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Vision and IMU Data Fusion: Closed-Form

Solutions for Attitude, Speed, Absolute Scale and

Bias Determination
Agostino Martinelli

Abstract—This paper investigates the problem of vision and
inertial data fusion. A sensor assembling constituted by one
monocular camera, three orthogonal accelerometers and three
orthogonal gyroscopes is considered. The first paper contribution
is the analytical derivation of all the observable modes, i.e. all
the physical quantities that can be determined by only using
the information in the sensor data acquired during a short
time interval. Specifically, the observable modes are the speed
and attitude (roll and pitch angles), the absolute scale and the
biases affecting the inertial measurements. This holds even in
the case when the camera only observes a single point feature.
The analytical derivation of the aforementioned observable modes
is based on a non standard observability analysis, which fully
accounts the system non linearities. The second contribution is the
analytical derivation of closed-form solutions which analytically
express all the aforementioned observable modes in terms of
the visual and inertial measurements collected during a very
short time interval. This allows introducing a very simple and
powerful new method able to simultaneously estimate all the
observable modes without the need of any initialization or a priori
knowledge. Both the observability analysis and the derivation
of the closed-form solutions are carried out in several different
contexts, including the case of biased and unbiased inertial
measurements, the case of a single and multiple features, and
in presence and absence of gravity. In addition, in all these
contexts, the minimum number of camera images necessary for
the observability is derived. The performance of the proposed
approach is evaluated via extensive Monte Carlo simulations and
real experiments.

Index Terms—Sensor Fusion, Vision-aided Inertial Navigation,
Computer Vision, Non linear Observability, Aerial Robotics

I. INTRODUCTION

In recent years, vision and inertial sensing have received

great attention by the mobile robotics community. These

sensors require no external infrastructure and this is a key ad-

vantage for robots operating in unknown environments where

GPS signals are shadowed. Additionally, these sensors have

very interesting complementarities and together provide rich

information to build a system capable of vision-aided inertial

navigation and mapping.

When fusing vision and inertial measurements, the follow-

ing two issues must be addressed:

1) find all the physical quantities that the information

contained in the sensor data allows us to estimate;

This work was supported by the European Project FP7-ICT-2007-3.2.2
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(sFLY). We also acknowledge the Autonomous System Lab at ETHZ in Zurich
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2) find a reliable and efficient method to estimate these

physical quantities starting from the raw sensor data.

Throughout this paper, we will call these physical quantities

the Observable Modes.

It is very reasonable to expect that, when fusing vision

and inertial measurements, the absolute scale is an observable

mode and can be obtained by a closed-form solution. Let us

consider the trivial case where a vehicle, equipped with a

bearing sensor (e.g. a camera) and an accelerometer, moves

on a line (see fig 1). If the initial speed in A is known, by

integrating the data from the accelerometer, it is possible to

determine the vehicle speed during the subsequent time steps

and then the distances A − B and B − C by integrating

the speed. The lengths A − F and B − F are obtained by

a simple triangulation by using the two angles βA and βB

from the bearing sensor. Let us now assume that the initial

speed vA is unknown. In this case, all the segment lengths

can be obtained in terms of vA. In other words, we obtain

the analytical expression of A−F and B−F in terms of the

unknown vA and all the sensor measurements performed while

the vehicle navigates from A to B. By repeating the same

computation with the bearing measurements in A and C, we

have a further analytical expression for the segment A − F ,

in terms of the unknown vA and the sensor measurements

performed while the vehicle navigates from A to C. The two

expressions for A − F provide an equation in the unknown

vA. By solving this equation we finally obtain all the lengths

in terms of the measurements performed by the accelerometer

and the bearing sensor.

Fig. 1. A vehicle equipped with an accelerometer and a camera moves on a
line. The camera performs three observations of the feature in F , repsectively
from the points A, B and C.

The previous example is very simple because of several

unrealistic restrictions. First of all, the motion is constrained

on a line. Additionally, the accelerometer provides gravity-
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free and unbiased measurements. In this paper we will relax

these restrictions by considering the case of a vehicle equipped

with IMU1 and bearing sensors. We want to know which

are the observable modes, namely the physical quantities that

can be determined without any a priori knowledge (i.e. by

only collecting the data from the sensors during a short time

interval). For instance, are the absolute scale, the vehicle speed

and the vehicle orientation observable modes? Are they ob-

servable modes even in the case of biased IMU measurements?

Are the biases (affecting the IMU measurements) observable

modes? And more importantly: is it possible to determine all

these quantities by a closed form solution (as in the simple

unrealistic example previously provided)? And, if yes, what

is the minimum number of camera images necessary for this

determination?

An answer to the first three questions can be found by

applying the method introduced in [21], where a non standard

observability analysis, based on the new concept of continuous

symmetry, has been introduced. The advantages of this non

standard observability analysis is that, in contrast to previous

approaches, it is able not only to check whether a given state

is observable or not, but, in the negative case, it is also able

to detect the quantities which are observable. In particular, by

analyzing the continuous symmetries of a given system, it is

possible to obtain a system of partial differential equations.

The observable modes are all the independent solutions of

this system of partial differential equations. In [21], this new

concept of continuous symmetry has been adopted to deal with

a calibration problem in the framework of wheeled robotics. In

[22], this concept has been adopted to deal with the problem

of vision and inertial data fusion. Specifically, the observable

modes have been provided in the case of one feature and in the

case of unbiased IMU measurements. Additionally, a closed-

form solution has been derived in this special case and the

performance of an estimator based on an Extended Kalman

Filter has also been discussed. In this paper, we also provide

the analytical derivation of the observable modes starting from

the theory developed in [21]. Additionally, also new realistic

contexts are considered, by including the case of biased and

unbiased inertial measurements, the case of single and multiple

features, and in presence and absence of gravity.

The paper is organized as follows. Section III illustrates and

summarizes the basic steps of the method introduced in [21],

by dealing with a simple 2D localization problem. Section IV

provides a mathematical description of the system. Starting

from this description, in sections V and VI the observability

analysis is performed. Then, in section VII, we provide closed-

form expressions of the observable modes in terms of the

sensor measurements. The performance of the method in esti-

mating the observable modes is evaluated by using synthetic

and real data (section VIII). Finally, conclusions are provided

in section IX.

1Throughout this paper, we will adopt the term IMU (Inertial Measurement
Unit) to indicate the sensor assembling constituted by three orthogonal
accelerometers and three orthogonal gyroscopes.

II. RELATED WORKS

The problem of fusing vision and inertial data has been

extensively investigated in the past. A special issue of the

International Journal of Robotics Research has recently been

devoted to this important topic [4]. In [3], a tutorial intro-

duction to the vision and inertial sensing is presented. This

work provides a biological point of view and it illustrates

how vision and inertial sensors have useful complementar-

ities allowing them to cover the respective limitations and

deficiencies. In [25] the inertial measurements are used in

order to reduce the ambiguities in the structure from motion

problem. Recent works investigate the observability properties

of the vision-aided inertial navigation system [10], [12] and

[24]. These works show that the absolute roll and pitch angles

of the vehicle are observable modes while the yaw angle is

unobservable. This result is consistent with the experimental

results obtained in [2] which clearly show how the roll and

pitch angles remain more consistent than the heading. In [11],

the authors provide a theoretical investigation to analytically

derive the motion conditions under which the vehicle state is

observable. This analysis also includes the conditions under

which the parameters describing the transformation camera-

IMU are identifiable. On the other hand, a general theoretical

investigation able to also derive the minimum number of

camera observations2 necessary for the state determination still

lacks. The results presented in section VI address precisely

these limitations. In addition, in section V, the observability

analysis is performed in several contexts by also including the

case of biased inertial measurements.

The majority of the approaches so far introduced, perform

the fusion of vision and inertial sensors by filter-based algo-

rithms. In [1], these sensors are used to perform egomotion

estimation. The sensor fusion is obtained by an Extended

Kalman Filter (EKF ) and by an Unscented Kalman Filter

(UKF ). The approach proposed in [6] extends the previous

one by also estimating the structure of the environment where

the motion occurs. In particular, new landmarks are inserted on

line into the estimated map. This approach has been validated

by conducting experiments in a known environment where a

ground truth was available. Also, in [30] an EKF has been

adopted. In this case, the proposed algorithm estimates a state

containing the robot speed, position and attitude, together with

the inertial sensor biases and the location of the features of

interest. In the framework of airbone SLAM, an EKF has

been adopted in [13] to perform 3D−SLAM by fusing inertial

and vision measurements. It was observed that any inconsistent

attitude update severely affects any SLAM solution. The

authors proposed to separate attitude update from position and

velocity update. Alternatively, they proposed to use additional

velocity observations, such as air velocity observation.

When using an EKF , an important issue which arises is

the initialization problem. Indeed, because of the system non-

linearities, an erroneous initialization can irreparably damage

the entire estimation process. This problem has been consid-

2Throughout this paper, we will adopt the term camera observation to
mean the bearing measurements provided by the camera from a single pose,
i.e. obtained by a single image.
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ered in [18]. In particular, the proposed method is able to

estimate the absolute scale by using a square root information

filter. Additionally, the same authors proposed an EKF which

does not suffer from the initialization of the speed and of the

orientation [19].

In [24] it is introduced a measurement model that is able

to express the geometric constraints that arise when the

same feature is observed from multiple camera poses. This

measurement model does not require to include the feature

position in the state which is estimated by an EKF . A similar

idea is adopted in [31]. Also in this case, the problem of

estimating the location of each feature is avoided, by using

epipolar points on the image plane.

There are very few methods able to perform the fusion

of image and inertial measurements without a filter-based

approach. One algorithm of this type has been suggested

in [29]. This algorithm is a batch method which performs

SLAM from image and inertial measurements. Specifically,

it minimizes a cost function by using the Leven-Marquardt

algorithm. This minimization process starts by initializing

the velocities, the gravity and the biases to zero. In [5] the

graphical SLAM approach has been suggested to fuse the data

from many different sensors: encoder, inertial, vision and GPS.

To the best of our knowledge, no prior work has addressed

the problem of determining the trajectory of a platform in

closed form, by only using visual and inertial measurements.

Section VII addresses precisely this important problem by pro-

viding closed-form expressions of all the observable modes in

several different contexts. These solutions have the advantage

of not requiring any prior information about the state.

Finally, an important issue which arises when inertial and

vision sensors are simultaneously used, is the problem of the

extrinsic calibration, i.e. the estimation of the relative pose

of these sensors. This problem has been approached in the

past and several iterative and non-iterative solutions have been

proposed. In [23] the extrinsic calibration has been performed

by using an EKF . Non-iterative solutions have been proposed

in [9] and [16].

III. OBSERVABLE MODES AND CONTINUOUS

SYMMETRIES

When a state is not observable, there are in general infinite

initial states reproducing exactly the same inputs and outputs.

Let us consider for instance, the 2D localization problem when

the vehicle moves along a corridor, equipped with odometry

sensors and sensors able to perform relative observations

(e.g. bearing and range sensors). In this situation, all the

initial states differing for a shift along the corridor, reproduce

exactly the same inputs and outputs. Intuitively, we remark

that the entire system has one continuous symmetry that is the

invariance of the corridor with respect to a shift. It is obvious

that the only quantities that we can estimate (i.e. the observable

modes) are invariant with respect to this continuous symmetry

(i.e. the vehicle orientation and the distance of the vehicle

from the corridor walls). The previous consideration regarding

this simple localization problem is quite trivial and it’s not

required to introduce special mathematical tools. However,

there are cases where deriving the observable modes is a

very challenging task. The key to deal with these cases is to

first provide a mathematical definition of continuous symmetry

able to generalize the intuitive idea of symmetry. In [21], a

procedure which allows us to analytically derive the observ-

able modes for a generic system, has been introduced. This

procedure is based on the concept of continuous symmetry,

whose mathematical definition has also been provided. In this

section we remind the reader the basic concepts characterizing

the theory developed in [21]. For the sake of clarity, these

concepts will be illustrated by referring to a simple localization

problem, which is introduced in section III-A.

A. A Simple Localization Problem

We consider a mobile robot moving in a 2D-environment.

The configuration of the robot in a global reference frame, can

be characterized through the vector [xR, yR, θR]
T where xR

and yR are the cartesian robot coordinates, and θR is the robot

orientation. It is also possible to characterize the robot config-

uration by using the polar coordinates, i.e. D ≡
√

x2
R + y2R

and φR ≡ arctan 2(yR, xR). The dynamics are described by

the following non-linear differential equations:







ẋR = v cos θR

ẏR = v sin θR

θ̇R = ω

or









Ḋ = v cos(θR − φR)

φ̇R =
v

D
sin(θR − φR)

θ̇R = ω

(1)

where v and ω are the linear and the rotational robot speed

respectively. The robot is equipped with proprioceptive sensors

which are able to evaluate these two speeds. We assume that

a point feature exists in our environment and, without loss of

generality, we fix the global reference frame onto it (see figure

2a). The robot is also equipped with a bearing sensor (e.g. a

camera), able to evaluate the bearing angle of the point feature

in its own frame. Therefore, our system has the following

output (see fig. 2a):

y = β ≡ π − θR + atan2(yR, xR) = π − θR + φR (2)

a b

Fig. 2. A simple localization problem. The robot is equipped with odometry
and bearing sensors able to evaluate the angle β. In b, the three initial robot
configurations are compatible with the same initial observation (β).

To check whether the robot configuration [xR, yR, θR]
T

is observable or not, we have to prove that it is possible to

uniquely reconstruct the initial robot configuration by knowing

the input controls and the outputs (observations) in a given

time interval. When at the initial time, the bearing angle β
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of the origin is available, the robot can be everywhere in the

plane but, for each position, only one orientation provides the

right bearing β. In fig. 2b all the three positions A, B and

C are compatible with the observation β, provided that the

robot orientation satisfies (2). In particular, the orientation is

the same for A and B but not for C.

Let us suppose that the robot moves according to the inputs

v(t) and ω(t). With the exception of the special motion

consisting of a line passing by the origin, by only performing

a further bearing observation it is possible to distinguish all

the points belonging to the same line passing by the origin. In

fig. 3a the two initial positions in A and B do not reproduce

the same observations (βA 6= βB). On the other hand, all the

initial positions whose distance from the origin is the same,

cannot be distinguished independently of the chosen trajectory.

In fig. 3b, the two indicated trajectories provide the same

bearing observations at any time. Therefore, the dimension

of the undistinguishable region is 1 and the dimension of the

largest observable subsystem is 3− 1 = 2.

a b

Fig. 3. In a the two initial positions (A and B) do not reproduce the same
observations (βA 6= βB). In b the two indicated trajectories provide the same
bearing observations at any time.

We remark that the system has a continuous symmetry: the

system inputs (v(t) and ω(t)), and outputs (y(t)), are invariant

with respect to a rotation of the global frame about the vertical

axis (in the next section we will provide a mathematical

definition for a general continuous symmetry). Based on the

fact that the dimension of the largest observable subsystem

is two, we know that we can only estimate two indepen-

dent modes. In addition, these two modes must satisfy the

aforementioned system invariance, i.e. they must be rotation

invariant. A possible choice is provided by the two quantities

D and θ in figure 2a (θ ≡ θR − atan2(yR, xR)).
The new system is characterized by the following equations:





Ḋ = v cos θ

θ̇ = ω −
v

D
sin θ

y = β = π − θ (3)

which express the link between the new state [D, θ]T and the

proprioceptive data (v, ω) and the exteroceptive data (β).

The detection of the two modes (D and θ) and the derivation

of the equations in (3) is fundamental. Indeed, estimating the

original state brings inconsistencies with catastrophic conse-

quences.

In the next subsections we remind the reader some concepts

in the theory by Hermann and Krener in [8] and some basic

tools introduced in [21] in order to perform the same analysis

in the case of more complex systems. This will allow us to

derive the observable modes when fusing monocular vision

and IMU sensor measurements.

B. Observability Rank Criterion

A general characterization for systems in the framework

of autonomous navigation, is provided by the following two

equations, which describe the dynamics and the observation

respectively:











Ṡ = f(S,u) = f0(S) +

L
∑

i=1

fi(S)ui

y = h(S)

(4)

where S ∈ Σ ⊆ ℜn is the state, u = [u1, u2, ..., uL]
T are

the system inputs, y ∈ ℜ is the output (we are considering

a scalar output for the sake of clarity; the extension to

a multi dimensional output is straightforward). The system

defined by (1-2) (both in cartesian and in polar coordinates)

and the one defined by (3) can be characterized by (4).

For instance, for the system in (1) in polar coordinates,

we have: S = [D, φR, θR]
T , f0 = [0, 0, 0]T , L = 2,

u1 = v, u2 = ω, f1(S) = [cos(θR − φR),
sin(θR−φR)

D
, 0]T ,

f2(S) = [0, 0, 1]T , h(S) = π − θR + φR.

We indicate the kth order Lie derivative of a field Λ along

the vector fields vi1 , vi2 , ..., vik with Lk
vi1 , vi2 , ..., viK

Λ.

The definition of the Lie derivative is provided by the follow-

ing two equations:

L0Λ = Λ, Lk+1
vi1 ,...,vik+1

Λ = ∇S

(

Lk
vi1

,...,vik
Λ
)

. vik+1
(5)

where the symbol ”.” denotes the scalar product and ∇S the

gradient operation with respect to the state S. We remark that

the Lie derivatives quantify the impact of changes in the con-

trol input (ui) on the output function (h). Additionally, we de-

note with dLk
fi1 , ..., fik

h, the gradient of the corresponding

Lie derivative (i.e. dLk
fi1 , ..., fik

h ≡ ∇SLk

fi1 , ..., fik
h),

and, we denote with dΩ, the space spanned by all these

gradients.

In this notation, the observability rank criterion can be

expressed in the following way: The dimension of the largest

observable sub-system at a given S0 is equal to the dimension

of dΩ.

We consider again the simple example introduced in III-A,

and we show that by using the observability rank criterion, we

find the same result obtained by following intuitive reasoning

(i.e. that the dimension of the largest observable subsystem is

2).

The computation of the rank for the system in (1-2)

is straightforward. Let us use the polar coordinates. From

(2), we obtain: L0h = π − θR + φR whose gradient is

dL0h ≡ w1 = [0, 1,−1]. The first order Lie derivatives

are: L1
f1

h = sin(θR−φR)
D

and L1
f2

h = −1. We have:

dL1

f1
h ≡ w2 = [− sin(θR−φR)

D2 ,− cos(θR−φR)
D

, cos(θR−φR)
D

].
It is easy to realize that each vector wi obtained by extending

the previous computation to every Lie derivative order, has the

structure: wi = [̺i, ςi,−ςi]. Indeed, every Lie derivative will
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depend on θR and φR only through the quantity θR − φR,

whose sign changes with respect to the change θR ↔ φR.

Therefore, the rank of the matrix

Γ ≡
{

wT
1 , wT

2 , ..., wT
i , ...

}

(6)

is equal to two. We conclude that the largest observable sub-

system has dimension two as derived in section III-A.

C. Continuous Symmetries

We refer to the input output system given in (4). In [21], we

introduced the following definition of continuous symmetry:

Definition 1 (Continuous Symmetry) The vector field

ws(S) (S ∈ Σ) is a continuous symmetry in S for the system

defined in (4) if and only if it is a non null vector belonging

to the null space of the matrix whose lines are the gradients

of all the Lie derivatives computed in S.

We discuss again the simple example provided in section

III-A. We show that the previous definition corresponds to a

global rotation.

For the system defined in (1-2) only one continuous

symmetry exists given, in polar coordinates, by the vector

ws = [0, 1, 1]T (i.e. belonging to the null space of the

matrix Γ in (6)). Let us provide an intuitive interpretation

of this continuous symmetry. It is possible to see that this

symmetry corresponds to an infinitesimal rotation. Indeed, an

infinitesimal rotation of magnitude ǫ about the vertical axis

changes the state as follows [7]:





D
φR

θR



→





D
φR

θR



+ ǫ





0
1
1



 =





D
φR

θR



+ ǫ ws

In [21] we proved the following fundamental property:

Property 1 g(S) is an observable mode if and only if its

gradient is orthogonal to all the symmetries.

This property can be expressed by a system of partial

differential equations, one for each symmetry:

n
∑

i=1

wsi(S)
∂g

∂Si

= 0 (7)

where wsi(S) is the ith component of the symmetry ws.

In other words, for every symmetry there is an associated

partial differential equation which must be satisfied by all the

observable modes.

We use (7) to derive the two observable modes for the

system discussed in section III-A. As previously mentioned,

this system only has the symmetry [0, 1, 1]T . Hence, the

associated equation (7) becomes:

∂g

∂φR

+
∂g

∂θR
= 0

and two independent solutions are g = D and g = θR − φR.

This is the same result we obtained in section III-A.

We conclude this section by summarizing the main steps

illustrated in this section to detect the observability properties

of a given input-output system. The first step consists in the

derivation of all the continuous symmetries. This is obtained

by computing the analytical expression of the Lie derivatives3.

Then, according to property 1, a system of partial differ-

ential equations is obtained and the observability properties

are obtained by solving this system of partial differential

equations. Indeed, all the independent observable modes are

all the independent solutions of this system.

IV. THE CONSIDERED SYSTEM

Let us consider a sensor assembling constituted by a monoc-

ular camera and IMU sensors. The IMU consists of three

orthogonal accelerometers and three orthogonal gyroscopes.

We assume that the transformations among the camera frame

and the IMU frames are known (we can assume that the local

frame coincides with the camera frame). In the following, we

will use the word vehicle to refer to this sensor assembling.

The IMU provides the vehicle angular speed and acceleration.

Actually, regarding the acceleration, the one perceived by the

accelerometer (A) is not simply the vehicle acceleration (Av).

It also contains the gravitational acceleration (Ag). In partic-

ular, we have A = Av − Ag since, when the camera does

not accelerate (i.e. Av is zero) the accelerometer perceives an

acceleration which is the same of an object accelerated upward

in the absence of gravity.

We will use uppercase letters when the vectors are expressed

in the local frame and lowercase letters when they are ex-

pressed in the global frame. Hence, regarding the gravity we

have: ag = [0, 0, − g]T , being g ≃ 9.8 ms−2.

We assume that the camera is observing a point feature

during a given time interval. We fix a global frame attached

to this feature. The vehicle and the feature are displayed in fig

4.

Fig. 4. The feature position (F ), the vehicle acceleration (Av) the vehicle
angular speed (Ω) and the gravitational acceleration (Ag).

Finally, we will adopt a quaternion to represent the vehicle

orientation. Indeed, even if this representation is redundant,

it is very powerful since the dynamics can be expressed in a

very easy and compact notation [14].

3In section V we will see that sometimes the symmetries can easily be
derived from physical considerations, i.e. by remarking the system invariance
under several transformations. This allows us to avoid the computation of high
order Lie derivative
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Our system is characterized by the state [r, v, q]T where

r = [rx, ry, rz]
T is the 3D vehicle position, v is its time

derivative, i.e. the vehicle speed in the global frame (v ≡
dr
dt

), q = qt + iqx + jqy + kqz is a unitary quaternion (i.e.

satisfying q2t + q2x+ q2y + q2z = 1) and characterizes the vehicle

orientation. The analytical expression of the dynamics and the

camera observations can be easily provided by expressing all

the 3D vectors as imaginary quaternions. In practice, given

a 3D vector w = [wx, wy, wz]
T we associate with it the

imaginary quaternion ŵ ≡ 0+iwx+jwy+kwz . The dynamics

of the state [r̂, v̂, q]T are:















˙̂r = v̂

˙̂v = qÂvq
∗ = qÂq∗ + âg

q̇ =
1

2
qΩ̂

(8)

being q∗ the conjugate of q, q∗ = qt − iqx − jqy − kqz . We

now want to express the camera observations in terms of the

same state ([r̂, v̂, q]T ). We remark that the camera provides

the direction of the feature in the local frame. In other words,

it provides the unit vector F
|F |

(see fig. 4). Hence, we can

assume that the camera provides the two ratios y1 = Fx

Fz
and

y2 =
Fy

Fz
, being F = [Fx, Fy, Fz]

T . We need to express

F in terms of [r̂, v̂, q]T . We note that the position of the

feature in the frame with the same orientation of the global

frame but shifted in such a way that its origin coincides with

the one of the local frame is −r. Therefore, F is obtained by

the quaternion product F̂ = −q∗r̂q. The observation function

provided by the camera is:

hcam(r̂, v̂, q) = [y1, y2]
T =

[

(q∗r̂q)x
(q∗r̂q)z

,
(q∗r̂q)y
(q∗r̂q)z

]T

(9)

where the pedices x, y and z indicate respectively the i, j
and k component of the corresponding quaternion. We have

also to consider the constraint q∗q = 1. This can be dealt as

a further observation (system output):

hconst(r̂, v̂, q) = q∗q (10)

A. The Case with Multiple Features

We consider the case when the camera observes Nf fea-

tures, simultaneously. We fix the global frame on one of

the features. Let us denote with di the 3D vector which

contains the cartesian coordinates of the ith feature (i =
0, 1, ..., Nf −1). We assume that the global frame is attached

to the 0th feature, i.e. d0 = [0 0 0]T . The new system is

characterized by the state [r̂, v̂, q, d̂1, ..., d̂Nf−1]
T , whose

dimension is 7 + 3Nf . The dynamics of this state are given

by (8) together with the equations:

ḋi = [0 0 0]T i = 1, ..., Nf − 1 (11)

The position Fi of the ith feature in the local frame is obtained

by the quaternion product F̂i = q∗(d̂i−r̂)q. The corresponding

observation function is:

hi
cam =

[

(q∗(d̂i − r̂)q)x

(q∗(d̂i − r̂)q)z
,
(q∗(d̂i − r̂)q)y

(q∗(d̂i − r̂)q)z

]T

i = 0, 1, ..., Nf−1

(12)

which coincides with the observation in (9) when i = 0.

Summarizing, the case of Nf features is described by the state

[r̂, v̂, q, d̂1, ..., d̂Nf−1]
T , whose dynamics are given in (8)

and (11) and the observations are given in (12) and (10).

B. The Case with Bias

We consider the case when the data provided by the IMU
are biased. In other words, we assume that the measurements

provided by the three accelerometers and the three gyroscopes

are affected by an error which is not zero-mean. Let us

denote with Abias and with Ωbias the two 3D-vectors whose

components are the mean values of the measurement errors

from the accelerometers and the gyroscopes, respectively. The

two vectors Abias and Ωbias are time-dependent. However,

during a short time interval, it is reasonable to consider them

to be constant. Under these hypotheses, the dynamics in (8)

become:



























˙̂r = v̂

˙̂v = qÂvq
∗ = qÂq∗ + qÂbiasq

∗ + âg

q̇ =
1

2
qΩ̂ +

1

2
qΩ̂bias

Ȧbias = Ω̇bias = [0 0 0]T

(13)

Note that these equations only hold for short time intervals.

In the following, we will use these equations only when this

hypothesis is satisfied (in particular, during time intervals

allowing the camera to perform at most ten consecutive

observations).

V. OBSERVABILITY PROPERTIES

We investigate the observability properties of the system

whose dynamics are given in (8) and whose observations are

given in (9) and (10). For the sake of clarity, we discuss

both the case without gravity (V-A) and with gravity (V-B).

Moreover, in V-C we discuss the case when the camera is

observing simultaneously more than one feature, namely we

investigate the observability properties of the system defined

by (8), (10), (11) and (12). Then, the case when the IMU

sensors are affected by a bias is investigated (V-D).

The observability analysis performed in this section takes

into account all the degrees of freedom allowed by the

dynamics in (8). In other words, the observability of the modes

here derived, could require the vehicle to move along all

these degrees of freedom. The modes derived in this section

could become unobservable when the vehicle performs special

motions. In section VI we discuss the observability properties

for special vehicle motions.
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A. The Case without Gravity

Let us set g = 0 in (8). By directly computing the Lie

derivatives and their gradients, it is possible to detect three

independent symmetries for the resulting system. They are:

wRotx
s =

[

0 − rz ry 0 − vz vy −
qx
2

qt
2

−
qz
2

qy
2

]T

(14)

wRoty
s =

[

rz 0 − rx vz 0 − vx −
qy
2

qz
2

qt
2

−
qx
2

]T

wRotz
s =

[

−ry rx 0 − vy vx 0 −
qz
2

−
qy
2

qx
2

qt
2

]T

According to definition 1, these vectors are orthogonal to

all the gradients of all the Lie derivatives. These symmetries

could also be derived by remarking the system invariance with

respect to rotations about all the three axes. For instance, an

infinitesimal rotation of magnitude ǫ about the vertical axis

changes the state as follows [7]:





rx
ry
rz



→





rx
ry
rz



+ ǫ





−ry
rx
0









vx
vy
vz



→





vx
vy
vz



+ ǫ





−vy
vx
0













qt
qx
qy
qz









→









qt
qx
qy
qz









+
ǫ

2









−qz
−qy
qx
qt









that is:





r

v

q



→





r

v

q



+ ǫwRotz
s

On the other hand, without computing the Lie derivatives, we

could not conclude that the rotational symmetries are all the

symmetries for the considered system. In order to be sure that

they are all the symmetries, we must detect 10 − 3 = 7
independent Lie derivatives. In appendix A, we provide a

possible choice of 7 independent Lie derivatives.

Summarizing, we detected all the symmetries by proceed-

ing in two separate steps. In the first, we used the system

invariance under rotations which allowed us to immediately

detect three symmetries. Then, by providing 7 independent Lie

derivatives, we concluded that these are all the symmetries.

According to property 1, for every symmetry there is an

associated partial differential equation (the one provided in

(7)). Hence, every observable mode must satisfy simultane-

ously all the three partial differential equations. Since our

system is defined by 10 variables, the number of independent

solutions satisfying all the three partial differential equations

is 10 − 3 = 7 [15]. On the other hand, their derivation,

once the three symmetries are detected, is easy. Indeed, it

is immediate to prove that the distance of the feature from

the camera, i.e. |r|, is a solution of the three equations (this

can be checked by substitution for the partial differential

equations associated with the symmetries in (14) but can also

be proved by remarking that the absolute scale is invariant

under rotations). This means that the distance of the feature is

observable and it is one among the 7 independent solutions.

On the other hand, since the camera provides the position of

the feature in the local frame up to a scale factor, having the

distance means that the feature position in the local frame is

also observable. Therefore, the three components of the feature

position in the local frame are three independent solutions. By

using quaternions, we can say that three independent solutions

are provided by the components of the imaginary quaternion

q∗r̂q. Additionally, since the three partial differential equations

are invariant under the transformation r ↔ v, three other

independent solutions are the components of the imaginary

quaternion q∗v̂q. Physically, this means that the vehicle speed

in the local frame is also observable. Finally, the last solution

is q∗q since it is directly observed (see equation (10); it can be

in any case verified that it satisfies the three partial differential

equations).

The analytical results derived in this subsection can be

summarized with the following property:

Property 2 (Observable Modes without Gravity) Let us

consider the system defined by (8), (9) and (10) in absence

of gravity (i.e. g = 0). All the independent observable modes

are 7 and they are the three components of the imaginary

quaternion q∗r̂q (i.e. the position of the observed feature

in the local frame), the three components of the imaginary

quaternion q∗v̂q (i.e. the vehicle speed in the local frame)

and the product q∗q (i.e. the norm of the the quaternion).

B. The Case with Gravity

We investigate the observability properties when g 6= 0.

The presence of the gravity breaks two of the three rotational

symmetries. In other words, the system remains invariant only

with respect to rotations about the vertical axis. This means

that wRotx
s and wRoty

s are no longer symmetries for the new

system. By directly computing the Lie derivatives, we were

able to find nine independent Lie derivatives (the computation

is similar to the one illustrated in appendix A). Hence, the

system has 10− 9 = 1 symmetry which is wRotz
s .

The partial differential equation associated with wRotz
s is:

−2ry
∂Λ

∂rx
+ 2rx

∂Λ

∂ry
− 2vy

∂Λ

∂vx
+ 2vx

∂Λ

∂vy
+ (15)

−qz
∂Λ

∂qt
− qy

∂Λ

∂qx
+ qx

∂Λ

∂qy
+ qt

∂Λ

∂qz
= 0

The number of independent solutions Λ =
Λ(rx, ry, rz, vx, vy, vz, qt, qx, qy, qz) is equal to

the number of variables (i.e. 10) minus the number of

equations (i.e. 1) [15]. Hence, in this case we have two

additional observable modes. They are:

Qr ≡
qtqx + qyqz

1− 2(q2x + q2y)
; Qp ≡ qtqy − qzqx (16)
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Also for these two solutions it is possible to find a physical

meaning. They are related to the roll and pitch angles [14]. In

particular, the first solution provides the roll angle which is

R = arctan(2Qr). The latter provides the pitch angle which

is P = arcsin(2Qp). Finally, we remark that the expression

of the yaw, Y = arctan
(

2
qtqz+qxqy
1−2(q2y+q2z)

)

, does not satisfy (15).

The analytical results derived in this subsection can be

summarized with the following property:

Property 3 (Observable Modes with Gravity) Let us con-

sider the system defined by (8), (9) and (10). All the indepen-

dent observable modes are 9 and they are the 7 observable

modes for the case without gravity together with the roll and

pitch angles.

C. The Case with Multiple Features

Let us suppose that the vehicle is observing Nf > 1
features, simultaneously. The new system is characterized by

the (7+3Nf )− dimensional state [r̂, v̂, q, d̂1, ..., d̂Nf−1]
T ,

whose dynamics are given in (8) and (11) and the observations

are given in (12) and (10).

It is immediate to realize that all the camera observations are

invariant with respect to the same symmetries found in the case

of one single feature (for instance, the camera observations do

not change when the initial state [r̂, v̂, q, d̂1, ..., d̂Nf−1]
T is

rotated about the vertical axis). Hence, in presence of gravity,

the yaw angle is still unobservable. In absence of gravity, also

the roll and pitch angles are unobservable. Hence, in presence

of gravity, the number of independent modes cannot exceed

7 + 3Nf − 1 = 6 + 3Nf . In absence of gravity, this number

cannot exceed 7 + 3Nf − 3 = 4 + 3Nf .

On the basis of the results obtained in the previous subsec-

tions, we know that the position of each feature in the local

frame provides 3 observable modes. Also, the vehicle speed in

the local frame provides 3 observable modes. In addition, an

observable mode is the norm of the quaternion. Therefore, in

both the cases with and without gravity, we have 3Nf + 4
observable modes. In absence of gravity, these are all the

observable modes. In presence of gravity, also the roll and

pitch angles are observable modes, since they are observable

modes with a single feature.

The analytical results derived in this subsection can be

summarized with the following property:

Property 4 (Observable Modes with Multiple Features)

Let us consider the system defined by (8), (10), (11) and (12).

All the independent observable modes are the components of

the imaginary quaternion q∗(d̂i − r̂)q, i = 0, 1, ..., Nf − 1
(i.e. the position of the observed features in the local frame),

the three components of the imaginary quaternion q∗v̂q (i.e.

the vehicle speed in the local frame) and the product q∗q
(i.e. the norm of the quaternion). In addition, in presence of

gravity, also the roll and pitch angles are observable modes.

D. The Case with Bias

In this subsection we will prove that, even when the

camera only observes a single feature, the biases affect-

ing the accelerometers and the gyroscopes are observable.

The system we are considering is defined by the state:

[r v q Abias Ωbias]
T , whose dimension is 16. This state

satisfies the dynamics in (13). Finally, this system is charac-

terized by the observations given in (9) and (10).

We know that the state is not observable. Indeed, even

without bias, we know that it is not possible to estimate the

yaw angle (section V-B). In other words, also this system is in-

variant with respect to rotations about the vertical axis. Hence,

its observable modes must satisfy the equation in (15), where,

now, Λ also depends on the components of Abias and Ωbias.

On the other hand, we do not know if the system has additional

symmetries in which case the observable modes must satisfy

additional partial differential equations, simultaneously. In

order to prove that the system has a single symmetry, we

must provide 15 independent Lie derivatives. By a direct

computation, performed by using the symbolic Matlab compu-

tational tool, we were able to find the following 15 indepen-

dent Lie derivatives: L0y1, L0y2, L0hconst, L
1
f0

y1, L1
f0

y2,

L2
f0, f0

y1, L2
f0, f1

y1, L2
f0, f4

y1, L2
f0, f0

y2, L2
f0, f4

y2,

L2
f0, f5

y2, L3
f0, f0, f5

y1, L3
f0, f0, f6

y1, L3
f0, f0, f2

y2,

L3
f0, f0, f6

y2. As previously mentioned, we know that we

cannot have more than 15 independent Lie derivatives (oth-

erwise, the yaw angle would be observable). Note that in

the previous computation the expression of the vector fields

f0, f1, ..., f6 is not the one given in appendix A. The right

one must be computed starting from the dynamics in (13).

The fact that we have 15 independent Lie derivatives means

that there are no additional symmetries and, the independent

observable modes, are the independent solutions of (15). They

are: the 9 solutions provided in V-B and the six components of

the two vectors Abias and Ωbias (note that these components

are trivial solutions of (15)).

The analytical results derived in this subsection can be

summarized with the following property:

Property 5 (Observable Modes in Presence of Bias) Let

us consider the system defined by (13), (9) and (10). All the

independent observable modes are the same as in the case

without bias and the six components of the two bias vectors

Abias and Ωbias.

E. Unknown Gravity

The results provided in the previous sections are obtained by

assuming that the magnitude of the gravitational acceleration

(g) is a priori known. In [20] we prove that g is among the

observable modes even in the worst case when the inertial

sensors are affected by a bias and when only a single feature

is available. In other words, the following property holds:

Property 6 (Observability of gravity) The gravity vector is

observable even in the case of biased inertial measurements

and when a single feature is available.

VI. OBSERVABILITY FOR SPECIAL TRAJECTORIES AND

FEW CAMERA IMAGES

The goal of this section is to discuss the following two

issues:
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1) Derivation of the observability properties for special

vehicle trajectories;

2) Derivation of the minimum number of camera images

necessary for the observability of the modes derived in

section V.

As we will see, the second issue can be dealt starting from

the results obtained by dealing with the first issue.

A. Special Trajectories

We are interested in deriving the observability properties

for special trajectories. Mathematically, this can be done by

introducing in (8) the constraints characterizing the trajectory

we want to consider. Then, it suffices to apply the method

described in section III to the system characterized by the

new dynamics and the same observations (9) and (10). We

only consider two special cases since they allow us to derive

important necessary conditions on the minimum number of

camera images (see theorem 1). However, there are many

other special motions/feature configurations, for which the

observability properties degenerate. Some of them will be

discussed for the case of two point features in three camera

images (section VII-B).

The following property holds:

Property 7 (Observability with constant acceleration)

When the vehicle moves with constant acceleration all

the modes derived in section V are observable except the

magnitude of the gravitational acceleration.

Proof: The proof is provided in [20] �

A special case of constant acceleration is the case of

constant speed. In this case we have a nice property when

the magnitude of the gravity is a priori known:

Property 8 (Observability with constant speed) When the

magnitude of the gravity is known and the vehicle moves

with constant speed all the modes derived in section V are

observable up to a scale factor.

Proof: Our system is characterized by the dynamics given

in (8), where the second equation is replaced by ˙̂v = 0 and

with the parameter g a priori known. The system outputs are

given in (9) and (10) together with the observations provided

by the accelerometers (in this case Â = −q∗âgq). We want

to derive the observable modes of this system. According to

the method illustrated in section III, we need, first of all,

to detect the system symmetries. Instead of computing the

Lie derivatives, we remark that, with respect to the case of

a general motion (investigated in section V-B), the system is

characterized by a further symmetry. Indeed, the new dynamics

are invariant with respect to the change r → λr, v → λv,

being λ a real number. In addition, also the observations are

invariant with respect to the same change4. We conclude that,

when the vehicle does not accelerate, the system does not

4Note that this invariance corresponds to the continuous symmetry:
wscale

s = [rx, ry , rz , vx, vy , vz , 0, 0, 0, 0]T , which would have
been obtained by the Lie derivatives and definition 1.

contain the information to determine the absolute scale5. This

result also holds in the case of multiple features. Indeed, the

same invariance also characterizes the equations in (11) and

(12) by also considering di → λdi, i = 0, 1, ..., Nf − 1 �

B. Minimum number of camera observations

The observability analysis performed so far, assumes that

the observation is provided continuously during a given time

interval. However, the following property, allows us to obtain

necessary conditions on the number of camera observations.

Property 9 Let us consider the systems defined in section IV.

When the observability of a mode requires the vehicle to move

with a non-constant speed, this mode cannot be determined

by two camera images. Similarly, when the observability of

a mode requires the vehicle to move with a non-constant

acceleration, this mode cannot be determined by three camera

images.

Proof: The proof is provided in [20] �

A consequence of properties 7, 8 and 9 is:

Theorem 1 (Minimum number of camera images) In or-

der to estimate the observable modes the camera must perform

at least three observations (i.e. the observability requires to

have at least three images taken from three distinct camera

poses). When the magnitude of the gravitational acceleration

(g) is unknown, the minimum number of camera images

becomes four.

Proof: The first part of this theorem is a simple conse-

quence of properties 8 and 9. The second part of this theorem

is a simple consequence of properties 7 and 9. �

In most of cases, the magnitude of the gravitational accel-

eration (g) is known with good accuracy. Hence, considering

the case of unknown gravity, could seem useless. On the other

hand, considering this case has a very practical importance (see

property 12 at the end of the next section).

VII. CLOSED-FORM SOLUTIONS TO DETERMINE ALL THE

OBSERVABLE MODES

We provide closed form solutions which directly express

the observable modes in terms of the sensor measurements

collected during a short time interval. For the sake of clarity,

we start by providing the closed-form solution in the case

without gravity (VII-A). Then, we provide the solution in

presence of gravity (VII-B) and bias (VII-C). We also discuss

the case of multiple features.

5Mathematically, this can be seen by proving that the expression of the

scale factor (i.e.
√

r2x + r2y + r2z ) is not a solution of the partial differential

equation associated to wscale
s .
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A. The case without Gravity

1) Single Feature: We start by discussing the case of one

feature. Property 2 states that the sensor data collected during

a given time interval contain the information to estimate the

vehicle speed and the position of the feature in the local

frame. Hence, we start by expressing the dynamics and the

observation in this frame. We have:

[

Ḟ = MF − V

V̇ = MV +A
(17)

where F is the position of the feature in the local frame and V

is the vehicle speed in the same frame. The matrix M depends

on the angular speed:

M ≡





0 Ωz −Ωy

−Ωz 0 Ωx

Ωy −Ωx 0





The validity of (17) can be checked by a direct substitution,

i.e. by using F̂ = −q∗r̂q, V̂ = q∗v̂q and by computing their

time derivatives by means of (8).

In the local frame, the observation in (9) is:

hcam = [y1, y2]
T =

[

Fx

Fz

,
Fy

Fz

]T

(18)

Let us consider a given time interval, [T0, T0+T ]. Our goal is

to estimate the position of the feature and the vehicle speed in

the local frame at T0, i.e. F0 ≡ F (T0) and V0 ≡ V (T0), by

only using the data from the camera and the IMU during the

interval [T0, T0+T ]. The measurements provided by the IMU
are usually delivered at a very high frequency (∼ 100 Hz).

This allows us to integrate the equations in (17). This seems

to be useless since we do not know the initial state [F0, V0]
T .

In fact, our goal is to estimate [F0, V0]
T . The basic idea is

the following. We numerically integrate the equations in (17)

by leaving symbolic the unknown components of the initial

state. In other words, we obtain for every time t > T0 the

analytical expression of the state [F (t), V (t)]T in terms of

its initial value [F0, V0]
T .

The following fundamental property holds:

Property 10 The position of the feature at any time, F (t),
linearly depends on the initial feature position, F0, and on

the initial vehicle speed, V0. In other words:

F (t) = CF (t)F0 + CV (t)V0 +CB(t) (19)

where CF (t), CV (t) are 3 × 3 matrices and CB(t) is a

3D−vector. In addition, CF (t) and CV (t) only depend on

Ω(τ), τ ∈ [T0, t].

Proof: See appendix B where CF , CV and CB are

computed �

We consider the components of F (t), i.e. Fx(t; F0, V0)
Fy(t; F0, V0) and Fz(t; F0, V0). By using (18) we obtain:

Fx(t; F0, V0) = y1(t) Fz(t; F0, V0) (20)

Fy(t; F0, V0) = y2(t) Fz(t; F0, V0)

These are two independent equations in our six unknowns

(which are the components of F0 and V0). On the basis

of property 10, the components of F (t) are linear on the

unknowns. Hence, the equations in (20) are linear and, by

having at least nobs = 3 camera observations, we can easily

obtain the initial state [F0, V0]
T . In [20] we analyze the case

nobs = 3 and we prove that the 6 equations are independent

(with the exception of special cases whose probability is zero).

Hence, in this case, the components of F0 and V0 are obtained

by inverting a (6 × 6) matrix. For larger nobs, it suffices to

compute the pseudoinverse of a (2nobs × 6) matrix.

2) Multiple Features: Let us consider the case when the

camera observes Nf features. Let us denote their position

in the local frame with F i, i = 0, 1, ..., Nf − 1. On

the basis of property 4, we know that we can estimate the

state [F 0, F 1, ...,FNf−1, V ] whose dynamics are given

by (17) with the first equation repeated for all the features.

The camera observation model is the one in (18), repeated

for all the features. Each camera observation consists of 2Nf

measurements, yi1, yi2, i = 0, 1, ..., Nf − 1. By proceeding

as in the case of one feature, we obtain a system of linear

equations similar to the one in (20). The number of unknowns

are now 3Nf + 3. By considering nobs camera observations,

the number of equations are 2nobsNf . When nobs = 2, we

have 4Nf equations. For Nf ≥ 3 the number of equations

is larger than the number of unknowns, i.e. 4Nf ≥ 3Nf + 3
when Nf ≥ 3. On the other hand, on the basis of theorem 1,

we know that these equations are not independent. Hence, the

minimum number of observations is 3 for any value of Nf .

However, a higher value of Nf will increase the precision of

the estimation.

B. The case with Gravity

1) Single Feature: As in the previous subsection, we start

by considering the case of a single feature. On the basis of

property 3, we know that the sensor data collected during a

given time interval, contain the information to estimate the

vehicle speed and the position of the feature in the local

frame, and, the absolute roll and pitch angles. We express the

dynamics and the observation in the local frame. We have:







Ḟ = MF − V

V̇ = MV +A+Ag

q̇ = mq

(21)

where q is the four vector whose components are the com-

ponents of the quaternion q, i.e. q = [qt, qx, qy, qz]
T . The

matrix M is provided in VII-A and the matrix m is:

m ≡
1

2









0 −Ωx −Ωy −Ωz

Ωx 0 Ωz −Ωy

Ωy −Ωz 0 Ωx

Ωz Ωy −Ωx 0









Ag is the gravitational acceleration in the local frame, i.e.

Âg = q∗âgq. We remark that, because of the gravity, the first

two equations in (21) cannot be separated from the equations

describing the dynamics of the quaternion, in contrast to the

case without gravity.
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Let us consider a given time interval, [T0, T0+T ]. In con-

trast to the previous case, our goal is now to also estimate the

absolute roll and pitch angles at the time T0. In other words,

the goal is the estimation of the state [F0, V0, R0, P0]
T , by

only using the data from the camera and the IMU during the

interval [T0, T0+T ]. We proceed as in the previous case. We

numerically integrate the equations in (21) by leaving symbolic

the unknown components of the initial state. On the other

hand, the components of q(T0) are not observable since the

yaw angle is not observable. In order to proceed as in the

previous subsection, we need to know how the position of the

feature at the time t, i.e. F (t), depends on [F0, V0, R0, P0]
T .

We have the following fundamental property, which extends

property 10 to the case with gravity:

Property 11 The position of the feature at any time, F (t),
linearly depends on the initial feature position, F0, on the

initial vehicle speed, V0, and on the three quantities: χα ≡
2g(qt0qy0 − qx0qz0), χβ ≡ −2g(qt0qx0 + qy0qz0) and χγ ≡
2g(q2x0 + q2y0)− g. In other words:

F (t) = CF (t)F0 + CV (t)V0 + Cχ(t)χg +CB(t) (22)

where χg ≡ [χα, χβ , χγ ]
T is the gravity vector in the local

frame at time T0, CF (t), CV (t), Cχ(t) are 3×3 matrices and

CB(t) is a 3D−vector. In addition, CF (t), CV (t) and Cχ(t)
only depend on Ω(τ), τ ∈ [T0, t].

Proof: See appendix C where CF , CV , Cχ and CB are

computed �

By proceeding as in the case without gravity we obtain the

analogous of equations (20). The new equations also depend

on the vector χg:

Fx(t; F0, V0, χg) = y1(t) Fz(t; F0, V0, χg) (23)

Fy(t; F0, V0, χg) = y2(t) Fz(t; F0, V0, χg)

i.e., each camera observation occurred at the time t ∈
[T0, T0 + T ] provides two equations in the nine unknowns

(which are the components of F0, V0 and χg). On the basis

of property 11, the components of F (t) are linear on the

unknowns. Hence, the equations in (23) are linear and, by

having at least nobs = 5 camera observations, we can easily

obtain the initial state [F0, V0, χg]
T . In particular, when

nobs ≥ 5, the components of F0, V0 and χg are obtained by

computing the pseudoinverse of a (2nobs × 9) matrix.

2) Single feature; exploiting additional information: On

the basis of property 3, we know that, regarding the vehicle

orientation, only the roll and pitch angles are observable

modes. Hence, it must be possible to express the components

of the vector χg only in terms of these two angles. In appendix

D we provide these expressions. These expressions contain

additional information to estimate [F0, V0, χg]
T . Indeed,

the components of χg are three but they only depend on two

quantities. An important consequence due to this additional in-

formation is that it is possible to estimate [F0, V0, χg]
T even

when the camera only performs nobs = 4 observations. On the

other hand, when more than four observations are available

(nobs ≥ 5), the expressions in (37) can be adopted to improve

the precision. We discuss the case of nobs = 4 observations

and we provide a procedure to perform the estimation. When

nobs = 4, the equations in (23) are eight. Hence, it is not

possible to determine the components of F0, V0 and χg by

a simple matrix inversion. However, it is possible to prove

that these equations are in general independent [20]. Let us

denote by Ax = b the linear system in (23) (i.e., the entries

of the nine-dimensional column vector x are the components

of the vectors F0, V0 and χg). The rank of the matrix A is

8. Let us denote by n the unit vector spanning the null space

of A (whose dimension is 1). The linear system Ax = b has

infinite solution. Each solution satisfies the following equation:

x = A∗b+γn, being A∗ the pseudoinverse of A and γ a scalar

number. The determination of γ is obtained by enforcing the

constraint that the norm of the vector formed by the last three

elements of x is equal to g.

|¶ (A∗b+ γn)| = g, ¶ ≡ [03×6, I3] (24)

where 0n×m is the n×m matrix whose entries are all zero

and I3 is the identity 3× 3 matrix. The equation in (24) is a

quadratic polynomial in γ and has two real roots. Hence, we

obtain two discrete solutions for x.

In the case we have nobs ≥ 5, the value of x is obtained by

using the 2nobs(≥ 10) equations in (23) (it suffices to compute

the pseudoinverse of A, whose dimension is (2nobs×9)). Then,

the equations in (37) are used to obtain the roll and pitch

angles. We have:

P = arcsin

(

χα

g

)

, R = − arcsin

(

χβ
√

g2 − χ2
α

)

(25)

The procedure described in this case of nobs ≥ 5 does

not exploit a possible knowledge of the magnitude of the

gravitational acceleration. This can be done by minimizing

the cost function:

c(x) = |Ax − b|2 (26)

under the constraint |χg| = g. This minimization problem can

be solved by using the method of Lagrange multipliers.

3) Multiple Features: Let us consider the case where the

camera observes Nf features. As in the previous section,

we denote their position in the local frame with F i, i =
0, 1, ..., Nf − 1. On the basis of property 4 we know that

we can estimate the state [F 0, F 1, ..., FNf−1, V, χg].
Each camera observation consists of 2Nf measurements,

yi1, yi2, i = 0, 1, ..., Nf − 1. By proceeding as in the case of

one feature, we obtain a system of linear equations similar to

the one in (23). The number of unknowns are now 3Nf + 6.

We have the following property:

Property 12 When the number of camera images is less or

equal to three (nobs ≤ 3) the rank of the matrix characterizing

the linear system in (23) is always smaller than the number

of unknowns, independently of the number of features.
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Proof: According to theorem 1, when nobs = 3 the

value of g, i.e. the magnitude of the vector χg , cannot

be determined. Hence, χg cannot be determined by simply

solving the linear system in (23). This means that the rank of

the matrix characterizing that linear system is always smaller

than the number of unknowns �

Let us consider the case of two points features in three

camera images. The unknowns are 12: the position of the two

features in the local frame (6 unknowns), the vehicle speed

in the local frame (3 unknowns) and the gravity vector in the

local frame (3 unknowns). The number of equations in (23) is

also 12. On the other hand, because of property 12, the rank

of the matrix characterizing the linear system in (23) is less

than 12. In [20] we prove that this rank is in general equal to

11 with the exception of the following special cases (when it

is less than 11):

1) at least one of the camera pose is aligned with the two

other features;

2) all the camera poses and the two features belong to the

same plane.

In general, i.e. when the rank is 11, the estimation can be

performed by using the value of g which must be a priori

known. Enforcing |χg| = g is obtained by solving equation

(24), with ¶ = [03×(3Nf+3), I3] = [03×6, I3]. Hence, as in the

case of a single feature in four images, two distinct solutions

are obtained.

Property 12 states that when nobs = 3, the determination

of the observable modes cannot be obtained by computing

a pseudoinverse also when the number of features is larger

than two. On the other hand, it is possible to show that, with

the exception of special cases, the observable modes can be

determined by enforcing |χg| = g. Hence, when nobs = 3 and

Nf ≥ 2, two distinct solutions are in general obtained. When

nobs ≥ 4, the determination of the observable modes can be

performed by the computation of a pseudoinverse, provided

that the number of equations is at least as the number of

unknowns and that the vehicle poses and the positions of the

features do not satisfy special conditions, whose probability

is zero (for instance when all the features and all the camera

poses lie on the same plane).

4) Multiple features; exploiting additional information:

As discussed in the second part of VII-B2, it is possible

to exploit an a priori knowledge of the magnitude of the

gravity to improve the precision. The procedure consists of

the minimization of the cost function in (26), as for the case

of one single feature.

C. The Case with Bias

We derive a closed-form solution only when the accelerom-

eters are affected by a bias, i.e. we will consider the case

Abias 6= [0 0 0]T and Ωbias = [0 0 0]T . Indeed, all the

matrices appearing in (22) depend on Ω(τ) and therefore on

Ωbias. Hence, when Ωbias is unknown, the dependence of

F (t) on all the unknowns (F0, V0, χg and Ωbias) becomes

non linear making more complex their derivation. In contrast,

when the bias on the accelerometers is unknown, we obtain

the following property, which extends property 11:

Property 13 The position of the feature at any time, F (t),
linearly depends on the initial feature position, F0, on the

initial vehicle speed, V0, on χg and on the bias on the

accelerometers Abias. In other words:

F (t) = (27)

= CF (t)F0+CV (t)V0+Cχ(t)χg+CAbias
(t)Abias+CB(t)

where χg ≡ [χα, χβ , χγ ]
T and CF (t), CV (t), Cχ(t),

CAbias
(t) are 3 × 3 matrices and CB(t) is a 3D−vector. In

addition, CF (t), CV (t), Cχ(t) and CAbias
(t) only depend on

Ω(τ), τ ∈ [T0, t].

Proof: See the last paragraph of appendix C �

By proceeding as in the case without bias we obtain the

analogous of equations (23). The new equations also depend

on the vector Abias:

Fx(t; F0, V0, χg, Abias) = y1(t) Fz(t; F0, V0, χg, Abias)
(28)

Fy(t; F0, V0, χg, Abias) = y2(t) Fz(t; F0, V0, χg, Abias)

i.e., each camera observation occurred at the time t ∈
[T0, T0 + T ] provides two equations in the 12 unknowns

(which are the components of F0, V0, χg and Abias). On

the basis of property 13, the components of F (t) are linear

on the unknowns. Hence, the equations in (28) are linear and

they allow us to determine the state [F0, V0, χg, Abias]
T .

VIII. PERFORMANCE EVALUATION

We evaluate the performance of the proposed strategy by

using both synthetic and real data. The advantage of simula-

tions is that the ground truth is perfectly known and this allows

us a quantitative evaluation of the proposed strategy. We also

investigate the accuracy of the proposed approach in the case

where the data from the accelerometers are affected by a bias.

This will be considered in a single simulation discussed in

VIII-A3. In all the other simulations and in the experiments,

we assume unbiased inertial measurements.

A. Accuracy of the Algorithm via Monte Carlo Simulations

We simulate many different trajectories in 3D. For all

the simulations we use the proposed strategy to estimate the

distance of the Nf observed features (di ≡ |di − r| =
∣

∣F i
∣

∣,

i = 0, 1, ...Nf − 1), the speed of the camera (v ≡ |v| =
√

v2x + v2y + v2z =
√

V 2
x + V 2

y + V 2
z ) and the roll and the

pitch angles (R ≡ arctan(2Qr) and P ≡ arcsin(2Qp)).
Specifically, in all the simulations the values of the estimated

di, v, R, P will be compared with the ground truth values.

1) Simulated Trajectories: The trajectories are generated by

randomly generating the linear and angular acceleration of the

camera at 100 Hz. In particular, at each time step, the three

components of the linear acceleration and the angular speed

are generated as Gaussian independent variables whose mean

values will be denoted respectively with µa and µω and whose

variances will be denoted respectively with σ2
a and σ2

ω . By

performing many simulations we observed that the precision
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of the proposed strategy in estimating the roll and pitch angles

is almost independent of µω , σ2
ω and σ2

a. On the other hand, the

precision on the estimated di and v significantly depends on µa

and also depends on σ2
a. This is not surprising. Indeed, accord-

ing to property 8, when the camera moves at constant speed,

the absolute scale cannot be estimated. Hence, we expect that

when µa becomes smaller the precision on the estimation of

di and v becomes worse. We set the parameters in order to be

close to a real case (as in the experiment discussed in VIII-B;

see also figure 7 b): σa = 1 ms−2, µω = 0 deg s−1 and

σω = 1 deg s−1. Regarding µa we considered the following

two values µa = 0 ms−2 and µa = 0.3 ms−2. The initial

vehicle position is at the origin. We adopt many different

values for the initial speed. In the simulations here provided

it is set equal to: [0.3, 0.3, 0.3]ms−1.

2) Simulated Sensors: Starting from the performed trajec-

tory, the true angular speed and the linear acceleration are

computed at each time step of 0.01s (respectively, at the time

step i, we denote them with Ωtrue
i and Atrue

v i ). Starting

from them, the IMU sensors are simulated by randomly

generating the angular speed and the linear acceleration at

each step according to the following: Ωi = N
(

Ωtrue
i , PΩi

)

and Ai = N
(

Atrue
v i − Agi − Abias i, PAi

)

where:

• N indicates the Normal distribution whose first entry is

the mean value and the second its covariance matrix;

• PΩi
and PAi

are the covariance matrices characterizing

the accuracy of the IMU ;

• Agi is the gravitational acceleration in the local frame

and Abias i is the bias affecting the data from the

accelerometer.

In all the simulations we set both the matrices PΩi
and

PAi
diagonal and in particular: PΩi

= σ2
gyroI3 and PAi

=
σ2
accI3, where I3 is the identity 3× 3 matrix. We considered

several values for σgyro and σacc, in particular: σgyro ∈
[0.3, 10] deg s−1 and σacc ∈ [0.01, 0.3]ms−2.

Regarding the camera, the provided readings are generated

in the following way. By knowing the true trajectory, the

true bearing angles of the feature in the camera frame are

computed. They are computed each 0.3s. Then, the camera

readings are generated by adding to the true values zero-mean

Gaussian errors whose variance is equal to (1 deg)2 for all

the readings.

3) Simulation Results: We start by showing the results

related to an illustrative case, where the vehicle performs a 3D
trajectory. In particular, the simulated vehicle moves during

100s. Figure 5 a displays the vehicle trajectory together with

the position of the point features.

The camera observes all the features whose distance is

smaller than 5m. In this simulation, the parameters charac-

terizing the error on the IMU are set as follows: σgyro =
1 deg s−1 and σacc = 0.03ms−2. The number of observations

for every estimation is nobs = 8.

Figure 5b shows the norm of the vehicle speed. The blue

dots are the true values while the red disks are the estimated

ones. Figures 6 (left and right) display the roll and pitch

angles and figure 7a shows the three components of the bias

affecting the tri-axial accelerometer. The camera performs a

new observation every 0.3s. Since nobs = 8, the length of the

a b

Fig. 5. In a: typical 3D motion generated in our simulations; the red stars
indicate the point features. In b: the true (blue dots) and the estimated (red
disks) vehicle speed.

time interval necessary to perform a single estimation is 2.4s.

Note that the value of the bias is changing very slowly with

time and it can be assumed constant during every estimation

process.

Fig. 6. Roll (left) and pitch (right) angles during the simulated experiment.
The blue dots are the ground truth and the red disks the estimated values.

a b

Fig. 7. In a: the three bias components of the accelerometers; from the
bottom to the top the x, y and z components. In b: the three components of
the acceleration provided by the tri-axial accelerometer in the real experiments
(see section VIII-B); from the bottom to the top the x, y and z components.

In order to have more quantitative results we performed

many simulations. We considered different scenarios by vary-

ing the number of observed features (Nf ), the values of σgyro

and σacc, the number of observations nobs and the parameter

µa which characterizes the motion. Regarding Nf , we per-

formed simulations with 1 ≤ Nf ≤ 10. We found that there is

a significant precision improvement by passing from Nf = 1
to Nf = 2 while, for larger Nf , the precision improvement is

negligible. For this reason, in this section only the results for

Nf = 1 and Nf = 2 are provided. The position of the features

was randomly generated with a uniform distribution on the box

centered on the origin and with size 5m. Figure 8 summarizes
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the results of this investigation by displaying the estimation

error vs the number of camera observations (nobs). 16 subplots

are provided. From the bottom to the top they display the error

on the pitch angle, the roll angle, the vehicle speed and the

distance of the observed features, respectively. From the left

to the right they regard the case of Nf = 1, µa = 0 ms−2,

Nf = 1, µa = 0.3 ms−2, Nf = 2, µa = 0 ms−2 and

Nf = 2, µa = 0.3 ms−2. Every subplot displays 4 distinct

curves, which correspond to 4 different settings of the sensor

noise (i.e. the values of σgyro and σacc). From the bottom

to the top, the sensor noise increase. In particular, from the

bottom to the top of every subplot the values are: σgyro =
0.3 deg s−1 σacc = 0.01 ms−2, σgyro = 1 deg s−1 σacc =
0.03 ms−2, σgyro = 3 deg s−1 σacc = 0.1 ms−2 and

σgyro = 10 deg s−1 σacc = 0.3 ms−2. Each value is

computed by running 100 Monte Carlo simulations. Regarding

the distance d, the provided error (the four pictures at the

top) is averaged on the two features when Nf = 2. As stated

in section VII-B3, when Nf = 2, three observations allow

performing the estimation. This is the reason why the smallest

nobs is 3 when Nf = 2 (the subplots in the last two columns).

Regarding the case of a single feature, as explained in section

VII-B2, the smallest nobs is 4.

Figure 8 clearly shows that, when the vehicle motion is

characterized by a low acceleration (µa = 0ms−2, first and

third column) the precision on the vehicle speed and on the

absolute scale is worse than for the case of higher acceleration

(µa = 0.3ms−2, second and fourth column). On the other

hand, for the roll and the pitch angles, the precision increases

by decreasing the acceleration.

Fig. 8. Error on the observable modes averaged on 100 simulations.

Finally, we performed Monte Carlo simulations in order to

investigate the statistical properties of the noise resulting from

the estimation procedure. These simulations clearly show that

the proposed procedure is not bias-affected and that the noise

is well approximated by a Gaussian distribution. For the sake

of brevity, only the case of the roll angle is shown. Figure 9

displays the error distribution together with the best Gaussian

fit (solid line). This plot is obtained by counting for each

bin of 0.2deg the number of simulations which provide an

error on the roll angle falling in the considered bin. Then,

the plotted points are normalized by enforcing the area to

be 1. The number of simulations is 104. In every simulation,

the procedure uses four consecutive camera images and two

point features. The variances characterizing the sensors are

σgyro = 10 deg s−1 σacc = 0.3 ms−2, i.e. they are set as

in the worst case considered in the simulations shown in fig.

8. Similar results have been obtained for the other estimated

quantities and by using other noise sensor settings.

Fig. 9. Distribution of the noise on the roll angle (blue line) and its best
Gaussian fit (red line).

B. Performance Evaluation with Real Data

We evaluate the performance of the proposed algorithm by

using two distinct data sets, the first is in 2D and the second

in 3D. For the sake of brevity, we show the results obtained

with the 3D data set. The results obtained with the 2D data

set can be found in [20].

The data have been provided by the autonomous system lab-

oratory at ETHZ in Zurich. The data are provided together with

a reliable ground-truth, which has been obtained by performing

the experiments at the ETH Zurich Flying Machine Arena

[17], which is equipped with a Vicon motion capture system.

The visual and inertial data are obtained with a monochrome

USB-camera gathering 752 × 480 images at 15Hz and a

Crossbow VG400CC-200 IMU providing the data at 75 Hz.

The camera field of view is 150 deg. The calibration of the

camera was obtained by using the omnidirectional camera

toolkit by Scaramuzza [26]. Finally, the extrinsic calibration

between the camera and the IMU has been obtained by using

the strategy introduced in [16]. The experiment here analyzed

lasted for about 250s.

Figure 10 a shows the trajectory (ground truth) during the

time interval [200, 240]s.

Figures 10 b and 11 show the results regarding the estimated

speed, roll and pitch angles, respectively. In all those figures,

the blue dots are the ground truth while the red disks are the

estimated values.

IX. CONCLUSION

In this paper we investigated the problem of vision and in-

ertial data fusion. Specifically, we considered a sensor assem-

bling constituted by one monocular camera, three orthogonal
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a b

Fig. 10. In a: the trajectory (ground truth) in the 3D real data set during the
time interval [200, 240]s. In b: the vehicle speed in the real 3D experiment.
Blue dots are the ground truth and red disks the estimated values.

Fig. 11. Roll (left) and pitch (right) angles in the real 3D experiment. Blue
dots are the ground truth and red disks the estimated values.

accelerometers and three orthogonal gyroscopes. We provided

two main contributions:

1) The analytical derivation of all the observable modes,

i.e. all the physical quantities that can be determined by

only using the information in the sensor data acquired

during a short time interval;

2) The analytical derivation of closed-form solutions which

analytically express the observable modes in terms of the

sensor measurements collected during a very short time

interval.

The first contribution has been discussed in section V and

VI. These sections provide quantitative results in many differ-

ent contexts, including the case of biased and unbiased inertial

measurements, the case of a single and multiple features, and

in presence and absence of gravity. In our opinion, there are

cases where the provided results are not intuitive. Property

5 states that, by only observing one single feature, there is

all the necessary information to determine the speed in the

local frame, the position of the feature in the same frame,

the absolute roll and pitch angles and the biases affecting

the inertial measurements. This is a non intuitive result. In

addition, the minimum number of camera images necessary

to perform the state determination has been provided.

The second contribution provides closed form expressions

which allow us to simultaneously determine all the observable

modes without the need of any initialization or a priori

knowledge. In particular, only few camera observations are

necessary. This is a key advantage since it allows us to quickly

recover the observable modes even after a kidnapping. In

mobile robotics, and in particular in aerial navigation, this

becomes a fundamental advantage. Another important aspect

of these closed form expressions is that they can even work

by only using a single feature. This allows us to design very

efficient and robust computation methods, such as 1-point

RANSAC [27], [28], to prune false matches and outliers.

The performance of the proposed approach has been eval-

uated via extensive Monte Carlo simulations and real experi-

ments.

Future works will be devoted to extend the proposed esti-

mation approach by also taking into account varying sensor

accuracies in order to give preferential weighting to the more

accurate sensor in the results. Additionally, the approach

could be extended to incorporate the benefit of a possible

previous knowledge on the state. To this regard, we remark

that he proposed procedure is not optimal. The mentioned key

advantage that it is able to determine the observable modes

by only using the sensor data provided during a short interval,

has the drawback that it does not exploit a possible previous

information on these modes. We also want to analytically

investigate the independence of the equations in the closed

form solutions in presence of bias. In particular, we want to

investigate the cases when the number of observations and

features are the minimum required to perform the estimation

on the basis of the observability analysis. Currently, this

analysis has been done in the case without bias (section

VII-B2).

APPENDIX A

NUMBER OF INDEPENDENT LIE DERIVATIVES FOR THE

SYSTEM ANALYZED IN V-A

The system is characterized by the state: [r v q]T , whose

dimension is 10. The dynamics are given in (8) (without the

term âg , since we are considering the case g = 0) and the

observations are given in (9) and (10). In order to compute

the Lie derivatives, we need to express the dynamics as in (4).

We have L = 6 and the six inputs are the three components

of the acceleration, A, and the three components of the

angular speed, Ω. Hence: u1 = Ax, u2 = Ay , u3 = Az ,

u4 = Ωx, u5 = Ωy , u6 = Ωz . The seven vector functions

f0, f1, ..., f6 are:

f0 = [vx, vy, vz, 07]
T

f1 = [03, q
2
t+q2x−q2y−q2z , 2qtqz+2qyqx, −2qtqy+2qzqx, 04]

T

f2 = [03, −2qtqz+2qyqx, q
2
t+q2y−q2z−q2x, 2qtqx+2qzqy, 04]

T

f3 = [03, 2qtqy+2qzqx, −2qtqx+2qzqy, q
2
t+q2z−q2x−q2y, 04]

T

f4 = [06, −1/2qx, 1/2qt, 1/2qz, −1/2qy]
T

f5 = [06, −1/2qy, −1/2qz, 1/2qt, 1/2qx]
T

f6 = [06, −1/2qz, 1/2qy, −1/2qx, 1/2qt]
T

where we denoted with 0n the vector line whose dimension

is n and whose entries are all zeros.

We must compute the Lie derivatives of all the three

observations function given in (9) and (10) with respect to

all the vector fields. By a direct computation, performed by

using the symbolic Matlab computational tool, we were able to

find the following 7 independent Lie derivatives: L0y1, L0y2,

L0hconst, L1
f0

y1, L1
f0

y2, L2
f0, f0

y1, L2
f0, f1

y1. We know
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that we cannot have more than 7 independent Lie derivatives

(otherwise, we would have less than three symmetries). Hence,

the number of independent Lie derivatives is 7.

APPENDIX B

COMPUTATION OF F (t) AND V (t) IN THE CASE WITHOUT

GRAVITY

We provide the expression of F (t) and V (t) in terms of

the the initial values F (T0) = F0 and V (T0) = V0 and the

acceleration A(τ) and angular speed Ω(τ), τ ∈ [T0, t].
By discretizing the second equation in (17) and by denoting

with j the jth time step (corresponding with tj), we obtain

Vj = (I3+Mjdtj)Vj−1+Ajdtj , where Mj is the matrix M
provided in section VII at the time step j, I3 is the identity

matrix 3× 3 and dtj = tj − tj−1.

The previous expression for Vj provides the following

expression in terms of the initial conditions:

Vj = Ξj

(

V0 +

j
∑

k=1

Ξ−1
k Akdtk

)

(29)

where:

Ξj ≡

j
∏

k=1

(I3 +Mkdtk) (30)

is the rotation matrix between the local frame at time T0 and

the local frame at time tj . In the same way we finally obtain

the expression of Fj in terms of the initial conditions:

Fj = Ξj

(

F0 −

j
∑

k=1

Ξ−1
k Vkdtk

)

= (31)

= Ξj

(

F0 − (tj − T0)V0 −

j
∑

k=1

k
∑

k′=1

Ξ−1
k′ Ak′dtkdtk′

)

Hence, we have Fj = CF (tj)F0 + CV (tj)V0 + CB(tj)
with: CF (tj) ≡ Ξj , CV (tj) ≡ (T0 − tj)Ξj , CB(tj) ≡

−Ξj

∑j
k=1

∑k
k′=1 Ξ

−1
k′ Ak′dtkdtk′ .

APPENDIX C

COMPUTATION OF F (t) AND V (t) IN THE CASE WITH

GRAVITY

We provide the expression of F (t) and V (t) in terms of the

the initial values F (T0) = F0, V (T0) = V0, q(T0) = q0 and

the acceleration A(τ) and angular speed Ω(τ), τ ∈ [T0, t].
As we will see, the dependence on the initial quaternion q0 is

only through the three quantities: χα ≡ 2g(qt0qy0 − qx0qz0),
χβ ≡ −2g(qt0qx0+qy0qz0) and χγ ≡ 2g(q2x0+q2y0)−g, which

are the component of the gravity vector in the local frame at

time T0. In addition, this dependence is linear as it is linear

the dependence on F0 and V0.

Before integrating the second equation in (21), as in the

appendix B, we consider the new term Ag , which depends

on the quaternion. In particular, we separate in this term the

time-dependent part from the part which is time-independent.

Specifically, we introduce the quaternion p(t) such that q(t) =

q0p(t): Âg(t) = q(t)∗âgq(t) = p(t)∗q∗0 âgq0p(t). p(t) satisfies

the same time differential equation as q(t), i.e. ṗ = 1
2pΩ̂, but,

p(0) = 1. Let us denote with χg the 3D vector associated

with the quaternion q∗0 âgq0, i.e. χ̂g ≡ q∗0 âgq0. By a direct

computation we obtain:

χg = 2g





qt0qy0 − qx0qz0
−qt0qx0 − qy0qz0
q2x0 + q2y0 −

1
2



 =





χα

χβ

χγ



 (32)

and Ag(t) = Ξ(t)χg , where Ξ(t) is given in (30). We

integrate the second equation in (21), obtaining:

Vj = (I3 +Mjdtj)Vj−1 +Bjdtj (33)

where Bj = Aj + Ag j = Aj + Ξjχg .

The previous expression for Vj provides the following

expression in terms of the initial conditions:

Vj = Ξj

[

V0 + (tj − T0)χg +

j
∑

k=1

Ξ−1
k Akdtk

]

(34)

In the same way we finally obtain the expression of Fj in

terms of the initial conditions:

Fj = Ξj

(

F0 −

j
∑

k=1

Ξ−1
k Vkdtk

)

= Ξj [F0+ (35)

−(tj − T0)V0 −
(tj − T0)

2

2
χg −

j
∑

k=1

k
∑

k′=1

Ξ−1
k′ Ak′dtkdtk′

]

Hence, we have:

Fj = CF (tj)F0 + CV (tj)V0 + Cχ(tj)χg +CB(tj) (36)

with: CF (tj) ≡ Ξj , CV (tj) ≡ (T0 − tj)Ξj , Cχ(tj) ≡

−Ξj
(tj−T0)

2

2 , CB(tj) ≡ −Ξj

∑j
k=1

∑k
k′=1 Ξ

−1
k′ Ak′dtkdtk′

and the matrix Ξj , given in (30), is computed by only

using the gyro’s measurements in the time-interval [T0, tj ].
Note that CF (tj), CV (tj) and Cχ(tj) only depend on Ω(τ),
τ ∈ [T0, tj ].

In the case where the tri-axial accelerometer is affected by a

bias, the derivation of the expression of Fj is very similar. The

only difference is that in (33), the term Bj also includes the

bias Abias. In particular we have Bj = Aj+Ξjχg + Abias.

The expression of Fj differs from the one in (36) since

it includes a new term: Fj = CF (tj)F0 + CV (tj)V0 +
Cχ(tj)χg +CB(tj) + CAbias

(tj)Abias, where CAbias
(tj) ≡

−Ξj

(

∑j
k=1

∑k
k′=1 Ξ

−1
k′ dtk′dtk

)

.

APPENDIX D

ANALYTICAL EXPRESSION OF χα , χβ AND χγ IN TERMS OF

THE ROLL AND PITCH ANGLES

Let us consider the unit quaternion: qt + qxi + qyj + qzk.

By denoting with R, P and Y respectively the roll, pitch and

yaw angles, we have [14]:
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qt = cos
R

2
cos

P

2
cos

Y

2
+ sin

R

2
sin

P

2
sin

Y

2

qx = sin
R

2
cos

P

2
cos

Y

2
− cos

R

2
sin

P

2
sin

Y

2

qy = cos
R

2
sin

P

2
cos

Y

2
+ sin

R

2
cos

P

2
sin

Y

2

qz = cos
R

2
cos

P

2
sin

Y

2
− sin

R

2
sin

P

2
cos

Y

2

We use these expressions to obtain χα = 2g(qtqy − qxqz),
χβ = −2g(qtqx + qyqz) and χγ = 2g(q2x + q2y) − g in terms

of the roll, pitch and yaw angles. As expected on the basis of

property 3, they only depend on the roll and pitch angles. By

a direct substitution we obtain:

χα = g sinP, χβ = −g sinR cosP, χγ = −g cosR cosP
(37)
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