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Attenuation correction is an essential component of the long chain of data correction techniques

required to achieve the full potential of quantitative positron emission tomography (PET) imaging.

The development of combined PET/magnetic resonance imaging (MRI) systems mandated the

widespread interest in developing novel strategies for deriving accurate attenuation maps with the

aim to improve the quantitative accuracy of these emerging hybrid imaging systems. The attenuation

map in PET/MRI should ideally be derived from anatomical MR images; however, MRI intensities

reflect proton density and relaxation time properties of biological tissues rather than their electron

density and photon attenuation properties. Therefore, in contrast to PET/computed tomography, there

is a lack of standardized global mapping between the intensities of MRI signal and linear attenuation

coefficients at 511 keV. Moreover, in standard MRI sequences, bones and lung tissues do not produce

measurable signals owing to their low proton density and short transverse relaxation times. MR

images are also inevitably subject to artifacts that degrade their quality, thus compromising their

applicability for the task of attenuation correction in PET/MRI. MRI-guided attenuation correction

strategies can be classified in three broad categories: (i) segmentation-based approaches, (ii) atlas-

registration and machine learning methods, and (iii) emission/transmission-based approaches. This

paper summarizes past and current state-of-the-art developments and latest advances in PET/MRI

attenuation correction. The advantages and drawbacks of each approach for addressing the challenges

of MR-based attenuation correction are comprehensively described. The opportunities brought by

both MRI and PET imaging modalities for deriving accurate attenuation maps and improving

PET quantification will be elaborated. Future prospects and potential clinical applications of these

techniques and their integration in commercial systems will also be discussed. C 2016 American

Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4941014]
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1. INTRODUCTION

Hybrid positron emission tomography/magnetic resonance

imaging (PET/MRI) has emerged as a new imaging modality

enabling concurrent morphological and molecular charac-

terization of different organs/tissues and physiopathological

conditions. Over the last decade, tremendous efforts have been

directed toward addressing the challenges faced by PET/MRI

systems from two perspectives: (i) instrumentation and

conceptual system design and (ii) improvement of quantitative

performance to achieve at least comparable accuracy to

standard PET/computed tomography (CT) systems where

CT-based attenuation correction (CTAC) is the standard

procedure. With the advent of solid-state photodetectors,

the challenge of mutual compatibility between PET and

MRI subsystems has now been reasonably addressed,

paving the way toward fully integrated clinical time-of-flight

(TOF) PET/MR systems.1–3 However, accurate attenuation

correction (AC) of PET data has remained a major challenge

in PET/MRI.4,5 A number of active research groups have

focused on the development of innovative techniques for

deriving accurate attenuation maps to improve the quantitative

accuracy of PET/MR imaging. During the last decade,

significant progress has been achieved in this field as

thoroughly appraised in previous reviews by Hofmann et al.,6

Bezrukov et al.,4 and many others.7–9

In this paper, we examine the challenges and recent

technical advances in the rapidly evolving field of attenuation

correction in PET/MRI. Overall, AC methods in PET/MRI

can be categorized into three main classes: (i) segmentation-

based approaches, which segment MR images into different

tissue classes and assign predefined attenuation coefficients to

each class, (ii) atlas-based and machine learning techniques

in which a coregistered MR-CT atlas dataset is used to

derive a pseudo-CT image and/or to learn a mapping function

that predicts the pseudo-CT image from patient-specific
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MR image, and (iii) the recently revisited emission- and

transmission-based methods, in which the attenuation map

is estimated from TOF emission or transmission data. We

discuss the challenges and technical considerations involved

for attenuation map generation in PET/MRI and provide

a detailed overview of MRI-guided attenuation correction

(MRAC) methods with special emphasize on their pros

and cons. A possible scenario of future developments and

opportunities is also provided.

In PET/MRI, the attenuation map at 511 keV should ideally

be derived from the acquired MR images. However, contrary

to x-ray CT, MRI signals are not correlated with electron

density and photon attenuating properties of tissues, but

rather to proton density and magnetic relaxation properties.

Therefore, there is no unique global mapping technique

to convert MRI intensities to attenuation coefficients.

Similar to early transmission-based AC methods,10 the most

straightforward way to derive attenuation maps in PET/MRI

is to classify MR images for segmentation of different

tissue classes and assign proper linear attenuation coefficients

(LACs) to each tissue class. However, lung tissues and

cortical bones, which are two important tissue types in

attenuation maps, exhibit low signals on images acquired

using conventional MR pulse sequences. Therefore, the

lungs, bones, and air pockets, which also produce a low MR

signal intensity, cannot be well differentiated from each other

for the generation of MRI segmentation-based attenuation

maps. Ultrashort echo time (UTE) pulse sequences have

also been investigated for the detection and visualization of

bones11,12 as well as lung parenchyma.13 However, UTE MRI

is prohibitively time-consuming and sensitive to magnetic

field inhomogeneities and, as such, it is not yet clinically

feasible for whole-body MRAC of PET data. However,

substantial progress has been recently achieved in accelerated

sub-Nyquist MRI acquisitions using parallel MRI (pMRI) and

compressed sensing (CS) techniques, which are particularly

suited for UTE data acquisition.14,15

In contrast to PET/CT, in whole-body PET/MRI scans,

the arms are positioned down mainly because of patient

comfort and support as well as coil positioning constraints.

However, the limited transaxial field-of-view (FOV) of MRI

scanners (45–50 cm) can result in the truncation of the arms

and shoulders in the acquired MRI images16 compared to the

larger useful transaxial FOV of PET scanners (60–70 cm). The

generation of attenuation maps from truncated MR images is

another challenge in terms of deriving complete attenuation

maps in whole-body scans. In patients with metallic implants,

such as titanium prosthesis or dental fillings, the main

magnetic field around the implants is usually locally distorted

producing expansive signal voids with peripheral areas of

high intensity known as blooming or magnetic susceptibility

artifacts.17 These artifacts are more pronounced in fast GRE

MRI sequences, often used for MRAC, due to the lack

of 180◦ refocusing radio frequency (RF) pulses. The void

artifacts can be mis-segmented or lead to inaccurate LAC

prediction by atlas-based learning techniques.

A further challenge arises from the attenuation and

scattering of annihilation photons by MRI RF coils in

integrated or insert-based PET/MRI systems as well as other

attenuating objects present in the PET FOV including patient’s

bed and patient positioning aids. In whole-body MRI imaging,

integrated body coils are usually used for receiving MRI

signals. Moreover, to improve signal-to-noise ratio, without

compromising acquisition time, flexible surface RF coils or

head and neck coils are employed during scanning. Similar to

bony structures, short T2 materials do not provide measurable

signals in conventional MRI sequences and therefore remain

invisible. The presence of such attenuating material, especially

flexible coils that can be placed in arbitrary positions and

orientations, can locally affect PET quantification and must

therefore be included in the attenuation map. Several other

challenges and problems specific to each category of MRAC

methods are discussed in Sec. 3 together with recent advances

in the field.

2. STRATEGIES FOR MRI-GUIDED ATTENUATION
CORRECTION IN PET/MRI

In this section, a comprehensive overview of the outlined

AC strategies is elaborated with special emphasize on current

state-of-the art techniques. For the sake of completeness,

earlier contributions discussed in previous reviews are also

briefly covered. Table I summarizes the major contributions

for each category of methods highlighting the working

principles and required data for implementation, major

advantages and findings, limitations, performance, and

reported quantitative accuracy.

2.A. Segmentation-based methods

The attenuating tissues in the body consist mainly of

soft tissues, adipose (fat) tissue, lungs, air cavities (sinuses,

abdominal air pockets), and cortical and spongy bones.

Each tissue class has different intra/interpatient attenuation

coefficients at 511 keV as summarized in Table II. In

segmentation-based MRAC methods, the aim is to segment

MR images into (at least) the above-mentioned six tissue

classes18 and to assign representative, or if possible, patient-

specific, linear attenuation coefficients to each tissue class.

2.A.1. Brain imaging

In brain PET imaging, the cortical bones of skull

substantially contribute to the attenuation and scattering of

annihilation photons. For accurate PET quantification, the

bones must, therefore, be accounted in the MRAC map.

Otherwise if substituted by soft tissue, the tracer uptake

might be underestimated by up to 25% in cortical regions

and 5%–10% in central regions of the cranium, as recently

reported by Anderson et al.19 In a comparative study, Teuho

et al.20 also reported the largest underestimations 11%–17%

in the temporal cortex and orbito-frontal cortex by ignoring

the bones.

One of the earliest segmentation-based MRAC studies was

reported by Zaidi et al.,21 where T1-weighted MR images were
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T I. Overview of MRI-guided attenuation correction strategies in PET/MRI.

Category Body region Technique and data Tissue classes (attenuation values)

Key advantages of the

method/findings of study Limitations Quantification errors

Segmentation-

based methods

(Sec. 2.A)

Segmentation of T1W MRI

using supervised fuzzy

C-means clustering

(Ref. 21)

Brain tissue (0.099 cm−1), skull

(0.14 cm−1), nasal sinuses

(0.054 cm−1), and air (0 cm−1)

Inclusion of bones Semiautomatic segmentation

of bones

2.4% bias using ten patients in comparison

to transmission µ-maps

Neural network-based

segmentation of MP-RAGE

MRI (Refs. 22 and 24)

Air (0 cm−1), brain tissue

(0.096 cm−1), skull (0.146 cm−1),

and Mastoid process (0.054 cm−1)

Fully automatic,

knowledge-based

Mis- or oversegmentation of

bones in the presence of

abnormal anatomy or

pathology

−6.1% to 2.7% bias in cortical regions and

−7.0% to 5.6% for subcortical regions using

four patients

Segmentation of dual-echo

UTE MRI using

region-growing and

thresholding (Ref. 12)

Air (0 cm−1), soft tissue

(0.096 cm−1), and bones

(0.12 cm−1)

Direct segmentation of

bones

Long acquisition time (6 min),

mis-segmentation at air–tissue

interfaces

Average 5% error in brain tissues of five

PET/CT/MRI patients

Brain Segmentation of dual-echo

UTE MRI using

morphological closing and

arithmetical operations

(Ref. 11)

Air (0 cm−1), soft tissue

(0.096 cm−1), and bones (0.136 to

0.180 cm−1)

Direct segmentation of

bones, 3.3 min acquisition

time

Poor spatial resolution of UTE

data, mis-segmentation at

air–tissue interfaces

Bone LACs of 0.143 and 0.151 cm−1

resulted in best bias variability trade-off in

quantification

Segmentation of triple-echo

UTE MRI using

thresholding and

morphological filtering

(Ref. 25)

Air (0 cm−1), soft tissue

(0.1 cm−1), fat (0.09 cm−1), and

bones (0.172 cm−1)

Direct segmentation of

bones and inclusion of fat

Bone misclassifications at

paranasal sinuses

Over 80% of bone voxels were correctly

classified in six studied patients

Segmentation of Dixon fat

and water MRI (Ref. 19)

Air, soft-tissue fat Radial variation of

quantification errors when

bones are ignored

Presence of metal-induced

artifacts in MRAC maps

SUV bias of 25% in cortical regions and

5%–10% in central regions of the brain (19

patients)

Segmentation of 3D T1

SPGR MRI using

deformable shape modeling

and thresholding (Ref. 16)

Air, lungs, and soft tissue Fast, fully automatic Bone/air and lung

segmentation challenging,

truncation artifacts, etc.

<10% SUV bias in malignant soft-tissue

lesions with respect to CTAC, −12% bias in

a pelvis lesion (15 patients)

Whole-body Segmentation of two-point

Dixon MRI (Ref. 26)

Air, lungs, and soft and fat tissues Inclusion of fat tissue, fast Same as above −8% SUV bias in bone lesions (35 patients)

Phase-field-based

segmentation and mapping

of two-point Dixon MRI

(Ref. 27)

Continuous fat/water

(0.086-0.1 cm−1), lungs, and air

Continuous fat and water

LACs

Same as above Mean SUV bias of 10% in the liver and −2%

in malignant lesions (16 patients)

Atlas-based

segmentation,

registration and

machine learning

methods (Sec. 2.B)

Brain (without UTE) Patch-based Gaussian

process regression and atlas

registration (Ref. 28)

Continuous Robust to misregistration

errors

Very time-consuming

(Gaussian process regression)

Mean SUV bias of 3% for predefined regions

of interest with respect to CTAC
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T I. (Continued).

Category Body region Technique and data Tissue classes (attenuation values)

Key advantages of the

method/findings of study Limitations Quantification errors

Voxelwise classification of

air/bone from MRI without

atlas registration using

random forest method

(Ref. 29)

Binary No need for atlas

registration, time efficient

Susceptible to presence of

artifacts in MR image

Dice values of 0.83±0.08 and 0.98±0.01

for air and bone, respectively

Voxelwise atlas fusion using

LNCC as image similarity

measure (Ref. 30)

Continuous Very robust to

misregistration errors

Time-consuming (40 atlas

registrations are required)

Relative absolute error of 5% for the full

head with respect to CTAC

Patch-based pseudo-CT

generation without using

deformable atlas

registrations (Ref. 31)

Continuous No need for atlas

registration, time efficient

— Dice values of 0.84±0.02 for bone volume

Brain (with UTE) Pseudo-CT generation by

including spatial

information into Gaussian

mixture regression (Ref. 32)

Continuous Robust pseudo-CT

generation using UTE

sequence

Requires four UTE images

with different echo times and

flip angles

Mean absolute prediction deviation of

130±18 HU with spatial information

Patient-specific bone

attenuation coefficient

estimation based on UTE

(Please check, and correct if

necessary.Ref. 33)

Continuous bone, air (0 cm−1), fat

(0.092 cm−1), and soft-tissue

(0.1 cm−1)

Patient-specific bone

attenuation coefficient

Requiring UTE and Dixon

sequences

Dice values of 0.75±0.05 across 98 subjects

for bone and 0.60±0.08 for sinus air cavities

Patch-based pseudo-CT

generation via Bayesian

framework (Ref. 34)

Continuous No atlas registration and

segmentation required

— PET pseudo-CT AC exhibited correlation

coefficient of 0.99 with respect to

PET-CTAC

Whole-body Gaussian process regression

and atlas registration

(Ref. 35)

Continuous Robust to misregistration

errors

High computational time In regions of normal physiologic uptake, the

average bias was 8%±8% and for lesions

was 6%±5%

Gaussian process regression

and tissue segmentation

(Ref. 36)

Continuous bone, lung

(0.024 cm−1), fat (0.0856 cm−1),

nonfat (0.1007 cm−1), and

Fat/soft-tissue mixture

(0.0988 cm−1)

Robust to metal induced

artifact in MR images

— SUV bias of 24%±6% for lesions near bone

and 0.6±11.1% for lesions affected by MR

susceptibility artifacts

Most similar single atlas

registration (Ref. 37)

Continuous Very time efficient (only

one atlas registration)

Lack of multiatlas consensus SUV bias in bony regions ranging from −3%

to 4% and −2.1% to 2.6% for lean tissue

Improved Gaussian process

regression with sorted atlas

registration (Ref. 38)

Continuous Very robust to

misregistration errors,

patient-specific lung

LACs

High computational time Up to 4% lung SUV bias (14 patients)
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T I. (Continued).

Category Body region Technique and data Tissue classes (attenuation values)

Key advantages of the

method/findings of study Limitations Quantification errors

Emission- and

transmission-based

methods (Sec. 2.C)

Attenuation estimation

using consistency

conditions of TOF Radon

transform (Ref. 39)

Continuous Estimation of attenuation

sinogram and analytical

reconstruction

ACFs are determined up to a

constant scaling factor

—

Maximum likelihood

reconstruction of

attenuation and activity

(MLAA) only TOF EM data

(Ref. 40)

Continuous Patient-specific LACs Estimated LACs should be

corrected for a missing scale

factor

—

MRI-guided MLAA using

anatomical regions (Ref. 41)

Discrete LACs (depending on the

number of MR regions)

Reduced noise and cross

talks in estimated mu

maps

Unsolved scale factor, MRI

mis-segmentation errors,

limited tissue heterogeneity

Bias of −6% in the lungs, −10% in bones,

−3% in soft tissues (only one patient)

Whole-body MLAA using

MR-constrained Gaussian

mixture models (Ref. 42)

Continuous, mean LACs of lungs,

fat, soft tissue, and bones: 0.027,

0.086, 0.097, 0.104 cm−1

Solved the scale problem,

robust to

MRI-segmentation errors

Selection of regularization

parameters, registration of a

bone probability map

Bias of −4% in the lungs, −10% in bones,

and −5.0% in soft tissues/lesions (five

patients)

Attenuation estimation from

transmission data acquired

in simultaneous

transmission and TOF PET

scanning (Ref. 43)

Continuous, mean LACs of lungs

and soft tissue: 0.019 and

0.098 cm−1, respectively

Patient-specific LACs

with simultaneous

transmission and emission

scanning

External transmission source

is required, imperfect

separation of transmission and

emission data results in scaling

the LACs, increased radiation

dose

∼10% in the lungs and soft tissues and

∼15% in bones (five patients)

Attenuation estimation from

transmission and emission

(Ref. 44)

Continuous Solved the scale problem

and improved

performance

External transmission source

is required, increased radiation

dose

—

M
e
d

ic
a
l
P

h
y
s
ic

s
,
V

o
l.

4
3
,
N

o
.
3
,
M

a
rc

h
2
0
1
6



1135 Mehranian, Arabi, and Zaidi: Vision 20/20: PET/MRI, quantification, attenuation map, attenuation correction, tracer uptake 1135

T II. Attenuation coefficients at 511-keV of different biological tissues

(Ref. 7).

Tissue Linear attenuation coefficient (cm−1)

Lung 0.018–0.03

Adipose tissue 0.086–0.093

Soft tissue 0.094–0.100

Spongious bone 0.110

Cortical bone 0.130–0.172

segmented into air, brain tissue, skull, and nasal sinuses using

a supervised fuzzy C-means clustering. Later, Wagenknecht

et al.22,23 proposed an automatic tissue segmentation approach

using neural network and prior knowledge about brain’s

anatomical regions. MR segmented regions showed a high

correspondence with the CT segmented regions; however,

the authors reported that this technique might result into

mis- or oversegmentation of bones in the presence of

abnormal anatomy or pathology. Since 2010, UTE MRI-

based methods were then explored for bone visualization and

direct segmentation of bones in brain studies. Catana et al.11

and Keereman et al.12 independently proposed a dual-echo

UTE MRI sequence to derive three-class attenuation maps

including air, soft tissue, and bones. Despite the promising

results, the authors showed that UTE-based bone classification

is still subject to over- or undersegmentation of bones,

especially at bone/air or soft-tissue air interfaces due to

diamagnetic susceptibility effects.

The combination of UTE and Dixon sequences for bone

detection and fat separation in order to generate a four-

class PET attenuation map was proposed by Berker et al.25

The resulting four-class attenuation maps exhibited a high

visual similarity to reference CTAC maps and over 80%

of voxels in six studied patients were correctly classified.

Using a trimodality PET/CT-MR system, Delso et al.45

recently reported that the UTE segmented bones produce

an acceptable overlap with reference CT bones over the

skull; however, segmentation errors increase at the base of

the skull, air interfaces eyeballs, and dental arch mainly due

to susceptibility and motion effects. They concluded that

bone segmentation errors can degrade the reconstructed PET

images. Overall, postprocessing and segmentation procedures

are required for bone extraction in UTE-based approaches,

leading to significant differences in the obtained results.

2.A.2. Whole-body imaging

Contrary to brain imaging, bone segmentation in whole-

body imaging is more challenging, especially the vertebra

where the bones are spongy and contain tissues with

a moderate MR intensity. The application of UTE MRI

sequences for whole-body bone segmentation is not feasible

yet since it is time-consuming for routine clinical usage, as

a typical five to seven bed-position whole-body scan would

take from 30 to 45 min.12,46

Current whole-body MRAC methods rely on the

segmentation of MR images into three- or four-tissue classes,

where bones are substituted by soft tissue. In earlier works,

Hu et al.16,47 and Schulz et al.,48 implemented a three-class

attenuation map on the Ingenuity TF PET/MR system49

by segmenting MR images of a 3-min 3D T1-weighted

gradient/spin-echo sequences into background air, lungs,

and soft tissue. The clinical assessment of this technique

indicated an overall underestimation of tracer uptake by

up to 10% in malignant lesions,16 while an overall bias

of <7% in most malignant lesions was reported.48 To

include fat as fourth tissue class, Martinez-Möller et al.26

used a Dixon sequence for the separation of fat and

water. In their study, a mean standardized uptake value

(SUV) error of about −8% was found for bone lesions

compared to reference CTAC PET images. Hence, the

authors concluded that this SUV bias is clinically irrelevant.

In a follow-up study, Eiber et al.50 also demonstrated

that there is no statistically significant difference between

PET/MRI and PET/CT for the anatomical localization of

PET positive lesions. A mixture of fat and soft tissues

was investigated by Hofmann et al.35 as an additional

tissue class, leading to mean absolute SUV errors of

8% and 14% in lesions and regions of normal uptake,

respectively. In the same spirit, Wollenweber et al.27 recently

proposed a continuous fat/water (CFW) method allowing for

continuous variation of fat and soft attenuation coefficients

in the range of 0.086–0.1 cm−1. Their quantitative analysis

showed that the CFW and four discrete-class MRAC

methods result in mean SUV errors of 10.4% and 5.7%

in the liver and 1.7% and −1.6% in malignant lesions,

respectively.

To evaluate the importance of bones in whole-body MRAC

maps, as the fifth tissue class (in addition to air, lung, fat,

and soft-tissue classes), Hofmann et al.35 substituted bones in

CTAC maps of 11 PET/CT patients by soft tissue. Their results

demonstrated that the substitution of bones with soft tissue

results in mean SUV errors of 4% in soft tissues adjacent

to bones and 3% in soft-tissue lesions. A similar study was

conducted by Samarin et al.51 showing an underestimation of

tracer uptake by 11% and 3% in osseous and soft-tissue lesions

adjacent to bones, respectively. Aznar et al. also showed that

the assignment of spongeous bone LACs (0.13 cm−1) to all

bones resulted in <5% quantification bias in soft tissue and

bone lesions.52 For sclerotic and osteolytic spine lesions,

mean SUV underestimations of 16% and 7%, respectively,

were reported.

Ouyang et al.53 assessed PET quantification accuracy of

three-, four-, and five-tissue class MRAC methods using

PET/CT datasets and demonstrated that as the number of

tissue classes increases, absolute quantification errors in

different tissue classes, except the lungs, decrease. Using

Monte Carlo simulation studies, Keereman et al.9,18 also

concluded that at least six-tissue classes (air, lung, soft tissue,

fat, spongious, and cortical bones) should be identified in

MRAC maps to reduce quantification errors to less than 5%.

Similarly, Akbarzadeh et al.54 confirmed that the accuracy of

segmentation-based MRAC improves as the number of tissue

classes increases.

Accurate segmentation of different tissue classes is also

of high importance, especially in the presence of noise and
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partial volume effect in clinical MR images. Keereman et al.18

evaluated the effect of errors in the segmentation of lungs

and cortical bones due to high level of noise and partial

volume effect. They found that up to 20% misclassification

of bone as soft tissue or 10% misclassification of lung as

air yielded errors below 5%. It has also been reported that

the mis-segmentation of air cavities in the head55 and soft

tissue in the abdomen56 can noticeably affect the visual

interpretation of PET images. Catana et al.11 reported that

substituting internal air cavities with soft tissue can introduce

large overestimations (>20%) in adjacent structures. Choi

et al.57 showed that the mis-segmentation of brain ventricles

as air in the three-class UTE-based MRAC maps resulted in

significant underestimation of binding potential ratio in 16

patients suspected to have Parkinson disease. More recently,

Brendle et al.58 evaluated the frequency and impact of tissue

misclassifications, caused by MR image artifacts on PET

quantification and interpretation. An analysis of 100 PET/MRI

studies revealed 276 identified artifacts affecting 21% of PET-

avid lesions located mostly around metal implants (16%),

in the lungs (19%), and outer body contours (31%). The

quantitative analysis showed that attenuation artifacts led

to significant SUV changes in areas with misclassification

of air as soft tissue (i.e., metal artifacts) and soft tissue

as lung. Ladefoged et al.59 showed that inpainting regions

misclassified as air, owing to the presence metal artifacts, with

soft tissue increased mean and maximum SUVs averaged in

the corrected regions across all patients by 52%±11% and

28%±11%, respectively.

2.A.3. Segmentation of nonattenuation corrected
(NAC) PET images

The segmentation of NAC PET images has also been

revisited in the context of PET/MRI.60 Chang et al.,61

proposed a semiautomated iterative PET segmentation

method for whole-body 18F-FDG imaging to identify three

tissue classes (i.e., background air, lung, and soft tissues).

However, tissue classification from NAC PET images is

generally limited to radiotracers that distribute throughout

the body, such as 18F-FDG, and probably will not work

for specific (non-FDG) PET tracers. These techniques have

been extensively employed to reduce truncation and metal

artifacts in MRI-derived attenuation maps, as discussed in

Secs. 3.A and 3.B.

2.B. Atlas-based segmentation, registration,
and machine learning methods

To predict attenuation coefficients on a continuous scale or

segment bone tissue class, current methods rely on either a

number of atlases or template registration to the target subject

or the use of machine learning techniques to train a classifier or

mapping function to segment MR images or convert them into

pseudo-CT images. An appraisal of the different atlas-based

approaches with special emphasis on latest developments

and advances in brain and whole-body imaging is given

below.

2.B.1. Atlas-based and machine learning methods
in brain imaging

Template-based attenuation map generation is commonly

performed through nonlinear warping of a template of

normal subjects to the target patient.62 Templates are usually

created by taking the average of multiple coregistered

brain attenuation maps to represent mean attenuation

coefficients and anatomical variability in a given population.63

Wollenweber et al.64 evaluated the performance of template-

based AC compared to three-class segmentation-based

method in head imaging and concluded that template-

based AC provides adequate PET quantification compared

to methods that do not account for bone.

Template-based approaches rely on a single anatomical

template transformation which may suffer from registration

errors or interpatient anatomical variability. The concept of

utilizing consensus on multiple atlas registration helps to

minimize nonsystematic registration errors. Hofmann et al.28

proposed a method combining prior knowledge available in

the multiple aligned atlas dataset with pattern recognition to

generate patient-specific attenuation maps in brain imaging.

A Gaussian process regression (GPR) is utilized to predict

the substituted CT value for each voxel based on robust

measurement of intensity similarity and spatial closeness of

patches of voxels between the target image and atlas dataset

and thus to minimize the impact of misregistration. Basically,

methods relying on multiple atlas alignment outperform

template-based or single atlas alignment methods owing to

the uncorrelated error cancelation and power of consensus on

multiple aligned atlases.65,66

In a comparative study, Uh et al.65 demonstrated that the

method proposed by Hofmann28 may not be able to provide

significant improvement compared to other atlas methods,

such as arithmetic average of aligned CT atlas images,

questioning its relevance given its high computation time

(∼271 min for a single study). To increase the robustness of

atlas-based methods to misregistration errors, Burgos et al.30

developed synthetic CTs through a multiatlas information

propagation scheme for brain imaging where the MRI-derived

patient’s morphology is locally matched to the aligned dataset

of MRI-CT pairs using a robust local image similarity measure

based on local normalized cross-correlation (LNCC) criterion.

The local matching through morphological similarity enables

the algorithm to find local matches and similar anatomy across

the atlas dataset. Using CT images as reference, the obtained

pseudo-CT images were compared to a segmentation-based

method using an UTE MRI sequence and to a simplified

atlas-based method resulting in mean relative errors of 0.2%,

−11.8%, and 0.8%, respectively. Examples of ground truth CT,

proposed pseudo-CT, best-atlas CT,30 UTE CT, and difference

images are presented in Fig. 1.

Izquierdo-Garcia et al.67 presented an approach for AC

of brain PET data using statistical parametric mapping 8

(8) software taking advantage of both segmentation and

atlas-derived features. Anatomic MR images of 15 subjects

were first segmented into six distinct tissue classes, and then

nonrigidly coregistered using a diffeomorphic approach to
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F. 1. Top row (from left to right): the acquired CT, the pseudo-CT generated by the proposed method, the best atlas CT (baCT), and the UTE CT. Bottom row

(from left to right): the acquired T1, the difference between pCT and CT, the difference between baCT and CT, and the difference between UTE CT and CT.

Reprinted with permission from Burgos et al., “Attenuation correction synthesis for hybrid PET-MR scanners: Application to brain studies,” IEEE Trans. Med.

Imaging 33(12), 2332–2341 (2014). Copyright 2014 by Creative Commons.

generate a MR-CT pair template. Thereafter, for a given

subject, a similar procedure is carried out to coregister the

target MR image to the template and the pseudo-CT image

is constructed by applying the inverse transformations. In

fact, the incorporated segmentation part enriched by the

available information in MR images allows for a more

accurate registration outcome. The quantitative analysis of

the corresponding reconstructed PET images revealed mean

relative errors of 3.9%±5.0% and 2.7%±2.3% for voxelwise

and region of interest-based analysis, respectively.

To generate head attenuation maps for PET AC without

using atlas registration or head template, Chan et al.29

proposed a voxelwise classification method for bone/air

segmentation from MR images using random forest classifier

fed by a bag of features, such as gradient and local image

context extracted from structural MR and uncorrected PET

images. The same idea was evaluated by Yang et al.68 utilizing

conditional random field and image fusion based on dual-

tree complex wavelet transform and extracted features from

uncorrected PET and T1-weighted MR image. These methods

were developed to eliminate the atlas registration step from

the process of pseudo-CT generation to save computation

time. However, a comparative study enabling to evaluate the

performance of these methods against conventional atlas-

based approaches is lacking.

In the context of PET/MRI-guided radiation therapy

planning, Sjölund et al.69 developed a surrogate CT generation

approach using a deformable registration algorithm, known

as the Morphon, enhanced with a certainty mask enabling to

tailor the influence of certain regions in the registration.

Furthermore, for the atlas fusion part, the collection of

deformed atlas CTs is iteratively registered to their joint

mean to build a more similar pseudo-CT to the target

CT. Andreasen et al.31 proposed a patch-based pseudo-CT

generation approach using T1-weighted MR images without

using deformable atlas registrations. In this method, a database

is created with patches of voxels extracted from MR images

together with their corresponding Hounsfield unit values from

aligned CT images. Given an MR image, patches of voxels

are extracted and compared to the database patches based on

MR intensity similarity. A comparison between the proposed

method and Gaussian mixture regression based on dual UTE

scans70 and multiatlas information propagation using T1-

weighted scans30,71 demonstrated a competitive performance

and promising potential for use in MRI-only or PET/MRI-

guided radiation therapy planning of brain malignancies.

2.B.2. UTE machine learning and atlas-based
segmentation in brain imaging

The capability of UTE sequences to provide additional

information to ease the detection of bones along with

machine learning techniques to classify new observations

can potentially yield promising results in terms of attenuation

map determination for brain imaging. Johansson et al.70

developed a Gaussian mixture regression algorithm trained

with features derived from two UTE sequences and spatial

information on a voxel-by-voxel basis to predict continuous

LACs of the head.32 They concluded that the inclusion of

spatial information enhanced the accuracy of the estimated
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pseudo-CT, particularly in small complicated anatomical

regions, such as the inner ear and postnasal cavities. Ribeiro

et al.72 developed a feed forward neural network algorithm

to predict nonlinearly the attenuation coefficients based

on patches of voxels extracted from two UTE sequences

and a template-based AC map of ten transmission PET

scans.

In brain imaging, UTE MRI segmentation is subject to

artifacts and under- or oversegmentation of bones.45 The high

level of noise and weak bone signal (low signal to noise ratio)

are the main drawbacks of UTE imaging. To address this issue,

many researchers used complimentary information present in

an atlas or template. Poynton et al.73 employed a probabilistic

air/soft-tissue/bone atlas from T1-weighted, dual-echo UTE

and coregistered CT images of 13 patients used to train a

classifier that calculates the posterior class probability of

each tissue class. The results showed an improvement over

UTE-based segmentation, especially in the sinus and inferior

regions of the skull. Delso et al.74 proposed a similar approach

for improved bone segmentation of UTE images using certain

empirical rules to reduce the impact of misregistration errors,

metal artifacts, and partial volume effects in MRI/CT training

datasets. The methods described so far required a template

or atlas registration to compensate the uncertainty of bone

identification in UTE images. Roy et al.34 proposed a patch-

based method to obviate the need for atlas registration through

matching the patches of voxels extracted from the target MR

image to the reference dataset. Then, corresponding patches

from the atlas database of CT images are combined via a

Bayesian framework.

Juttukonda et al.33 demonstrated a correlation between

bone intensities in MR and CT images to assign patient-

specific bone attenuation coefficients. The scatter plot derived

from 97 subjects, where each point represents the intensity of

bone tissue in UTE images versus CT number, suggested a

strong sigmoid relationship (R2= 0.95). The proposed pseudo-

CT generation required dual-echo UTE and two-point Dixon

image acquisitions, where bony structures were extracted via

thresholding of the R2 image generated from the UTE echo

1 and 2 images, which resulted in mean Dice coefficients of

0.75±0.1 across 98 subjects for bone and 0.6±0.1 for sinus

air cavities.

2.B.3. Whole-body imaging

The variability and complexity of the human anatomy

and the high level of noise and partial volume effect in MR

sequences used for attenuation correction make the direct

segmentation of bones from MR images a challenging task.

Furthermore, application of UTE sequences for whole-body

imaging is not yet customary owing to the long acquisition

time and susceptibility to artifacts when using a large FOV.

Therefore, the use of atlas registration for prediction of

bone tissue is a common practice in whole-body MRI-guided

attenuation generation.

Due to the large field-of-view, anatomical variability and

moving organs atlas alignment errors are more pronounced

in whole-body imaging. To alleviate this issue, Hofmann

et al.34 proposed a combination of atlas registration and pattern

recognition method similar to the one described earlier for

brain imaging28 where a four-class MRI segmentation-based

attenuation map (air, lung, water, and fat) was used to augment

the robustness of GPR. Arabi and Zaidi38 further improved the

robustness of Hofmann’s method to nonsystematic registration

bias and anatomical abnormalities by exploiting a method to

locally sort atlas images based on their similarity to the

target image. In this way, the atlas images with locally gross

misalignment errors would be discarded from training and

pseudo-CT generation process. Yet, the high computational

time required for elaborating and training the GPR is thought

to be the major drawback of this method.

A time efficient scheme was proposed by Marshall

et al.37 which required only one online image registration

to incorporate bone tissue in whole-body attenuation maps. A

database of 121 CT images was created to match the target

MRI via weighted heuristic measures to find the most similar

CT in terms of body geometry before the atlas registration

step. The similarity metrics consist of factors such as sex,

weight, age, and fat to lean tissue ratio and lung volume.

Then, the most similar CT in the atlas database was nonrigidly

aligned to the target subject. MRI-based attenuation correction

ignoring bone (standard four-class attenuation map) resulted

in relative errors ranging from −37% to −8% in VOIs

containing bone while the inclusion of bone reduced these

errors from −3% to 4%. Paulus et al.75 used a template of

major body bones including left and right femur and hip,

spine and skull to be registered to the target MR image

separately. For the rest of the body, routine Dixon MRI-based

segmentation AC was performed to generate a four-class

attenuation map. This method is also time efficient since it

requires just one template registration.

More recently, Arabi and Zaidi66 implemented and

compared a wide range of atlas-based attenuation map

generation and bone segmentation methods of whole-body

MR images. The accuracy of extracted bones was evaluated

for different algorithms using PET/CT and MR Dixon

images of 23 clinical studies. This included Hofmann’s

method,34 arithmetic mean of whole aligned atlas dataset,65

single template,76 most similar atlas,37 global,77 and local

weighting atlas fusion strategies.30 Local weighting atlas

fusion strategies based on standard image similarity measures

such as the mean square distance and LNCC outperformed

other methods. A representative slice of extracted whole-

body bone along with error distance map obtained using the

aforementioned methods is illustrated in Fig. 2.

Since existing MRI-based attenuation map generation

approaches are not specifically designed for pediatric patients,

Bezrukov et al.78 assessed the impact of inter- and intrapatient

variability of attenuation coefficients and anatomy. The

quantitative accuracy of MRI-based attenuation correction

based on an approach developed by the same authors36 was

evaluated using an adult and pediatric atlas on PET data of

pediatric patients. The use of a dedicated atlas for pediatric

patients resulted in improved attenuation map prediction and

reduced interpatient bias variability.
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F. 2. Representative slice of bone segmentation from MR image along with corresponding error distance map. (A) In-phase MR image, (B) corresponding CT

image, (C) binary image of reference bone, (D) Hofmann’s method (Ref. 34), (E) arithmetic mean of whole aligned dataset, (F) global weighting atlas fusion,

and (G) local weighting atlas fusion. Reprinted with permission from Arabi and Zaidi, “Comparison of atlas-based bone segmentation methods in whole-body

PET/MRI,” in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Seattle, WA, 2014. Copyright 2014 by C IEEE.

So far, atlas-based pseudo-CT generation methods

exhibited superior performance compared to conventional

segmentation-based methods in both whole-body and brain

imaging. Multiatlas registration followed by local weighting

atlas fusion resulted in promising pseudo-CT images and

acceptable PET quantification. However, atlas-based methods

may fail in cases with abnormal anatomy and in the presence

of implants which are very unlikely to be present in atlas

databases. Exploiting advanced segmentation and image

processing techniques together with atlas-based methods can

address this issue to provide more patient-specific attenuation

maps. On the other hand, although the UTE MR sequence

is able to extract bone signal, the high level of noise and

presence of artifacts greatly influence its performance and

application. Moreover, its long acquisition time limits its

usage to only brain or small axial field-of-view (e.g., head and

neck) imaging. However, the capability of the UTE sequence

to provide patient-specific bone extraction makes it a valuable

technique. Reducing its acquisition time and artifacts may

render this approach the method of choice in the future, even

in whole-body imaging studies.

2.C. Emission- and transmission-based methods

With advances in PET detector technology, TOF PET

capability has been introduced in clinical PET/CT and

PET/MRI systems, with the aim of improving image quality

through the higher signal to noise ratio and enhanced

lesion detectability. Following the resurfacing of TOF-

PET, transmission- and emission-based methods have been

revisited for deriving patient-specific attenuation maps in

PET/MRI. In the following, we briefly review current state-of-

the-art algorithms proposed so far for attenuation estimation.

2.C.1. Attenuation estimation using consistency
conditions

Early attempts focused on the direct estimation of

attenuation coefficients from emission data without using any

estimate of the activity map based on the Helgason-Ludwig

consistency conditions for emission data.79 These conditions

state that, in the absence of noise, a given emission data can

only arise under certain attenuation conditions, or conversely

for a given attenuation map; only certain emission data are

possible. Based on the range of consistency conditions of the

TOF attenuated Radon transform, Defrise et al.39 recently

showed that attenuation correction factors can be determined

from TOF-PET data up to a constant scaling factor. They

demonstrated that for all LORs containing activity, emission

data determine the angular and radial derivatives of the Radon

transform of the attenuation map. Rezaei et al.80 extended

this work to 3D TOF PET and only made use of the radial

derivatives to estimate the attenuating volume. Li et al.81

recently improved upon this approach by incorporating prior

MR sinograms into the maximum a posteriori estimation of

the attenuation sinogram from TOF emission data.

2.C.2. Attenuation estimation from only
emission data

Emission-based estimation of attenuation coefficients was

first proposed by Censor et al.82 where an algebraic recon-

struction technique was used to simultaneously reconstruct

attenuation and activity maps. Nuyts et al.83 further refined the

concept of simultaneous maximum likelihood reconstruction

of activity and attenuation (MLAA), in which the activity

and attenuation were alternatively reconstructed using a
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MLEM and a scaled gradient ascent algorithm. The MLAA

algorithm had limited success owing to (i) inherent cross

talk artifacts, i.e., the propagation of activity features into the

attenuation map and vice versa, (ii) the limitations of activity

support, i.e., the LORs that are out of the support of activity

distribution (those without prompt coincidences) provide no

information about the attenuation, and (iii) count statistics,

which determine the level of noise in the estimated attenuation

and activity maps. To reduce the cross talk and noise artifacts,

Nuyts et al. imposed Gaussian tissue preference and Gibbs

smoothness priors on the attenuation estimation.

With the advent of TOF PET/MRI scanners, Salomon

et al.41 imposed the inherent spatial constraint of TOF

on activity estimation and MR anatomical information on

attenuation map estimation within the MLAA algorithm.

Thereby, the noise and cross talk artifacts were substantially

reduced. As reported earlier by the same authors, the

incorporated TOF information enables the reduction of

cross talk artifacts.84 Moreover, in their modified MLAA

algorithm, the attenuation coefficients were estimated over

many anatomical regions obtained from the segmentation of

MRI. However, the segmentation of anatomical MR images is

subject to errors, especially between bones and air in paranasal

sinuses, or soft tissue close to the ribs and vertebrae.

Rezaei et al.40 also demonstrated that TOF can suppress

cross talk in the MLAA algorithm, consequently stabilizing

the joint estimation problem. In addition, consistent with

theoretical findings reported earlier,39 they found that the

reconstructed activity maps are globally scaled, while the

attenuation maps show a position-dependent scaling. Later,

Rezaei et al.85 proposed a maximum likelihood algorithm

that jointly estimates the activity distribution and the

attenuation correction factors (MLACF). This method avoids

the reconstruction of the attenuation map and is robust to

errors in the detector pair sensitivities. Since MLACF does

not estimate the attenuation map, the authors suggested using

prior knowledge about the tracer distribution to correct for the

scale problem. Bal et al.86 studied the scale corrected MLACF

algorithm using 57 FDG-PET/CT brain studies in comparison

with the CTAC method serving as reference. They concluded

that MLACF-based reconstruction can provide images that are

both qualitatively and quantitatively equivalent to CT-based

reconstructions.

Recently, Mehranian and Zaidi87 proposed a MRI-guided

MLAA algorithm for AC in whole-body PET/MR imaging.

The algorithm imposes MRI spatial and CT statistical

constraints on the estimation of attenuation maps using a

constrained Gaussian mixture model (GMM) and Markov

random field smoothness prior. Contrary to Salomon et al.,41

they employed Dixon water and fat MR images, which were

segmented into four known tissue classes, including outside

air, lung, fat, and soft tissue and an unknown MR low-

intensity class corresponding to air cavities, cortical bone,

and susceptibility artifacts. The estimation of attenuation

coefficients over the unknown/known classes was regularized

using a mixture of Gaussians. It was demonstrated that the

modified MLAA algorithm effectively suppresses noise, cross

talk, and scaling problems of the joint estimation problem.

In a companion clinical study,42 the same authors showed

that the four-class MRAC and their proposed MLAA-AC

methods resulted in average SUV errors of −5.4% and −3.5%

in lungs and −18.4% and −10.2% in bones, respectively.

Despite the promise of MLAA-AC, a recent study pertaining

to brain PET/MRI demonstrated that this approach has some

limitations for this particular application and is actually

outperformed by sophisticated atlas-based AC algorithms

which provided the most accurate attenuation maps, and thus

the lowest PET quantification bias.88

2.C.3. Attenuation estimation from emission
and transmission data

Clinthorne et al.89 reported the first study of joint maximum

likelihood (ML) reconstruction of attenuation and activity

images from emission and transmission data. However, these

methods had a limited success as the transmission data are

contaminated with emission data and vice versa.

Based on the capability of TOF technology in the

separation of emission and transmission data,90 Mollet et al.,91

implemented a simultaneous transmission and emission

acquisition on the Philips Ingenuity TF PET/MRI scanner49

using an annulus-shaped transmission source. Despite the

promising results, a companion study of five PET/MRI clinical

datasets demonstrated that the limited TOF resolution of

current PET scanners does not allow for perfect separation of

transmission data from emission data,43 which in turn results

in nonuniformly scaled attenuation coefficients.

As demonstrated by Rezaei et al.,40 the MLAA algorithm

can estimate both activity and attenuation maps up to a

scaling factor, which depends on the initial guess of the

activity and attenuation maps. Furthermore, it was emphasized

that the emission data do not provide information about the

attenuation along the LORs located out-of-activity support.

Panin et al.44 proposed to make use of simultaneous emission

and rotating rod sources transmission TOF data acquisition to

stabilize the solution and solve the scaling and out-of-activity

support problems. Similarly, Watson92 proposed to use sparse

line sources for transmission scanning in combination with

emission data. It was concluded that the use of supplemental

transmission data can significantly improve the accuracy of the

estimated LACs in truncated regions as well as the quantitative

performance of the emission-only MLAA algorithm. More

recently, Rothfuss et al.93 studied the feasibility of using the

inherent background radiation of LSO crystals as transmission

sources, where TOF information is employed to separate

emission and LSO transmission data. The utilization of

this additional information has pertinent implications when

combined with emission data to stabilize and improve the

MLAA algorithm.

2.C.4. Attenuation estimation from scattered
coincidences

For the task of estimating activity and attenuation

distributions from emission data of locally accumulating

radiotracers, the projections that are out of the support
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of the activity distribution (i.e., those without prompt

coincidences but intersecting the patient’s body) do not

directly provide information about photon attenuation.

However, these LORs might contain scattered coincidences

that can provide additional information about attenuation they

have experienced. Recently, Conti et al.94 demonstrated that

scattered coincidences can be used to reconstruct activity

distributions using TOF and energy information. Sun and

Pistorius95 proposed a generalized scatter reconstruction

algorithm to extract the activity distribution using both true

and scattered coincidences by considering the limited energy

resolution of PET detectors used in clinical practice. More

recently, Berker et al.96 proposed a scatter-to-attenuation

backprojection to reconstruct PET attenuation coefficients

from scattered-photon energies in the range of 248–478 keV.

Their simulation results suggested that the attenuation map

can be derived in the case of perfect spherical symmetry of

attenuation and activity distributions as well as attenuation

outside of the activity support.

3. CHALLENGES AND POTENTIAL SOLUTIONS

Section 2 focused on the various strategies followed

to derive attenuation maps for PET attenuation correction

using the information provided by MR images. However, a

number of limitations and challenges, arising mostly from

the inherent characteristics and constraints of MRI, have

a significant impact on the accuracy of attenuation map

derivation and PET quantification. Body truncation, metal and

respiratory artifacts, MR coils attenuation, and patient-specific

attenuation characteristics are among the most important

challenging tasks. The technical aspects of these issues and

the strategies developed to address them are discussed in Secs.

3.A–3.D.

3.A. MRI truncation compensation

The MRI transaxial FOV is limited owing to the

deterioration of the homogeneity of the main magnetic field

(B0) and linearity of gradient field, especially at the edge of the

FOV. Therefore, the truncation of body organs at the edge of

the FOV can occur in obese patients, which if not compensated

for, can adversely affect MRAC of PET data.97 Schramm

et al.,98 reported that arm truncation artifacts in 19 PET/MRI

patient datasets led to an average SUV underestimation of

less than 6% for VOIs defined in the trunk, while over the

arms the errors were in the range of 16%–57%. Overall,

three general approaches have been proposed to compensate

for MRI FOV truncation including PET image segmentation,

emission-based, and pure MRI-based approaches.

3.A.1. PET image segmentation

Hu et al.16 proposed to compensate for truncation artifacts

of three-class MRAC attenuation maps using the body contour

delineated from uncorrected PET images. To better delineate

the body contour, Delso et al.97 proposed to segment PET

images preliminary corrected for attenuation using truncated

attenuation maps. Schramm et al.98 followed a similar

approach and employed a 3D contour identification using an

automatically determined threshold. Using a TOF PET/MRI

system, Qian et al.99 demonstrated that the segmentation of

NAC TOF PET images results in more accurate body contour

delineation. However, thresholding-based separation of body

contour and background air, even when using NAC TOF

PET images, is sensitive to intensity variations and threshold

selection. Blaffert et al.100 compared threshold-based and

gradient-based segmentation of body contour. They concluded

that gradient-based segmentation results in better separation

of the arms from the body and, thus leading to more accurate

truncation compensation (Fig. 3). However, they found that

the correction of truncated breasts is still challenging since

in most NAC TOF PET images, air-breast tissue contrast is

lower than air-to-arms tissue contrast.

3.A.2. Emission-based truncation compensation

Nuyts et al.101 proposed to compensate the missing part of

the MRI-derived attenuation map from non-TOF emission

data using a constrained MLAA algorithm. The authors

evaluated this method using five artificially truncated 18F-FDG

PET/CT studies and demonstrated that SUV underestimation

errors were reduced from 20% to 7% for all voxels with SUVs

F. 3. PET/MRI truncation compensation using PET segmentation. (A) trun-

cated T1-weighted MR image, (B) three-class MRAC map, (C) NAC TOF PET

image, (D) body contour derived from segmentation of NAC TOF PET image,

(E) overlap of the attenuation map and the identified truncation regions, and

(F) final truncation compensated attenuation map. Adapted with permission

from Blaffert et al., “Comparison of threshold-based and watershed-based

segmentation for the truncation compensation of PET/MR images,” Proc. SPIE

8314, 831403-1–831403-12 (2012). Copyight 2012 by SPIE.
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larger than 1. In the MRI-guided MLAA algorithms described

in Ref. 87, the authors suggested to segment the uncorrected

or preliminary corrected PET images to identify the truncated

regions in MR images. However, as mentioned earlier, the

performance of the MLAA algorithm is dependent on the

tracer biodistribution. For specific tracers with local uptake,

emission-based techniques might have limited success.

3.A.3. Extended FOV MRI

The B0 inhomogeneities and gradient nonlinearities at

the edges of the MRI transaxial FOV usually result in

geometrically distorted or truncated body contours. To address

these effects, Blumhagen et al.102 proposed a method to

extend the FOV using B0 homogenization with gradient

enhancement (HUGE). The distortion artifacts outside the

normal MRI FOV were noticeably reduced by this approach

without any hardware modifications. The authors compared

the performance of the HUGE algorithm with the MLAA

algorithm using PET/MRI clinical studies.103 Applying the

HUGE method extended the FOV of the Dixon MRI

from 50 to 60 cm, but at the expense of increased MRI

data acquisition time. Overall, both truncation compensation

methods improved the accuracy of derived attenuation maps

with a trade-off of increased scanning time using the HUGE

method and increased postprocessing time using the MLAA

algorithm. The main advantage of HUGE over MLAA is

that MRI-based FOV extension is independent of tracer

distribution and kinetics.

3.B. MR susceptibility and respiratory artifact
reduction

Void signal caused by metallic implants (blooming

artifacts) can give rise to segmentation errors in segmentation-

based MRAC methods as well as imperfect LAC prediction

when using atlas-based learning techniques. It has been

reported that the resulting erroneous attenuation map can lead

to substantial SUV underestimation by about 50% in the case

of hip prosthesis36 and >100% in dental filling cases.104 The

correction of MR susceptibility artifacts has been explored

using the following approaches.

3.B.1. Void regions segmentation

Ladefoged et al.105 proposed to semiautomatically segment

the signal voids caused by endoprotheses and to fill them with

soft-tissue attenuation coefficients. It was demonstrated that

the resulting attenuation maps can substantially reduce the

underestimation of the SUVs. Schramm et al.106 proposed

an automatic approach to segment the body contour from

preliminary attenuation-corrected PET images and T1-

weighted MR image. The resulting body contour is filled

by soft tissue, thereby isolated signal voids and particularly

the artifacts connecting the background air to soft tissues

and lungs are corrected. The lungs are then segmented using

an intensity thresholding approach. Although simple filling

of voids by soft-tissue attenuation coefficient is a first-line

correction method, the authors reported a residual SUV bias

of about −13% on average.

3.B.2. Atlas-based registration and emission-based
estimation

Bezrukov et al.36 proposed an atlas-based susceptibility

artifact correction technique, in which the possible position

of artifacts is identified using an atlas of artifact regions.

The attenuation coefficients of the identified positions are

estimated using an atlas-based registration method. Their

results indicated that filling the voids with soft tissue reduces

the quantification errors in lesions located within or near

the artifacts from about −50% to −15%, while accounting

for bones in the artifactual regions reduces the errors to

<1%. Another approach for proper correction of artifacts

that also accounts for the attenuation coefficients of metallic

implants is the emission-based estimation of the attenuation

coefficients using MLAA type of algorithms. Figure 4

shows the performance of the MLAA-GMM algorithm87

in terms of estimating attenuation maps at 511 keV of a

patient with unilateral hip prosthesis. As shown, the in-phase

F. 4. The compensation of metal induced susceptibility artifacts in MRAC maps using the MRI-guided MLAA algorithm described in Ref. 87.
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MR image and the resulting four-class MRAC attenuation

map suffer substantially from the blooming artifacts. The

MLAA algorithm, initialized with the four-class MRAC map,

however, is capable of not only filling the void regions in an

acceptable way but also estimating the attenuation coefficients

of the metallic implant. Therefore, the results demonstrate

that emission-based AC methods are promising for proper

attenuation correction of PET images in the presence of

extensive MR metallic artifacts.

3.B.3. Optimized MRI data acquisition

The dephasing of MR signal caused by metallic

implants can be partially avoided using spin-echo and

UTE sequences. In spin-echo sequences, 180◦ refocusing

RF pulses are applied to reverse the dephasing induced

by magnetic field inhomogeneity, while in UTE sequences,

the MR signal is sampled immediately after RF excitation,

so that the magnetization does not have enough time

to be dephased.17,107 Several techniques have also been

developed for minimizing metal artifacts for fast spin-echo

sequences, such as slice encoding for metal artifact correction

(SEMAC) and multiacquisition with variable resonance image

combination (MAVRIC).17,108 Recently, Burger et al.109,110

utilized diagnostic MAVRIC images to compensate for dental

metal artifacts induced in Dixon-based attenuation maps. They

demonstrated that accurate attenuation maps can be derived

using this technique, yet at the expense of a considerably

increased acquisition time.

Respiratory-phase mismatch between PET and MRI/CT

attenuation maps is known to be another source of error

in PET quantification. Owing to this mismatch, white-band

banana artifacts usually occur around the heart and liver dome

in PET images due to undercorrection for attenuation.111 It

has been shown that these artifacts result in errors of up to

24% in tracer uptake of liver tumors.112 Methodologies for

the correction of this type of artifacts can be classified into

two categories which are briefly discussed below.

3.B.4. 4D attenuation map generation

Buerger et al.112 explored the possibility of deriving

4D MRAC maps for AC of respiratory gated PET data.

Respiratory synchronized MRI acquisitions were used to

gate PET data acquisition and to derive motion vector

fields. The gated data were then reconstructed using their

corresponding phase-matched attenuation maps with respect

to a reference respiratory phase. Since 4D MRI acquisition

is time-consuming, Fayad et al.113 proposed to derive motion

fields from gated nonattenuation corrected PET images and to

generate 4D MRI attenuation maps from end-expiration static

MRI volumes. They demonstrated the potential of using 4D

NAC PET images to derive 4D MRAC attenuation maps from

a single static MRI volume.

3.B.5. Emission-based attenuation/motion estimation

Recently, Mehranian and Zaidi114 investigated the potential

of emission-based estimation of lung attenuation coefficients

of four-class MRAC attenuation maps. They demonstrated

that the proposed constrained MLAA algorithm can

compensate for respiratory-phase mismatch as well as lung

mis-segmentation errors, thus improving SUV quantification

of liver and lung lesions. Rezaei and Nuyts115 proposed a joint

reconstruction and registration framework of gated PET data.

In this framework, the gated PET activity and attenuation

images are jointly reconstructed using the MLAA algorithm

and registered to a reference frame using Demons registration

algorithm. Using simulations, the authors demonstrated that

this approach reduces the interframe registration error between

activity and attenuation maps.

3.C. MR coils and other attenuating devices

Besides patient’s body, several other objects such as RF

coils, patient bed and patient positioning, and immobilization

devices can contribute to photon attenuation and scattering in

the FOV of PET/MRI systems. Ignoring surface RF coils in

the attenuation map may lead to tracer underestimation of 19%

(Ref. 116) and 15.5% (Ref. 117) in brain and whole-body

PET imaging, respectively. Fürst et al.118 reported that the

patient’s table results in 19% loss of true coincidences on the

integrated Biograph mMR PET/MR system.

The attenuation of fixed objects, such as patient bed,

body, and rigid coils (i.e., head/neck, spine, and torso) can

be measured using transmission sources (68Ge or 137Cs)119

or CT scans120 and incorporated into attenuation maps as

templates. The patient table and coil templates generated from

transmission scans are more accurate than those generated

from CT scans owing to the lack of streaking artifacts

caused by high-density metallic components.121 Moreover,

the bilinear energy mapping of CT to attenuation coefficients

at 511 keV for nonbiological materials might not be valid.116

In this regard, Paulus et al.,122 optimized the bilinear CT

energy mapping procedure of hardware PET/MR components

through the calibration of CT numbers of these components

using transmission scanning and reported a reduction of SUV

bias in the NEMA phantom from 3.1% to −0.5%.

The inclusion of flexible surface coils is more challenging

because of their patient-specific application, positioning, and

orientation. To determine the position of body matrix coil,

Paulus et al.123 applied two approaches: (i) cod liver oil

capsules were attached to the surface of the coil as MR

visible markers and (ii) UTE sequence was employed to

image the coil. In the first approach, MR markers were rigidly

registered to the same markers in the CT image of the coil

using landmark-based registration. In the second approach,

UTE images showed only parts of the coil’s plastic housing

and image registration to CT template was more difficult to

achieve. Eldib et al.124 studied several nonrigid registration

algorithms to correctly deform CT templates to match MR coil

markers. They found that the V-spline registration algorithm

produced the most accurate registration compared to B-spline,

thin-plate spline, and elastic body spline methods. Kartmann

et al.117 presented an approach for automatic localization of

multiple RF surface coils in whole-body PET/MRI. In this

approach, different marker patterns were used to distinguish
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multiple partly overlapping RF surface coils. Nonrigid B-

spline registration was used to register the corresponding

markers on the CTAC template to the identified MR markers.

The presented algorithm reliably reduced PET quantification

errors due to overlooking the coils in the attenuation maps

from 15.5% to 4.3%. Figure 5 shows the MR imaging setup

of a subject with three overlapping RF surface coils together

with coil CT templates overlaid on the four-class MARC

map.117

Another approach for estimating the attenuation of MR

invisible objects present in the FOV of PET/MRI scanners is to

use emission- or transmission-based methods. In a simulation

study, Nuyts et al.101 demonstrated that the MLAA algorithm

not only compensated for MR truncation artifacts but also

retrieved six rods placed in the front of a torso phantom.

In an experimental study, Rezaei et al.40 showed that the

MLAA algorithm can partially estimate the patient table.

These approaches are promising; however, their robustness

still needs to be characterized in different situations using

large clinical databases.

F. 5. Attenuation correction of flexible RF coils. Top: MR imaging setup

of an exemplary volunteer with three overlapping RF surface coils. Bottom:

combined four-class attenuation map of the volunteer with the registered

CT-based attenuation maps of the overlapping RF coils. The dashed lines

show the axial location of transverse slices. Adapted with permission from

Kartmann et al., “Integrated PET/MR imaging: Automatic attenuation cor-

rection of flexible RF coils,” Med. Phys. 40(8), 082301 (14pp.) (2013).

Copyright 2013 by AAPM.

The standard coils currently employed on clinical MRI

systems have not been designed to have low or zero

photon attenuation but to provide the maximum signal-to-

noise ratio in MR imaging. In PET/MR systems, these

coils should be redesigned to have low photon attenuation

without compromising their performance. Saha125 redesigned

the whole-body RF coil in a 3T simultaneous PET/MR system

with minimal use of high density RF components in the PET

FOV, thereby producing a zero PET attenuation whole-body

coil. Dregely et al.126 also developed a dedicated breast

MR coil for the mMR scanner, in which PET attenuation

was reduced by moving the high-density components, such

as preamplifiers, away from the imaging FOV. However, to

account for the overall photon attenuation and scattering

in the coil, a CT-based template of the coil was acquired

and coregistered to the coil’s position for incorporation in

four-class MRAC maps.

3.D. Inter/intrapatient variability of LACs

In segmentation-based Dixon and UTE MRAC methods,

constant predefined attenuation coefficients are assigned to

each tissue class. Therefore, intra- and interpatient variability

of the attenuation coefficients is ignored, which can lead

to non-negligible SUV errors especially in the lungs and

bones. Atlas-based machine learning and emission-based AC

methods are capable of providing more accurate estimates of

patient-specific LACs of lungs and bones using the additional

information available in atlas and emission data.

3.D.1. Lungs

Among the various tissue classes defined in segmentation-

based MRAC methods, the lungs have the largest in-

terpatient LAC variability with a standard deviation of

0.004 cm−1.18,48,127 In fact, the pulmonary parenchyma and

vasculature vary considerably among patients by as much as

30%.128 As such, different LACs have been assigned to lung

tissue class, ranging from 0.018 to 0.035 cm−1.26,129 It has

been reported that the assignment of a LAC of 0.024 cm−1 to

the lungs produces relative errors of 13.5%±10.7% (Ref. 34)

and 7.7%±3.0%.37 Conversely, the assignment of a LAC of

0.018 cm−1 to the lungs produces PET quantification bias

of 1.9%± 2.3% (Ref. 26) and −0.5± 13.3% (Ref. 56) in

lung lesions and normal lung tissues. A small number of

studies have focused on the derivation of patient-specific lung

LACs considering lung tissue heterogeneity. The techniques

reported so far can be classified into three categories: (i)

prediction of mean lung LACs from MRI intensity and/or

lung volume, (ii) atlas-based registration and learning, and

(iii) emission-based estimation of lung LACs.

Marshall et al. established a linear mapping function

between MRI and CT image intensities to predict the mean

of lung LACs.130 Lonn and Wollenweber131 derived a linear

relationship between lung volume and mean LACs. Both

studies proved the improved performance of these approaches

in terms of lung LAC prediction. However, as a general rule,

the MRI-to-CT mapping function requires a standardized
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MRI protocol and is influenced by the presence of respiratory

motion, diamagnetic susceptibility, and flow-related artifacts,

while the volume-to-LAC prediction model does not take

into account the impact of other factors, such as gender, age,

pathological conditions, and body positioning.

Atlas-based registration and machine learning techniques

can, in principle, predict intrapatient variability of lung

LACs. In the technique proposed by Hofmann et al.,34 local

structures of MR images and their corresponding CT atlases

are incorporated into a GPR for prediction of LACs. In spite of

promising results achieved for soft tissue and bony structures,

this method exhibited large errors in the lungs owing to

the insufficient signal produced by the lungs when using

conventional MRI sequences. Recently, Arabi and Zaidi38

embedded the correlation between lung volume and lung

mean LACs into the GPR kernels and demonstrated that their

improved method reduces the lung SUV bias from 8.9%

(using Hofmann’s approach) to 4.1%.

Emission-based derivation of lung LACs has also been

explored by a few groups. Berker et al.132 proposed a

constrained TOF-MLAA algorithm for the estimation of

mean lung LACs in five-class MRAC maps (including bone

as the fifth class). The results obtained using Monte Carlo

simulated PET/CT studies showed a high PET quantification

bias, because of out-of-field accidental coincidences.

An alternative approach was investigated by Mehranian and

Zaidi114 using a MLAA algorithm constrained by a lung tissue

preference prior for patient-specific lung LACs estimation of

19 PET/CT clinical studies. Their results showed that the

standard four-class MRAC method resulted in an average

SUV error of −5.2%±7.1% in the lungs, while the proposed

MLAA algorithm reduced the error to −0.8%±6.3%. Figure 6

compares the CTAC, MRAC, and MLAA attenuation maps

of a patient whose lungs have a congested structure and

high density gradients. As shown, the MLAA algorithm can

accurately retrieve the lung density gradient in a continuous

fashion, thus providing more accurate attenuation correction.

3.D.2. Bones

In segmentation-based methods, where bones are

segmented as an additional tissue class using either UTE

sequences or atlas-based approaches, the selection of

appropriate bone tissue LAC is a subject of debate (see Table 2

in Ref. 7 for details) as different LACs have been used for the

skull (range of 0.116–0.172 cm−1) and whole-body cortical

and spongious bones (range of 0.11–0.15 cm−1). Schleyer

et al.133 demonstrated that the assignment of soft-tissue LAC

to bones produces a lower SUV error than the assignment of

cortical bone LACs, mainly because spongious bones have

LACs of around 0.11 cm−1.18 In brain UTE imaging, Catana

et al.,11 evaluated the impact of eight different bone LACs

ranging from 0.136 to 0.180 cm−1 on PET quantification.

Their results suggested that the best bias-variability trade-off

in PET quantification was achieved by assigning bone LACs

of 0.143 and 0.151 cm−1, as previously reported in Ref. 21.

Atlas-based AC methods can potentially estimate intrapa-

tient variability of bone LACs by, for example, differentiating

cortical bone in the skull from spongy bone in the vertebrae.

Making use of the best atlas or local weighting of sorted

atlases30,36 can, in principle, capture the interpatient variability

of the predicted bones.

Navalpakkam et al.134 employed a UTE-based machine

learning technique to predict continuous bone LACs. Their

results showed that assigning a constant LAC value of

0.151 cm−1 to bone tissue class resulted in 4.2% SUV

overestimation, while the continuously predicted bone LACs

resulted in errors of 2.2%. Emission-based approaches are also

F. 6. Comparison of the attenuation maps of the standard four-class MRAC and the MRAC improved by the MLAA algorithm over the lungs with the reference

CTAC maps in lung displaying windows. Adapted with permission from A. Mehranian and H. Zaidi, “Emission-based estimation of lung attenuation coefficients

for attenuation correction in PET/MR,” Phys. Med. Biol. 60(12), 4813–4833 (2015). Copyright 2015 by IOP.
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promising for estimation of patient-specific bone attenuation

coefficients. A recent study reported a mean LAC for bone

derived from CT images of five PET/CT/MRI datasets of

0.118 cm−1, while the MLAA-GMM algorithm estimated

a mean value of 0.104 cm−1, which reduced the bias

compared to the standard four-class MRAC method neglecting

bone.42

3.D.3. MRI contrast agents

In contrast-enhanced MR imaging, the administration of

small molecular weight paramagnetic contrast agents can

have an impact on PET attenuation correction in PET/MRI.

In experimental phantom studies, Lee et al.135 evaluated the

effects of MR contrast agents on PET quantification using

different concentrations of gadolinium-based contrast agents

on breast-cancer patients. Their results revealed that clinically

relevant concentrations of MRI contrast media (<0.2 mmol)

have negligible effects on the interpretation and quantification

of PET images.

Lois et al.136 also evaluated the effect of oral and

intravenous MRI contrast media on PET quantification

in PET/MRI. The results of CT and PET transmission

measurements showed that clinically relevant concentrations

of MRI contrast media have similar mean linear PET

attenuation coefficients as water. Therefore, the administrated

contrast agents did not result in noticeable quantification

errors in the corresponding PET images. However, it was

demonstrated that attenuation map mis-segmentation errors

might occur after ingestion of superparamagnetic iron oxide

(SPIO)-based contrast agents.

4. CURRENT TRENDS AND OPPORTUNITIES

4.A. Impact of time-of-flight on erroneous attenuation
correction

During TOF PET image reconstruction, the image voxels

are locally updated; therefore, error propagations are reduced

in proportion to TOF timing resolution, while in non-TOF

PET the propagated errors are proportional to the patient

size.137

Wollenweber et al.138 evaluated the effect of excluding

an anterior array surface coil from the MRAC maps on

PET quantification using TOF and non-TOF reconstructions.

They found that with TOF information, the SUV errors

due to neglecting the coil attenuation are slightly reduced

from −8.2% to −7.3%. Davison et al.139 evaluated the

impact of TOF on reduction of PET quantification errors

induced by metal artifact voids in MRAC maps of the

TOF PET/MRI SIGNA system (GE Healthcare, Waukesha,

WI) with nominal TOF time resolution of <400 ps.140 It

was found that the TOF capability significantly reduces the

artifacts. The percentage error reduction with TOF ranged

from 21% to 60% for medium-sized artifacts simulated in the

maxilla and the sternum, respectively. Another study reported

that TOF information improves image quality and diagnostic

interpretation of PET images in the presence of attenuation

artifacts.141

Mehranian and Zaidi142 also studied the impact of TOF

PET image reconstruction on the reduction of MRAC

attenuation errors. Their results showed that non-TOF MRAC

resulted in an average error of −3.4% and −21.8% in the lungs

and bones, respectively, whereas the TOF reconstructions

reduced the errors to −2.9% and −15.3%, respectively.

Simulation studies also showed that as TOF time resolution

improves, quantification errors are substantially reduced

(Fig. 7). It was concluded that MRI-guided attenuation

correction should be less of a concern on future TOF PET/MR

scanners with improved timing resolution.

4.B. Advances in ultrashort and zero echo time MRI

Ultrashort echo time MRI sequences have been developed

to depict tissues with low proton density and short T2

relaxation time, such as the lung and cortical bone. However,

the acquisition of high-resolution UTE images is time-

consuming, typically around 6 min in 3T brain imaging.12

The acquisition time can be reduced by acquiring data with

a coarser resolution, but this would lead to segmentation

and learning errors for the task of attenuation correction.

Recent attempts for accelerating UTE data acquisition focus

on k-space undersampling in the context of CS and pMRI,

or the combination of both.143 Li et al.,144 described a 3D

F. 7. Bias maps between PET image reconstructed by the four-class MRAC and CTAC maps without TOF and with different TOF resolutions in a whole-body

phantom simulated from a clinical study. Adapted with permission from A. Mehranian and H. Zaidi, “Impact of time-of-flight PET on quantification errors in

MRI-based attenuation correction,” J. Nucl. Med. 56(4), 635–641 (2015). Copyright 2015 by SNMMI.
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F. 8. High-resolution zero TE image of the head in linear (top) and inverse logarithmic (bottom) scale. Reprinted with permission from F. Wiesinger et al.,

“Zero TE MR bone imaging in the head,” Magn. Reson. Med. 75, 107–114 (2015). Copyright 2015 by John Wiley and Sons.

CS UTE sequence with hybrid-radial encoding strategy and

demonstrated the feasibility of their technique for achieving an

acceleration factor of 10. Hu et al.145 studied the acceleration

of UTE scans through k-space sampling optimization. In

this work, the angular sampling rate of 3D radial k-space

trajectories was reduced from 100% to 25% for a series of

UTE sequences with TEs in the range of 0.1–2.3 ms. The

resulting scan times on the Philips 3T Achieva MRI system

were in the range of 172 to 43 s. They demonstrated that

high-quality bone-enhanced images can be generated using

the UTE sequence with k-space undersampling as low as 25%

(acceleration factor of 4) while preserving bone-air contrast

at the cost of a minimal increase of noise level.

Aitken et al.14 proposed to combine CS and sensitivity

encoding146 pMRI for accelerating dual-echo UTE by factors

of 2–16. Their results showed that there is a good agreement

between the fully sampled and undersampled maps with

undersampling factors of up to 8 (scan time of 53 s). For

higher acceleration, the contrast between bone and soft tissue

was deteriorated leading to bone-air misclassification during

the generation of MRAC maps. The sampling pattern in

radial UTE sequences, however, does not meet sampling

requirements of pMRI techniques, such as SENSE. Therefore,

advanced non-Cartesian image reconstruction algorithms are

required. Johansson et al.15 studied two non-Cartesian parallel

image reconstruction algorithms for the reconstruction of

undersampled radial UTE and GRE data of 23 head datasets

by factors of 3–30. The authors reported that for acceleration

of up to a factor of 5, acceptable pseudo-CT images can be

obtained by the reconstruction methods.

Promising advances were recently reported in the

development of zero time echo (ZTE) sequences for imaging

of short T2 structures in which signal readout starts

instantaneously upon excitation leading to a nominal TE

of zero.147 Wiesinger et al.,148 investigated a PD-weighted

ZTE sequence for visualization and segmentation of the

skull. In contrast to dual-echo UTE sequences, which

mostly explore T2 time differences, the presented PD-

weighted ZTE takes advantage of PD differences. Therefore,

it eliminates the application of long T2 suppression methods.

The authors studied standard and high-resolution protocols

with acquisition times of about 3 and 6 min, respectively.

Figure 8 shows a representative high-resolution ZTE and

log-scaled images of the head.

Delso et al.149 evaluated the feasibility of PD-weighted

ZTE imaging for skull segmentation of 15 clinical studies

acquired on a trimodality PET/CT-MR system. Quantitative

evaluation based on the Jaccard distance between ZTE and

corresponding CT bone masks showed improved performance

of ZTE over dual-echo UTE by achieving overlap distances

over the entire head of 38%–63% compared to 47%–79%.

It was found that contrary to UTE, the presence of tendons

on bone masks obtained with ZTE was minor. However, they

reported remaining misclassifications at air/tissue interfaces,

i.e., nasal cartilage and inner ear as in UTE.

Lung tissues are characterized by low PD and fast decaying

signal. Recently, Johnson et al.46 demonstrated the feasibility

of free-breathing 3D radial UTE whole lung imaging. Radial

undersampling and eight-channel pMRI were used to reduce

scan time to 5.5 min. Gibiino et al.150 studied a free-breathing

3D ZTE approach for visualization of lung parenchyma and

vessels. They also demonstrated that high-quality images of

lung parenchyma free from blurring and eddy-current artifacts

can be obtained using ZTE in less than 6 min.

5. CONCLUDING REMARKS AND OUTLOOK

5.A. Technical aspects of MRI-guided attenuation
correction in PET/MRI

The generation of accurate and patient-specific attenuation

maps in whole-body PET/MRI is proving to be a

challenging task. In this work, we critically reviewed

the tremendous efforts carried out during the last decade
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T III. Comparison of pros and cons of the different categories of MRAC

techniques used in PET/MRI.

Segmentation-

based

Atlas-

based

Emission-

based

Computation speed +++ + —

Simplicity and robustness +++ + +

Patient-specificity of lung LACs — + ++

Patient-specificity of bone LACs — ++ ++

Specific data requirement — + +

MR truncation compensation — — ++

Coil attenuation estimation — — +

MR susceptibility artifact

reduction

— + ++

Respiratory artifact reduction — — +

for developing solutions and algorithms to address these

challenges. We categorized the MRAC algorithms into three

generic groups: segmentation, atlas registration, and learning

and emission/transmission-based methods. The principles,

algorithmic implementations, and recent advances in each

category of methods were then elaborated. Each category

of techniques has its own advantages and drawbacks

from different standpoints and considering the various

aspects.

Table III (inspired from Ref. 8) compares the general pros,

cons, and potential of the three categories of techniques.

Owing to their time-efficacy, simplicity, and robustness,

segmentation-based MRAC is currently the method of

choice implemented on virtually all current commercial

PET/MRI scanners. In fact, robustness is one of the main

prerequisites for the clinical adoption of an attenuation

correction technique to guarantee accurate diagnosis and

interpretation of PET findings. Since the introduction and

wide adoption of segmentation-based MRAC methods on

hybrid clinical PET/MRI systems (Philips Ingenuity and

Siemens mMR PET/MRI scanners employ three-class49 and

four-class151 MRAC, respectively), a number of studies have

shown that their use on commercial PET/MRI systems

provides images with similar or even improved diagnostic

accuracy as PET/CT imaging.152,153 However, these methods

have some limitations and drawbacks, including reduced

PET quantification accuracy in lesions located in/close to

bones, lungs, and in regions presenting with artifacts. Czernin

et al.154 demonstrated comparable diagnostic performance of

PET/MRI and PET/CT imaging based on clinical assessment

of more than 900 patient studies. Since MRI is the modality

of choice for providing the anatomical and functional

information required by a number of oncological indications,

PET/MRI would be a reasonable option provided the duration

of imaging protocols and associated cost are kept to an

acceptable level. New insights into disease phenotypes

and biology can be provided by the complementary

information imparted by hybrid PET/MR imaging. So far,

it is becoming clear that PET/MRI presents diagnostic

advantages in bone metastases and in prostate cancer, whereas

it is outperformed by PET/CT in the assessment of lung

nodules.155

On the other hand, atlas-based and emission-based methods

are promising in terms of deriving more accurate attenuation

maps, thus improving PET quantification. To provide an

overall picture of the performance of these methods, Fig. 9

compares the attenuation maps of a representative clinical

study produced using the segmentation-based four-class

technique with atlas- and emission-based algorithms as

F. 9. Comparison of the attenuation maps obtained by the four-class segmentation-based method (Ref. 26), local weighted atlas fusion (Ref. 38), and a

MRI-guided emission-based method (Ref. 87). Adapted with permission from Mehranian and Zaidi, “Clinical assessment of emission- and segmentation-based

MRI-guided attenuation correction in whole body TOF PET/MRI,” J. Nucl. Med. 56(6), 877–883 (2015). Copyright 2015 by SNMMI.
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compared to the CT-derived attenuation map serving as

reference. As can be seen, atlas- and emission-based AC

methods have successfully predicted/differentiated bones and

air tissues compared to the standard four-class segmentation-

based method. However, these two methods are still in

their infancy and require extensive testing and in-depth

clinical assessment to improve their robustness and efficacy.

For instance, the performance of atlas registration-based

methods depends on the collectivity of the MRI/CT training

set and the efficiency of the learning algorithm. The

performance of emission-based methods depends on TOF

timing resolution and the PET tracer biodistribution. In

brain imaging, several studies demonstrated that atlas-based

segmentation or registration techniques can properly segment

or predict bones.30,70 Our ranking of patient-specificity of

emission-based AC methods for lung and bone LACs is

conservative as they are merely based on a few recent42,116

studies showing the high potential of these methods for the

derivation of lung LACs. However, further studies are required

to demonstrate the performance of these AC methods for

different tracers, cohorts of patients, and TOF resolutions.

In fact, the performance of emission-based AC methods in

deriving bones should be ranked conservatively based on

current studies, since its performance is highly dependent

on the TOF resolution, count level, and activity distribution.

In addition, we conservatively ranked respiratory artifact

reduction of emission-based AC methods. Indeed, evaluation

and comparison with 4D attenuation correction are needed to

demonstrate the potential of emission-based AC methods for

this task.

In whole-body imaging, the combination of segmentation-

based and atlas-based registration showed promising perfor-

mance compared to that achieved by each method alone.36 The

combination of segmentation-based and lung emission-based

attenuation correction has also been investigated showing

a high potential of emission-based methods in deriving

patient-specific lung LACs.114 The results of comprehensive

comparative evaluation studies can be exploited to come up

with novel MRAC strategies taking advantage of the benefits

of each technique.

MRI transaxial FOV truncation compensation through

TOF NAC PET image segmentation or the MLAA

algorithm is among the most promising approaches. Further

investigation is still required to evaluate the efficiency

and computational complexity of the two approaches.

The attenuation coefficients of fixed and flexible objects

(patient table, body coils, surface coils, etc.) are currently

best accounted for using premeasured attenuation maps of

fixed parts and deformable registration of templates for

flexible parts.117 Although emission-based algorithms can,

in principle, estimate such attenuating objects, it remains

to be demonstrated whether these techniques can accurately

and completely estimate these objects given that they might

have partial support of activity. As elaborated in this work,

emission-based methods look promising for the correction

of metal susceptibility artifacts by estimating the high

attenuation coefficients of the metallic implants, which is

not feasible using atlas-based registration techniques. On

the MRI side, there have been some promising pulse

sequence developments that can mitigate and reduce the

extent of metal blooming artifacts. For the compensation

of respiratory-phase mismatch between MRAC maps and

PET images, two approaches are currently possible: (i)

acquisition of 4D attenuation maps and (ii) simultaneous

reconstruction of activity and attenuation. Emission-based

methods are, however, as computationally intensive as atlas-

based registration methods or even more. This further

motivates the combination of these advanced methods with

fast segmentation-based techniques. However, additional

investigation is still required to further improve the accuracy

and robustness of these attenuation correction methods to

pave the way for their translation into clinical PET/MRI

systems.

As an outlook, we believe that potential exciting

developments to achieve accurate PET attenuation correction

in PET/MRI, thus enabling improved PET quantification,

can be broadly summarized in the following items: (i)

The most promising attenuation correction methods will

likely be achieved by hybrid techniques combining the

three categories of MRAC methods to take advantage of the

positive aspects of each class of methods. (ii) Technological

advances in time-of-flight PET as well as U/ZTE MRI

sequences will progressively continue to, respectively, provide

opportunities in mitigating the adverse effects of inaccurate

attenuation correction and deriving more accurate attenuation

maps.

During the next decade, we shall witness further

developments in PET detector technology and translation of

digital silicon photomultipliers with new detector modules156

from laboratory and preclinical settings into the clinical

arena, assuring improved TOF capability and thus attenuation

correction errors to an acceptable level. In addition, emission-

based AC methods, which rely on information available in

PET data to estimate attenuation maps, will show more

promise as the TOF time resolution of PET scanners improves.

With ongoing developments in instrumentation, we believe

that a TOF PET time resolution of less than 100 ps might

be possible in the future.156,157 Thereby, one can anticipate

improved robustness and availability of this type of attenuation

correction methods in the near future, given their high

potential compared to other techniques (Table III). With

ongoing progress in parallel processing technology158 and

feasibility of real-time image reconstruction,159 emission-

based AC methods will also be certainly computationally

appealing in clinical setting.

There have been remarkable advances in fast MRI data

acquisition through parallel MRI and k-space undersampling

to make the acquisition time of UTE MRI sequences clinically

feasible. Moreover, the same trend was followed by the

recent emergence of ZTE MRI sequence with promising

characteristics for bone and lung parenchyma visualization in

the context of PET/MRI. Certainly, these pulse sequences will

continue to undergo further developments and improvements

and will be made available in the clinic not only for attenuation

correction but also for musculoskeletal and pulmonary disease

evaluation.
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5.B. Clinical perspectives of PET/MRI attenuation
correction

The clinical impact of segmentation-based MRAC methods

implemented on current generation PET/MRI scanners has

been evaluated in a number of studies in terms of visible

artifacts, lesion detectability, and quantification accuracy.

Overall, there is a growing consensus that ignoring bones

and tissue variability of attenuation coefficients in three-

or four-class attenuation maps does not significantly impair

lesion detectability and, in general, the diagnostic confidence

of PET findings.26,56 In addition, when PET molecular

information is being complemented with MRI functional

and morphological information, the number of equivocal

findings can be substantially reduced, especially in soft-tissue

neoplastic involvements typically encountered in prostate

cancer,160 head and neck cancers,153,161–163 and gynecologic

cancer.164 However, the presence of artifacts in MRAC maps,

particularly metal-susceptibility artifacts, can complicate the

interpretation of PET findings56 and even lead to false-

positive or false-negative findings.58 Therefore, similar to

artifacts observed in PET/CT imaging, it has been strongly

recommended to increase the diagnostic confidence by

interpreting MRAC-PET images in conjunction with NAC-

PET images. However , as highlighted in Secs. 4.A and 4.B,

advances in TOF PET technology and Z/UTE MRI should

enable to reduce or completely eradicate the frequency and

the negative impact of these artifacts. Therefore, from a

clinical perspective, the impact of artifacts and inaccuracies

in attenuation maps is expected to be less of a concern, which

might result in the adoption of new guidelines and procedures

for PET interpretation.

The success of hybrid PET/MRI depends on the level of

confidence revealed by current and future reports on clinical

applications being explored where combined PET/MRI

provides useful additional information. This might lead in the

future to the widespread acceptance of PET/MRI in clinical

setting, particularly in neurology and some applications

in oncology.165 However, the quantitative capability of

PET imaging in PET/MRI with current AC methods has

remained a major concern. Several reports from single-

injection, dual-imaging studies demonstrated discrepancies

in SUVs between PET/CT and PET/MR data, which were

in many instances attributed to differences in the applied

attenuation correction methods. The conclusions drawn from

these studies should, however, be interpreted with some

caution since time-dependent differences in tracer uptake

owing to the nonstationary nature of FDG biodistribution

were neglected. A number of studies used aligned CT and

MR images to correct the same PET data, thus allowing a

more straightforward assessment of the accuracy of MRAC

in PET/MRI.

In most soft-tissue lesions, an average SUV bias of less than

10% has been found to be clinically irrelevant.48 However,

significant differences might be observed in some regions

particularly the brain, spine, and lungs. Some investigators

have suggested that ignoring bone could be acceptable in

the abdominal and hip regions,16,26,48 but probably not in the

thorax.52,166 There is a wide range of SUV underestimation for

osseous lesions as reported by different groups. The bias was

reported to be in the range of 5%–15% (Refs. 26 and 48) or

up to 23% (Ref. 49) using PET/CT data, whereas simulation

studies using an anthropomorphic thorax phantom reported

a local bias of up to 17% (Ref. 18) or even 30%.51 Overall,

results reported so far seem to demonstrate that ignoring bone

might not be adequate for quantification of osseous lesions.

The commonly accepted uncertainty in terms of dose

calculation accuracy in radiation therapy planning is 5%.

CT is commonly used as surrogate to estimate chemical

composition. MRI is capable of probing soft-tissue properties

with even greater accuracy and, as such, a combination of the

information extracted from MRI and generated pseudo-CT

images could give a better insight, particularly for particle

radiation therapy where the beam range depends strongly

on chemical composition.69 In terms of dosimetric accuracy

in radiation therapy treatment planning, the radiation dose

distributions computed using generated pseudo-CT images

agreed reasonably well with those derived using CT images

(within 2%).31,61,167,168

Moving from the present to the future will involve

tremendous evaluation and further development of the three

main classes of attenuation correction strategies discussed in

this work both in academic and corporate settings to achieve

the best compromise. The assessment and comparison of

the various attenuation correction techniques should continue

in the context of multicentric clinical trials supported and

implemented by manufacturers involving the use of large

databases to assure the reproducibility and robustness of the

developed algorithms. The outcomes of these trials will be

vital for clinical adoption of the most promising approaches

meeting the high-level standards required for their translation

into clinical setting.
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