replying to b. In this case, the two concurrent quorums that
are gathered are {a, c} and {b, d}, thus non-intersecting.

To address this problem, the gatherer contacts all replicas
to gather a second (possibly different) quorum with the same
rules for the quorum size, but only in the case when less than
n− s processes reply by the timeout. In the above example,
the second round would reach the quorum of {a, b} and the
two invocations would return {a, b, c} and {a, b, d}. While
this requires an extra round-trip to gather the second quorum,

this is only in the case when more than s replicas are not
reachable within the timeout.

Correctness. Even though we present a correctness proof
of the entire protocol in a separate technical report [40], we
sketch here a correctness proof for the intersection property
of this primitive, since this intersection is key to the correct-
ness of not only our protocol, but of most protocols for repli-
cating stateful services.

We focus here on the most challenging case when the two
quorums that are output are small quorums of size n − u ≤
Q1, Q2 < n − s. Since each instance of the primitive goes
through two phases of gathering quorums, it must be the
case that the first phase of one of the primitives (say Q1)
finishes before the second phase of the other primitive (say
Q2) begins. Say that the first phase quorum of Q1 has size
Q1 = n − u + a, and that the final quorum returned by
Q2 has size n − u + b. At the instant when Q1 ends the
first phase, by the fault model, there are at least u − a − s
crashed processes (i.e., all non-responsive ones except s
slow processes). This implies that the system size at this time
is n′ ≤ n−u+a+s. Given this system size, the intersection
in one correct process is guaranteed ifQ1+Q2−n′−o > 0.
This gives:

Q1 +Q2− n′ > o
as we know that n− u+ a+ s ≥ n′ we can translate to:
Q1 +Q2− n+ u− a− s > o
⇒ n− u+ a+ n− u+ b− n+ u− a− s > o
⇒ u+ o+ s+ 1− u+ a− u+ b+ u− a− s > o
⇒ 1 + b > 0

3.2.3 Other challenges in VFT-SMaRt design
Next, we discuss two other challenging points behind the
transformation of the original protocol to the Visigoth model.
The remaining protocol details are described and proven cor-
rect in a separate technical report [40].

Challenge 1: Certificates. The first challenge is related to
the use of certificates consisting of quorums of signed mes-
sages (or statements), namely in the epoch change protocol.
This is a common pattern in BFT protocols, allowing pro-
cess A holding the certificate to demonstrate to process B
that a certain action took place at a dissemination quorum,
thus ensuring that no contradictory action could have taken
place (since the correct process in the intersection of any two
dissemination quorums would not allow for such contradic-
tory action). While these certificates can be produced triv-
ially in traditional models, in VFT there are two factors that
complicate this task. These are the fact that quorums do not
have a constant size, and the possible presence of commis-
sion faults. Because of these, when a certificate uses a size
smaller than n− s, it is not clear whether the use of a small
quorum is legitimate or whether it was due to a commission
fault (in case that o > 0).

To address this challenge, certificates follow the vector of
signatures model only in case when they have size n − s,
since this allows for intersection with any other quorum
irrespectively of the number of crashed processes. When the
number of processes in a certificate is smaller than n − s,
the process putting together the certificate must also collect
a statement from the processes that participate in the quorum
forming the certificate attesting to the fact that it is legitimate
to use a smaller quorum due to the unreachability of the
remaining processes.

Challenge 2: Setting timeouts. The second challenge is
how to set the timeout parameters that are used by QGP.
These timeouts are related to the maximum relative delay
that correct and non-slow processes might have when in-
stantiating the primitive. (For processes that are slow this
is not problematic since their messages can be arbitrarily de-
layed anyway.) The problem that is faced when computing
this maximum delay is that it is possible that delays accumu-
late throughout the execution of a protocol that uses QGP. If
this is not taken into account, we risk to incorrectly identify
certain processes as being slow, which is the same as saying
that the premise of QGP that correct and non-slow processes
start the protocol in a timely manner is not met, and the prop-
erties of QGP do not hold.

To address this, the protocols must set the value of the
timer so that, if the maximum length of the chain of mes-
sages that lead to a remote process sending a message that
we are waiting for is l, then the timer is set to (l + 1) · T .
While it is clear that this modification works for cases when
the maximum delay to move from one phase in the chain
to the next is at most T , it is less clear what happens if the
timeout expires and the quorum to move from one phase to
the next still has not been gathered because we are waiting
for slow processes that will take longer than T . This situa-
tion turns out not to be problematic because in such cases
it is necessarily the case that more than u − s processes
have crashed. In that case, we are operating with quorums
of at least n− u processes, which are a majority of the non-
crashed processes, thereby ensuring quorum intersection ir-
respectively of the wait time.

4. Trading liveness for safety
The VFT-SMaRt protocol highlights an important advantage
of the Visigoth model: it leads to more resource-efficient
protocols than previous, more pessimistic models. In partic-
ular, when tolerating only machine crashes and compared to
the asynchronous model, we are able to cut the replication
factor n from n = 2u + 1 (e.g., the replication required by
the Paxos protocol) to n = u+s+1, when u > s. However,
this resource efficiency comes at a cost. When the bound of
slow but correct processes is violated, the VFT-SMaRt pro-
tocol may fail to meet its safety conditions. Violating safety
is highly undesirable, since it might lead, for instance, to in-
consistencies in the state of the system. Practical systems in

fact often prefer to violate liveness instead of safety. For ex-
ample, it is better to halt the auction system than to declare
two users to be the winners of the same auction. (In fact, the
Paxos protocol has the advantage of overcoming the FLP im-
possibility result [21] by always preserving safety but only
ensuring liveness under additional synchrony assumptions.)

To overcome this concern, we propose an extension to
the VFT-SMaRt protocol that turns potential safety viola-
tions when the bound s of slow but correct processes is ex-
ceeded into liveness violations. This extension solves the fol-
lowing problem: when the bound s is exceeded, processes
may incorrectly assume that a certain number of processes
have crashed, and hence they may assume that it is safe to
proceed with a small quorum (smaller than n − s). The in-
tersection guarantee between two small quorums only holds
when the assumptions about crashed processes also holds,
otherwise two small quorums might not contain any process
in common. This empty intersection enables executions in
which we have a “split brain”, i.e., that lead to state diver-
gence. To address this problem, we reintroduce majorities
to decide which small quorums can be used within a pro-
tocol epoch, where the role of the majority is to act as an
“oracle” preventing the use of two small quorums without
any intersection within a given epoch. Reintroducing majori-
ties raises the question of whether this defeats the original
goal of VFT, which is to design resource-efficient protocols.
However, majorities are only used sparingly, in key steps of
the protocol, and therefore a single majority-based group can
be used for a large number of resource-efficient VFT groups.

In more detail, we extend the protocol by adding a logi-
cally centralized oracle that is safe in the presence of asyn-
chrony. (In practice, this oracle can be implemented us-
ing Paxos, or any other consensus protocol.) The oracle is
queried by processes wanting to make use of a small quo-
rum within an epoch: any protocol step that takes an action
upon receiving a small quorum now has to wait for an autho-
rization from the oracle (or proof that this authorization was
given). The behavior required by the oracle is simple: it only
authorizes small quorums within an epoch that intersect with
all other authorized quorums for that epoch (or, in the case
where commission faults are tolerated, that intersect in o+ 1
processes). In practice, the implementation of the oracle that
allows the VFT system to make progress is the following:
when the oracle receives the first such request for a given
epoch, it authorizes this request, and subsequently it denies
all requests that do not meet the intersection property in that
epoch (for each VFT-group within the data center).

5. Deployment considerations
We conducted a small measurement study to understand how
one can set the parameters of the VFT model, and what are
the tradeoffs involved in those choices. This study ran in two
environments with the following characteristics.

Research cluster: We used 90 machines of this cluster, each
one with 2 × 6 core Intel Xeon X5650 CPUs at 2.66 GHz,
with 48 GB of DDR3 RAM. Each machine had 2 distinct gi-
gabit network interfaces, which are viewed and accessed as
a single virtual interface using the Line Aggregation Control
Protocol (LACP). These machines are interconnect through
2 redundant switches, each with a maximum throughput of
10 gigabits. All machines were running Linux. No virtual-
ization is in place, and deployed applications were conduct-
ing research experiments, such as mining large data sets and
searching for bugs.
Amazon EC2: Our Amazon EC2 deployment used 15 large
instances running a Linux virtual machine, located in the
us-east-1 availability zone of Amazon’s US East Coast data
center. Each instance had 7.5 GB of RAM, and a CPU
with 4 EC2 computational units (distributed across 2 virtual
cores). We do not know any details concerning the network
infrastructure in place at the data center.

To emulate the behavior of an RPC-based distributed pro-
tocol, we organized groups of seven processes on different
machines/instances. Each process p in each group periodi-
cally (every second) initiates a communication round, where
it measures the time taken by a group RPC to all the pro-
cesses in the group. The handler of this RPC exercises a
combination of various machine resources, similarly to the
actions taken by many distributed protocols, namely (1) ver-
ifying a MAC, (2) preparing a reply message and a MAC for
that reply, and (3) storing both the request and the reply to
stable storage. Request and reply message sizes are 50KB in
size, similarly to the average workloads observed in produc-
tion data centers [48].

To study how to set s and T in these deployments, we ask
the question of how long we need to wait if we want to make
sure that the messages from all but the s slowest processes
in the group arrive within that time. To answer this question,
we depict in Figure 2 the CDFs for the time required for
processes to gather the nth reply in the group, n ∈ {1, ..., 7}.
These results aggregate more than 4.0× 106 pairs of request
and replies for the research cluster and 2.9× 106 for EC2.

The results show that, despite the fact that processes
gather most replies in only a few to tens of milliseconds,
in a small fraction of the cases, processes were required to
wait for longer periods of time, particularly in the research
cluster (Figure 2(a)).

For example, in the less predictable research cluster (Fig-
ure 2(a)), all processes gather 6 replies in less than 500ms
for 99.9% of the communications steps. On Amazon EC2
(Figure 2(b)), in all communication rounds, processes were
able to collect 6 replies in less than 1s, which is significantly
less time than the worst case latency, which is on the order
of tens of seconds. Thus, in both these environments, there
are substantial gains when moving from s = 0 to s = 1,
in terms of setting a more aggressive T , and therefore not
having to wait for long timeouts.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0.1 1 10 100 1000 10000 100000

L
o

g
 (

10
0

-
%

co
m

m
. s

te
p

s)

Latency (ms)

1 reply
2 replies
3 replies
4 replies
5 replies
6 replies
7 replies

(a) Research cluster.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0.1 1 10 100 1000 10000 100000

L
o

g
 (

10
0

-
%

co
m

m
. s

te
p

s)

Latency (ms)

1 reply
2 replies
3 replies
4 replies
5 replies
6 replies
7 replies

(b) Amazon EC2.

Figure 2. CDFs for the time required for processes to gather
different numbers of replies.

6. Evaluation
We implemented VFT-SMaRt by extending the publicly
available BFT-SMaRt code. In addition to an implementa-
tion of our base algorithm, we also implemented the exten-
sion described in Section 4 by making VFT-SMaRt act as a
client of a ZooKeeper [25] replica group, which implements
the oracle logic. This section evaluates these systems exper-
imentally. Our goal is to understand the benefits and costs of
employing VFT in place of traditional techniques.

6.1 Experimental setup
We run our experiments on a cluster of 20 6-core 2.67GHz
Intel(R) Xeon(R) CPU X5650 machines with 48 GB of
RAM, configured with 24 working threads, connected to
the network through a bonding interface composed by two
1Gbps NICs. Among these machines, ten were used exclu-
sively to run clients, and the remaining machines were used
to run server replicas. Client requests for all experiments are
issued in a closed loop. The load on the replicated system
is varied by increasing the number of request threads run-
ning on client machines. Each data point represents the av-
erage latency and throughput of a run with a fixed configura-
tion, where each run lasts for 4 minutes in total and the first
minute is considered a warm up period and is excluded from
the average.

The performance of VFT-SMaRt under different configu-
rations is compared to (1) asynchronous crash fault tolerant
replication (CFT), which was implemented by configuring
VFT-SMaRt to tolerate zero commission faults (i.e, o = 0)
and disabling all timers used in the VFT implementation; (2)

 0

 20

 40

VFT
u=3,o=0,
s=1,n=5

VFT
u=3,o=1,
s=1,n=6

CFT
u=3,o=0,
s=3,n=7

BFT
f=3,n=10

x1
06 o

p
er

at
io

n
s

p
er

 d
o

lla
r

Figure 3. Cost effectiveness of VFT versus traditional ap-
proaches using microbenchmarks.

asynchronous Byzantine fault tolerant replication (BFT), by
comparing with the original BFT-SMaRt codebase.

6.2 Cost effectiveness
The main benefit of VFT when compared to alternatives op-
erating under weaker guarantees like synchronous or crash-
tolerant algorithms is the fact that it is able to tolerate mes-
sage or processing delays and arbitrary data corruption.
In comparison to traditional options that provide stronger
guarantees (namely asynchronous or BFT replication), VFT
leads to a more cost effective solution due to a lower repli-
cation factor.

In our first set of experiments we try to quantify this
cost effectiveness by measuring, for different configurations
of VFT, the throughput per dollar of the replicated system,
i.e., the server cost for sustaining a certain level of request
execution. This is then compared to the cost when deploying
asynchronous CFT and BFT systems.

Figure 3 shows, for CFT, BFT, and different configura-
tions of VFT tolerating up to 3 total faults, the achieved
throughput per dollar, i.e., the ratio between the maximum
throughput that is achieved under each configuration and the
cost of renting the virtual servers required to deploy each
configuration on Amazon EC22. As expected, when com-
pared to the classical most pessimistic option (asynchronous
BFT), the throughput per dollar of VFT is 109% to 159%
higher, while still covering to a large extent the relevant
class of faults for data center environments. Furthermore,
when compared to CFT, VFT is still more cost effective by
as much 79%. This is due to being less pessimistic regard-
ing the assumptions concerning asynchrony (i.e., slowness),
since we used VFT configurations with s = 1.

6.3 Microbenchmarks
Next we try to gain a deeper understanding of the perfor-
mance of VFT. To this end, we run a microbenchmark where
the replicated service only supports a single operation that

2 With a cost of $0.28 per Hour for Linux instances in US-West availability
zone.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

L
at

en
cy

 (
m

s)

Throughput (k request/s)

CFT: f=3 , n=7
VFT: u=3 ,o=0 ,s=1 ,n=5
VFT: u=3 ,o=1 ,s=1 ,n=6

BFT: f=3 ,n=10

Figure 4. Throughput vs. latency for CFT, BFT, and two
different VFT configurations: one tolerating crashes, one
slow process, and an arbitrarily faulty process, and another
configuration tolerating only crashes and one slow process.

receives as argument 1 KB of data and writes that data to
the service state before returning. All clients perform con-
secutive invocations of this operation. Since this operation
modifies the state it cannot take advantage of the traditional
optimizations for read-only operations [11].

In these experiments, we vary the number of requests
issued by each client so that different levels of load are
imposed on the replicated system. For each different load
imposed on the system, we compute the average latency and
throughput perceived by the set of clients. We then plot these
points in a throughput/latency curve.

Figure 4 shows a performance comparison between VFT
and traditional approaches (asynchronous CFT and BFT),
where all systems are configured to tolerate a total of three
faults. In this experiment we used two different VFT config-
urations: a middle-ground configuration where we tolerate
up to one correlated commission fault and up to one slow
process, and a crash fault tolerant configuration of VFT with
up to one slow process. The results show that the latency val-
ues observed across all systems are relatively similar when
the system is not saturated. The maximum throughput of
VFT is consistently higher than the original BFT-SMaRt
code, due to the fact that VFT is using fewer replicas, smaller
quorums, and therefore the number of messages being sent
and processed is also smaller. When comparing VFT to CFT,
there are two opposing effects. On the one hand, the number
of VFT replicas is smaller, leading to the effect mentioned
above. On the other hand, there is the need to manage timers
in the implementation of VFT protocols, which are not used
in CFT. When the system is under a high load, these timers
are constantly being set and reset, which interferes with the
processing of protocol messages. The combination of these
two effects explain why CFT achieves a higher throughput
than VFT when the total number of replicas differs only by
one, and a lower throughput when it differs by two.

In the next set of experiments, we try to understand the
sensitivity of the performance of VFT-SMaRt to the param-

eters of VFT. To this end, we compare the performance of
VFT configurations when we fix the replication factor but
trade one of the parameters for another. The results in Fig-
ure 5 show that trading u for o has almost no effect on system
performance, whereas increasing s while decreasing one of
the other two parameters has a significant positive impact on
the maximum throughput. This happens because, in the com-
mon case, the protocol gathers a quorum of n− s messages
before moving from one stage of the protocol to the next.
As such, increasing s makes it easier to gather quorums in a
shorter amount of time, and therefore allows the protocols to
move faster from one stage to the next.

6.4 Extended protocol and performance under faults
In the previous set of experiments, every replica ran nor-
mally during the entire execution. In this section, we show
how faults (both permanent and transient) during a run af-
fect the performance of the replicated system. Furthermore,
we also evaluate in this experiment the performance of the
extended version of our protocols described in Section 4.

To this end, we run three different configurations: a BFT
configuration with f = 2, hence n = 7, our base VFT
protocol configured to tolerate the same number of total
faults, u = 2, but with s = 1, o = 1, hence n = 5, and
the same parameters applied to our extended VFT protocol.
In the extended protocol, the oracle that authorizes small
quorums is deployed by configuring ZooKeeper to tolerate
two crash faults, i.e., using a total of five replicas.

During each run of these experiments, we injected one
crash fault at one of the replicas, and 120 seconds later we
caused a slowdown of one replica, by forcing it to sleep for
15 seconds.

Figure 6 presents, in the y axis, the throughput in number
of operations per second. The x axis represents the time into
the trace. In these traces, we mark the instants when each of
the replica stops, and also when the second replica resumes
the operation.

Several observations can be made regarding the results
from this experiment. First, none of the systems are notice-
ably affected by the first fault, since they can still make use
of the quorums they were using before that fault. In particu-
lar, the VFT systems still use large quorums of n−s after the
first crash. Second, when the second replica is suspended,
BFT is relatively unaffected since it is still able to gather
quorums of 2f + 1 replicas, whereas VFT has to resort to
small quorums of n−u, which imply waiting for the timeout
before making progress. The consequence of this wait time
is a large drop in the throughput of the system. However, this
throughput is still above zero, which still gives opportunity
to perform a reconfiguration to regain normal case perfor-
mance. Furthermore, this lower throughput after the second
fault could be further improved by increasing the batch size,
since a larger number of requests would be executed by each
instance of consensus. Finally, the performance of the ex-
tended version of our protocols is approximately the same

 0

 20

 40

 60

 80

 100

 0 4 8 12 16 20

L
at

en
cy

 (
m

s)

Throughput (k request/s)

u=2 ,o=1 ,s=2 ,n=6
u=3 ,o=1 ,s=1 ,n=6

(a) Trading u for s

 0

 20

 40

 60

 80

 100

 0 4 8 12 16 20

L
at

en
cy

 (
m

s)

Throughput (k request/s)

u=2 ,o=2 ,s=1 ,n=6
u=3 ,o=1 ,s=1 ,n=6

(b) Trading u for o

 0

 20

 40

 60

 80

 100

 0 4 8 12 16 20

L
at

en
cy

 (
m

s)

Throughput (k request/s)

u=2 ,o=1 ,s=2 ,n=6
u=2 ,o=2 ,s=1 ,n=6

(c) Trading s for o

Figure 5. Throughput versus average latency for VFT systems configured with n = 6 replicas varying u, s, o.

 0

 2000

 4000

 6000
c

s0
s2

s4
s5
s6

 0

 2000

 4000

 6000

crash

s1

 0

 2000

 4000

 6000

 100 120

Timeline (s)

Th
ro

ug
hp

ut
 (r

eq
ue

st
/s

)

 240 255 280

delay

s3

(a) BFT

 0

 2000

 4000

 6000
c

s0
s2
s4

 0

 2000

 4000

 6000

crash

s1

 0

 2000

 4000

 6000

 100 120

Timeline (s)

Th
ro

ug
hp

ut
 (r

eq
ue

st
/s

)

 240 255 280

delay

s3

(b) VFT

 0

 2000

 4000

 6000
c

s0
s2
s4

 0

 2000

 4000

 6000

crash

s1

 0

 2000

 4000

 6000

 100 120

Timeline (s)

Th
ro

ug
hp

ut
 (r

eq
ue

st
/s

)
 240 255 280

delay

s3

(c) VFT Oracle

Figure 6. System throughput under replica crashes, c stands for clients while s for service replicas.

as that of the base version, which is expected since the or-
acle only intervenes in a particular point in the execution
of the protocol (when small quorums are first put to use).
Note that the throughput appears to drop before the instant
when the process crashes, but this happens due to the way
the throughput is measured over time slots. In particular, the
crash affects the throughput measurement over a time inter-
val that has started prior to the crash event.

7. Related work
We survey work that considers timing assumptions as well
as non-crash fault behavior in distributed systems.
Timing assumptions. In asynchronous systems, Fischer,
Lynch, and Patterson have shown that consensus is im-
possible to solve when processes can crash [21]. Dwork,
Lynch, and Stockmeyer have shown that assuming an un-
known bound for message delays or a known bound that
holds after some global stabilization time enables solving
consensus [19]. Such bounds can equivalently be encap-
sulated in a failure detection abstraction [12]. Cristian and
Fetzer propose the timed-asynchronous model [17] where

processes have a bounded drift rate, allowing processes to
measure time intervals with a known and bounded error,
and to detect untimely events accurately. Our work strikes a
different balance between synchrony and asynchrony, as it
models bounded asynchrony, which leads to a spectrum of
replication solutions that depends on those bounds.

Guerraoui and Schiper introduced a new class failure de-
tectors called Γ-Accurate [23], where the accuracy property
of failure detectors is relaxed to focus only on a (fixed) sub-
set of processes in the system Γ. The authors have shown
in which conditions these failure detectors allow to solve
consensus in a fully asynchronous system where processes
can crash. In contrast, we leverage data center properties to
build protocols that are more resource-efficient by capturing
a continuum between synchrony and asynchrony.

The work by Aguilera, Chen, and Toueg [2] proposes the
use of heartbeat-based failure detectors to achieve quiescent
reliable communication and solve consensus in partitionable
networks. However, the authors assume a fully asynchronous
system where network partitions are permanent though not
necessarily isolated, which means that given a system with

two partitions say A and B, processes in A might be un-
able to send messages to processes in B while processes
in B can still be able to send messages to processes in A.
However, consensus is only achievable if a partition can re-
ceive messages from a majority of processes in the system.
In contrast, VFT considers both crash and arbitrary faults,
while enabling progress to be made even in scenarios where
a majority of processes is not available.

Aguilera et al. [1] introduced a new model for partially
synchronous systems based on the notion of set timeliness.
Different from VFT, their model does not bound the number
of slow processes and consequently cannot operate with
smaller quorums as we have shown in this work.

Verı́ssimo and Casimiro proposed the Timely Computing
Base model [47]. In their model, they assume a subsystem
for transporting regular payload, potentially asynchronous,
and a separate subsystem that provides the ability to transmit
control messages with timing requirements in a synchronous
fashion. This led to a generalization called the wormhole
hybrid distributed system model, where there can be secure
and timely components in the system [46][16]. In contrast,
the Visigoth model does not rely upon a separate subsystem.
Furthermore, our model does not require identifying asyn-
chronous and synchronous components.

The communication failure model [42] is tailored to envi-
ronment like wireless or ad-hoc networks. This model asso-
ciates faults with communication links instead of processes.
In this context an impossibility of solving k-agreement when
each process can have more than n − 2 links that can lose
messages is proven. Our model targets a different environ-
ment and as such makes different choices regarding the types
of faults and message delays that are allowed.

In the transmission fault model [8, 36] instead of allowing
for a set of faulty processes, the messages themselves can
be arbitrarily lost or corrupted before their reception. This
has the advantage of allowing for a broader range of fault
scenarios that are not allowed in other models, e.g., where
each process sends a single corrupted message. While this
goal is orthogonal to ours, this model has in common with
VFT the fact that it allows for reasoning about faults without
pinpointing faulty processes.
Handling non-crash faults. Processes that behave arbitrar-
ily are called Byzantine after the seminal paper of Lamport,
Shostak, and Pease [31]. Castro and Liskov proposed a prac-
tical protocol for Byzantine state machine replication [11].
The UpRight model splits Byzantine faults into commission
and omission [13]. The Visigoth model follows the notation
of the UpRight formulation but could have also been ex-
pressed in terms of the traditional formulation, leading to
n = f + o + s + 1. Differing from UpRight, VFT intro-
duces new synchrony models and does not limit the absolute
number of commission faults in the system to remain safe.
Instead, VFT limits the number of correlated faults. ZZ [49]
reduces replication requirements for normal case operation

by keeping replicas in a dormant state until a fault is de-
tected, which leads these replicas to become active. This fea-
ture relies on virtualization for fast state update of dormant
replicas, although performance can be affected by the size
of the state. CheapBFT[28] leverages trusted devices built
with FPGAs to enable resource efficient BFT and reduce the
quorum size to 2f + 1. (In contrast, VFT does not require
trusted devices.) Raft [38] and EPaxos [37] are recent agree-
ment protocols. Both were designed assuming CFT. Raft
improves understandability while EPaxos leverages applica-
tion knowledge to deterministically order operations, thus
removing the bottleneck at the leader. All these protocols
can benefit from VFT, potentially leading to lower replica-
tion requirements by capturing arbitrary fault manifestations
while not requiring algorithms to worry about the worst-case
attack scenario of collusion among commission faulty pro-
cesses, and also capturing a continuum between synchrony
and asynchrony.

Fault detectors have also been explored as a way to design
reliable systems in the Byzantine model. In particular the
work by Malkhi and Reiter [35] proposes the use of unreli-
able intrusion detectors to enrich asynchronous systems that
can be subject to arbitrary malicious faults. Their fault detec-
tor infers arbitrary malicious faults in several ways, which
include a process remaining silent when it should transmit
a message, or a process transmitting a message that is ei-
ther malformed, out-of-order, or unjustifiable. Another work
shows how to solve consensus in an asynchronous Byzan-
tine system resorting to such fault detectors [29]. Similarly
to classical BFT protocols, they assume arbitrary collusion
and an asynchronous system, and hence require a replication
factor of 3f + 1.

BFT2F [33] provides weaker than common guarantees in
BFT systems when the fault threshold f is exceeded. This is
complementary to our work, in that we can also use a similar
approach to provide some guarantees if the assumptions in
our model are not met.

Several fault models allow for arbitrary corruption of
the state of one or several processes, but assume that pro-
cesses always run the correct code, a set of assumptions
that differ from the ones made by the Visigoth model. Self-
stabilization [18] assumes that any process in a distributed
system can transition to an arbitrary state, and designs dis-
tributed algorithms that run in an infinite loop that ensures
that the system converges to a correct state in such cases.
The Arbitrary State Corruption (ASC) model of Correia et
al. is a fault model that also focuses on arbitrary state cor-
ruption while preserving the protocol code correct [15]. This
work proposes a technique called ASC-hardening, which
can be used to transform crash-tolerant protocols into ASC-
tolerant ones. Different from the Visigoth model, their model
focuses on the faults of an individual process, and ASC-
hardening requires processes to be implemented following
a given structure based on event handlers and messages.

In contrast, a VFT state machine replication protocol relies
only upon replicating a deterministic service in a number of
machines. On a similar proposal but at a lower level, Schiffel
et al. proposed a fault detection mechanism targeted at hard-
ware faults [20]. The idea is to develop checks for various
operators based on a proposed encoding, and extend a com-
piler to insert those checks in the application. This is a fun-
damentally different approach that takes every instruction as
potentially operating on corrupted data and validates its re-
sults using a redundant local computation. SWIFT is a also
a compiler-based technique, based on the Single Event Up-
set (SEU), in which one bit is flipped throughout the entire
program [41]. In contrast to all these proposals, the Visigoth
model follows the traditional replication approach for deriv-
ing fault-tolerant distributed systems, and it does not assume
that the code running on faulty processes is correct.

8. Conclusion
In this paper, we presented Visigoth fault tolerance, a tech-
nique for developing robust distributed protocols for data
center environments. We believe this paper can spawn a se-
ries of interesting research avenues, such as applying VFT to
other systems, determining how to parameterize the system
to make the assumptions tenable in different environments,
or exploring in depth the fundamental properties of VFT.

Acknowledgments
We thank the anonymous reviewers and our shepherd,
Thomas Moscibroda, for their feedback. The research of R.
Rodrigues is funded by the European Research Council un-
der ERC Starting Grant No. 307732. This work is partially
funded by FCT under project PEst-OE/EEI/UI0527/2014.

References
[1] M. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg.

Partial synchrony based on set timeliness. Distributed Com-
puting, 25(3):249–260, 2012.

[2] M. K. Aguilera, W. Chen, and S. Toueg. Using the heartbeat
failure detector for quiescent reliable communication and con-
sensus in partitionable networks. Theoretical Computer Sci-
ence, 220(1):3 – 30, 1999.

[3] Amazon. Amazon S3 Availability Event. http://status.

aws.amazon.com/s3-20080720.html, July 2008.

[4] Amazon. S3 data corruption? https://forums.aws.

amazon.com/thread.jspa?threadID=22709, June 2008.

[5] Amazon. Possible corruption of small percentage of S3
data. https://forums.aws.amazon.com/thread.jspa?

messageID=262676, July 2011.

[6] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory ro-
bustly in message-passing systems. Journal of the ACM
(JACM), 42(1):124–142, 1995.

[7] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Lar-
son, J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh. Megas-
tore: Providing scalable, highly available storage for interac-

tive services. In Proceedings of the Conference on Innovative
Data system Research (CIDR), pages 223–234, 2011.

[8] M. Biely, J. Widder, B. Charron-Bost, A. Gaillard, M. Hutle,
and A. Schiper. Tolerating corrupted communication. In Pro-
ceedings of the 26th Annual ACM Symposium on Principles
of Distributed Computing (PODC), pages 244–253, 2007.

[9] M. Burrows. The chubby lock service for loosely-coupled
distributed systems. In Proceedings of the 7th symposium on
Operating systems design and implementation (OSDI), pages
335–350, 2006.

[10] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to
Reliable and Secure Distributed Programming (Second Edi-
tion). Springer, 2011.

[11] M. Castro and B. Liskov. Practical byzantine fault tolerance
and proactive recovery. ACM Transactions on Computer Sys-
tems, 20(4):398–461, 2002.

[12] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM (JACM),
43(2):225–267, 1996.

[13] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi,
M. Dahlin, and T. Riche. Upright cluster services. In Pro-
ceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles (SOSP), pages 277–290, 2009.

[14] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford. Span-
ner: Google’s globally-distributed database. In Proceedings
of the 10th USENIX conference on Operating Systems Design
and Implementation (OSDI), pages 251–264, 2012.

[15] M. Correia, D. G. Ferro, F. P. Junqueira, and M. Serafini.
Practical hardening of crash-tolerant systems. In Proceedings
of the 2012 USENIX Annual Technical Conference (ATC),
pages 453–466, 2012.

[16] M. Correia, N. F. Neves, and P. Verissimo. How to tolerate
half less one byzantine nodes in practical distributed systems.
In Proceedings of the 23rd IEEE International Symposium on
Reliable Distributed Systems (SRDS), pages 174–183, 2004.

[17] F. Cristian and C. Fetzer. The timed asynchronous distributed
system model. IEEE Transactions on Parallel and Distributed
Systems, 10(6):642–657, 1999.

[18] E. W. Dijkstra. Self-stabilizing systems in spite of distributed
control. Communications of the ACM (CACM), 17(11):643–
644, 1974.

[19] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the
presence of partial synchrony. Journal of the ACM (JACM),
35(2):288–323, 1988.

[20] C. Fetzer, U. Schiffel, and M. Suesskraut. AN-encoding com-
piler: Building safety-critical systems with commodity hard-
ware. In Proceedings of the 28th International Conference
on Computer Safety, Reliability, and Security (SAFECOMP),
pages 283–296, 2009.

[21] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. Journal of
the ACM (JACM), 32(2):374–382, 1985.

[22] D. F. Galletta, R. Henry, S. McCoy, and P. Polak. Web site
delays: How tolerant are users? Journal of the Association for
Information Systems, 5:1–28, 2003.

[23] R. Guerraoui and A. Schiper. Gamma accurate failure detec-
tors. In Proceedings of the 10th International Workshop on
Distributed Algorithms (WDAG), pages 269–286, 1996.

[24] J. Hamilton. Perspectives - overall data center costs.
http://perspectives.mvdirona.com/2010/09/

overall-data-center-costs/, 2010.

[25] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper:
wait-free coordination for internet-scale systems. In Proceed-
ings of the 2010 USENIX annual technical conference (ATC),
2010.

[26] M. Isard. Autopilot: automatic data center management.
SIGOPS Operating Systems Review, 41(2):60–67, 2007.

[27] F. P. Junqueira, B. C. Reed, and M. Serafini. Zab: High-
performance broadcast for primary-backup systems. vol-
ume 0, pages 245–256, 2011.

[28] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mo-
hammadi, W. Schröder-Preikschat, and K. Stengel. Cheapbft:
Resource-efficient byzantine fault tolerance. In Proceedings
of the 7th ACM European Conference on Computer Systems
(EuroSys), pages 295–308, 2012.

[29] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. Solv-
ing consensus in a byzantine environment using an unreli-
able fault detector. In Proceedings of the 1997 International
conference on Principles Of Distributed Systems (OPODIS),
pages 61–76, 1997.

[30] L. Lamport. Paxos made simple. SIGACT News, 32(4):51–58,
2001.

[31] L. Lamport, R. Shostak, and M. Pease. The byzantine generals
problem. ACM Transactions on Programming Languages and
Systems, 4(3):382–401, 1982.

[32] J. Leverich and C. Kozyrakis. Reconciling high server uti-
lization and sub-millisecond quality-of-service. In European
Conference on Computer Systems (EuroSys), 2014.

[33] J. Li and D. Mazières. Beyond one-third faulty replicas in
Byzantine fault tolerant systems. In Proc. 4th Symposium
on Networked Systems Design and Implementation (NSDI),
pages 131–144, 2007.

[34] D. Malkhi and M. Reiter. Byzantine quorum systems. In
Proceedings of the Twenty-ninth Annual ACM Symposium on
Theory of Computing (STOC), pages 569–578, 1997.

[35] D. Malkhi and M. Reiter. Unreliable intrusion detection in
distributed computations. In Proceedings of the 10th IEEE
Workshop on Computer Security Foundations (CSFW), 1997.

[36] Z. Milosevic, M. Hutle, and A. Schiper. Tolerating permanent
and transient value faults. Distributed Computing, 27(1):55–
77, 2014.

[37] I. Moraru, D. G. Andersen, and M. Kaminsky. There is
more consensus in egalitarian parliaments. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems
Principles (SOSP), pages 358–372, 2013.

[38] D. Ongaro and J. Ousterhout. In search of an understandable
consensus algorithm. In 2014 USENIX Annual Technical

Conference (ATC), pages 305–319, 2014.

[39] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishna-
murthy, T. Anderson, and T. Roscoe. Arrakis: The operating
system is the control plane. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), pages
1–16, 2014.

[40] D. Porto, J. Leitão, C. Li, A. Kate, A. Clement, F. Junqueira,
and R. Rodrigues. Lower bound and correctness proofs for
consensus in the visigoth model. Technical report, Nova
University of Lisbon, 2015.

[41] G. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. Au-
gust. SWIFT: software implemented fault tolerance. In Pro-
ceedings of the International Symposium on Code Generation
and Optimization, pages 243–254, 2005.

[42] N. Santoro and P. Widmayer. Time is not a healer. In
Proceedings of the 6th Annual Symposium on Theoretical
Aspects of Computer Science (STACS), pages 304–313, 1989.

[43] F. B. Schneider. Implementing fault-tolerant services using
the state machine approach: a tutorial. ACM Computing Sur-
veys, 22(4):299–319, 1990.

[44] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey. Jellyfish:
Networking data centers randomly. In Proceedings of the
9th USENIX Conference on Networked Systems Design and
Implementation (NSDI), 2012.

[45] Y. J. Song, F. Junqueira, and B. Reed. BFT for the skeptics.
Extended abstract for talk at BFTW3: Why? When? Where?
Workshop on Theory and Practice of Byzantine Fault Toler-
ance, 2009.

[46] P. Verı́ssimo. Uncertainty and predictability: Can they be
reconciled? In Future Directions in Distributed Computing.
2003.

[47] P. Verı́ssimo and A. Casimiro. The timely computing base
model and architecture. IEEE Transactions on Computers,
51(8):916–930, 2002.

[48] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron. Bet-
ter never than late: meeting deadlines in datacenter networks.
In Proceedings of the ACM SIGCOMM 2011 conference,
pages 50–61, 2011.

[49] T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and E. Cec-
chet. Zz and the art of practical bft execution. In Proceedings
of the 6th Conference on Computer Systems (EuroSys), pages
123–138, 2011.

[50] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey. Bobtail: avoid-
ing long tails in the cloud. In Proceedings of the 10th USENIX
conference on Networked Systems Design and Implementation
(NSDI), pages 329–342, 2013.

[51] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Sto-
ica. Improving mapreduce performance in heterogeneous en-
vironments. In Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation (OSDI), pages
29–42, 2008.

[52] K. Zarifis, R. Miao, M. Calder, E. Katz-Bassett, M. Yu, and
J. Padhye. Dibs: Just-in-time congestion mitigation for data
centers. In Proceedings of the 9th European Conference on
Computer Systems (EuroSys), 2014.

