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Abstract. Current vision systems are designed to perform in clear weather. Needless to say, in any outdoor

application, there is no escape from “bad” weather. Ultimately, computer vision systems must include mechanisms

that enable them to function (even if somewhat less reliably) in the presence of haze, fog, rain, hail and snow.

We begin by studying the visual manifestations of different weather conditions. For this, we draw on what is

already known about atmospheric optics, and identify effects caused by bad weather that can be turned to our

advantage. Since the atmosphere modulates the information carried from a scene point to the observer, it can be

viewed as a mechanism of visual information coding. We exploit two fundamental scattering models and develop

methods for recovering pertinent scene properties, such as three-dimensional structure, from one or two images

taken under poor weather conditions.

Next, we model the chromatic effects of the atmospheric scattering and verify it for fog and haze. Based on this

chromatic model we derive several geometric constraints on scene color changes caused by varying atmospheric

conditions. Finally, using these constraints we develop algorithms for computing fog or haze color, depth segmen-

tation, extracting three-dimensional structure, and recovering “clear day” scene colors, from two or more images

taken under different but unknown weather conditions.

Keywords: physics based vision, atmosphere, bad weather, fog, haze, visibility, scattering, attenuation, airlight,

overcast sky, scene structure, defog, dehaze

1. Computer Vision and the Weather

Virtually all work in computer vision is based on the

premise that the observer is immersed in a transparent

medium (air). It is assumed that light rays reflected by

scene objects travel to the observer without attenuation

or alteration. Under this assumption, the brightness of

an image point depends solely on the brightness of a

single point in the scene. Quite simply, existing vision

sensors and algorithms have been created only to func-

tion on “clear” days. A dependable vision system how-

ever must reckon with the entire spectrum of weather

conditions, including, haze, fog, rain, hail and snow.

The study of the interaction of light with the atmo-

sphere (and hence weather) is widely known as atmo-

spheric optics. Atmospheric optics lies at the heart of

the most magnificent visual experiences known to man,

including, the colors of sunrise and sunset, the blueness

of the clear sky, and the rainbow (see Minnaert (1954)

and Henderson (1977)). The literature on this topic has

been written over the past two centuries. A summary of

where the subject as a whole stands would be too am-

bitious a pursuit. Instead, our objective will be to sieve

out of this vast body of work, models of atmospheric

optics that are of direct relevance to computational vi-

sion. Our most prominent sources of background mate-

rial are the works of McCartney (1975) and Middleton

(1952) whose books, though dated, serve as excellent

reviews of prior work.

The key characteristics of light, such as its intensity

and color, are altered by its interactions with the atmo-

sphere. These interactions can be broadly classified
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into three categories, namely, scattering, absorption

and emission. Of these, scattering due to suspended

particles is the most pertinent to us. As can be expected,

this phenomenon leads to complex visual effects. So,

at first glance, atmospheric scattering may be viewed

as no more than a hindrance to an observer. However, it

turns out that bad weather can be put to good use. The

farther light has to travel from its source (say, a surface)

to its destination (say, a camera), the greater it will

be effected by the weather. Hence, bad weather could

serve as a powerful means for coding and conveying

scene structure. This observation lies at the core of our

investigation; we wish to understand not only what

bad weather does to vision but also what it can do for

vision.

Surprisingly little work has been done in computer

vision on weather related issues. An exception is

the work of Cozman and Krotkov (1997) which uses

the scattering models in McCartney (1975) to com-

pute depth cues. Their algorithm assumes that all scene

points used for depth estimation have the same inten-

sity on a clear day. Since scene points can have their

own reflectances and illuminations, this assumption is

hard to satisfy in practice.

Research in image processing has been geared to-

wards restoring contrast of images degraded by bad

weather. Note that bad weather effects depend strongly

on the depths of scene points. Hence, simple contrast

enhancement techniques such as histogram equaliza-

tion and contrast stretching do not suffice here. Oakley

and Satherley (1998) use separately measured range

data and describe an algorithm to restore contrast of at-

mospherically degraded images based on the principles

of scattering. However, they approximate the distribu-

tion of radiances in the scene by a single gaussian with

known variance. Kopeika (1998) and Yitzhaky et al.

(1998) restore image contrast using weather predicted

atmospheric modulation transfer function and an a pri-

ori estimate of the distance from which the scene was

imaged.

The goal of our work is to lay the foundation for

interpreting scenes from one or more images taken un-

der bad weather conditions. We discuss various types

of weather conditions and their formation processes.

We summarize two models of atmospheric scattering—

attenuation and airlight—that are most pertinent to us.

Using these models, we develop algorithms that re-

cover complete depth maps of scenes without requiring

any prior information about the properties of the scene

points or atmospheric conditions.

Next, we study the color effects of atmospheric scat-

tering. A new model that describes the appearance of

scene colors under bad weather is presented and ver-

ified for fog and haze. Based on this color model, we

develop several geometric constraints on scene-color

changes, caused by varying atmospheric conditions.

Using these constraints, we present methods to recover

structure as well as “clear day” scene colors from im-

ages taken under poor weather conditions. All of these

methods only require changes in weather conditions

and accurate measurement of scene irradiance, and not

any prior information about the scene points or weather

conditions.

2. Bad Weather: Particles in Space

Weather conditions differ mainly in the types and sizes

of the particles involved and their concentrations in

space. A great deal of effort has gone into measur-

ing particle sizes and concentrations for a variety of

conditions (see Table 1). Given the small size of air

molecules, relative to the wavelength of visible light,

scattering due to air is rather minimal. We will refer

to the event of pure air scattering as a clear day (or

night). Larger particles produce a variety of weather

conditions which we will briefly describe below.

Haze. Haze is constituted of aerosol which is a dis-

persed system of small particles suspended in gas.

Haze has a diverse set of sources including volcanic

ashes, foliage exudation, combustion products, and

sea salt (see Hidy (1972)). The particles produced by

these sources respond quickly to changes in relative

humidity and act as nuclei (centers) of small water

droplets when the humidity is high. Haze particles

are larger than air molecules but smaller than fog

droplets. Haze tends to produce a distinctive gray or

bluish hue and is certain to effect visibility.

Table 1. Weather conditions and associated particle types, sizes

and concentrations (adapted from McCartney (1975)).

Condition Particle type Radius (µm) Concentration (cm−3)

Air Molecule 10−4 1019

Haze Aerosol 10−2–1 103–10

Fog Water droplet 1–10 100–10

Cloud Water droplet 1–10 300–10

Rain Water drop 102–104 10−2–10−5
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Fog. Fog evolves when the relative humidity of an air

parcel reaches saturation. Then, some of the nuclei

grow by condensation into water droplets. Hence,

fog and certain types of haze have similar origins

and an increase in humidity is sufficient to turn haze

into fog. This transition is quite gradual and an inter-

mediate state is referred to as mist. While perceptible

haze extends to an altitude of several kilometers, fog

is typically just a few hundred feet thick. A practical

distinction between fog and haze lies in the greatly

reduced visibility induced by the former. There are

many types of fog (ex., radiation fog, advection fog,

etc.) which differ from each other in their formation

processes (Myers, 1968).

Cloud. A cloud differs from fog only in existing at

higher altitudes rather than sitting at ground level.

While most clouds are made of water droplets like

fog, some are composed of long ice crystals and ice-

coated dust grains. Details on the physics of clouds

and precipitation can be found in Mason (1975). For

now, clouds are of less relevance to us as we restrict

ourselves to vision at ground level rather than high

altitudes.

Rain and snow. The process by which cloud droplets

turn to rain is a complex one (Mason, 1975). When

viewed up close, rain causes random spatial and tem-

poral variations in images and hence must be dealt

with differently from the more static weather con-

ditions mentioned above. Similar arguments apply

to snow, where the flakes are rough and have more

complex shapes and optical properties (Koenderink

and Richards, 1992; Ohtake, 1970). Snow too, we

will set aside for now.

3. Mechanisms of Atmospheric Scattering

The manner in which a particle scatters incident light

depends on its material properties, shape and size. The

exact form and intensity of the scattering pattern varies

dramatically with particle size (Minnaert, 1954). As

Figure 1. A particle in the path of an incident light wave abstracts

and reradiates incident energy. It therefore behaves like a point source

of light. The exact scattering function is closely related to the ratio of

particle size to wavelength of incident light. (Adapted from Minnaert

(1954)).

seen in Fig. 1, a small particle (about 1/10 λ, where

λ is the wavelength of light) scatters almost equally

in the forward (incidence) and backward directions,

a medium size particle (about 1/4 λ) scatters more

in the forward direction, and a large particle (larger

than λ) scatters almost entirely in the forward direc-

tion. Substantial theory has been developed to derive

scattering functions and their relations to particle size

distributions (Mie, 1908; Hulst, 1957; Chandrasekhar,

1960; Chu and Hogg, 1968; Rensch and Long, 1970;

Nieto-Vesperinas and Dainty, 1990).

Figure 1 illustrates scattering by a single particle.

Clearly, particles are accompanied in close proximity

by numerous other particles. However, the average sep-

aration between atmospheric particles is several times

the particle size. Hence, the particles can be viewed as

independent scatterers whose scattered intensities do

not interfere with each other. This does not imply that

the incident light is scattered only by a single particle.

Multiple scatterings take place and any given particle

is exposed not only to the incident light but also light

scattered by other particles. A simple analogy is the

inter-reflections between scene points. In effect, multi-

ple scattering causes the single scattering functions in

Fig. 1 to get smoother and less directional.

Now, consider the simple illumination and detection

geometry shown in Fig. 2. A unit volume of scatter-

ing medium with suspended particles is illuminated

with spectral irradiance E(λ) per cross section area.

The radiant intensity I (θ, λ) of the unit volume in the

direction θ of the observer is (see McCartney (1975)):

I (θ, λ) = β(θ, λ)E(λ), (1)

where, β(θ, λ) is the angular scattering coefficient. The

radiant intensity I (θ, λ) is the fiux radiated per unit

solid angle, per unit volume of the medium. The irradi-

ance E(λ) is, as always, the flux incident on the volume

Figure 2. A unit volume of randomly oriented suspended particles

illuminated and observed.
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per unit cross-section area. The total flux scattered (in

all directions) by this volume is obtained by integrating

over the entire sphere:

φ(λ) = β(λ)E(λ), (2)

where, β(λ) is the total scattering coefficient. It rep-

resents the ability of the volume to scatter flux of a

given wavelength in all directions. It is generally as-

sumed that the coefficient β(λ) is constant (homoge-

neous medium) over horizontal paths. To satisfy this

constraint, we will restrict ourselves to the case where

the observer is at (or close to) ground level and is in-

terested not in the sky but other objects on (or close

to) ground level. Also, we will assume that the atmo-

sphere is more or less homogeneous in the scene of

interest.

3.1. Attenuation

The first mechanism that is relevant to us is the at-

tenuation of a beam of light as it travels through

the atmosphere. This causes the radiance of a scene

point to fall as its depth from the observer increases.

Here, we will summarize the derivation of the atten-

uation model given in McCartney(1975). Consider a

collimated beam of light incident on the atmospheric

medium, as shown in Fig. 3. The beam is assumed to

have unit cross-sectional area. Consider the beam pass-

ing through an infinitesimally small sheet (lamina) of

thickness dx . The fractional change in irradiance at

location x can be written as:

d E(x, λ)

E(x, λ)
= −β(λ) dx . (3)

Figure 3. Attenuation of a collimated beam of light by suspended

particles. The attenuation can be derived by viewing the medium as

a continuum of thin sheets.

By integrating both sides between the limits x = 0 and

x = d we get:

E(d, λ) = Eo(λ)e−β(λ)d , (4)

where, Eo(λ) is the irradiance at the source (x = 0). This

is Bouguer’s exponential law of attenuation (Bouguer,

1729). At times, attenuation due to scattering is ex-

pressed in terms of optical thickness, T = β(λ)d . The

utility of Bouguer’s law is somewhat limited as it as-

sumes a collimated source of incident energy. This is

easily remedied by incorporating the inverse-square

law for diverging beams from point sources:

E(d, λ) =
Io(λ)e−β(λ)d

d2
, (5)

where, Io(λ) is the radiant intensity of the point source.

This is Allard’s law (Allard, 1876). (See Hardy (1967)

for an analysis of the applicability of the inverse square

criterion for sources of various sizes.)

In deriving Allard’s law, we have assumed that all

scattered flux is removed from the incident energy. The

fraction of energy that remains is called direct transmis-

sion and is given by expression (5). We have ignored the

flux scattered in the forward direction (towards the ob-

server) by each particle. Fortunately, this component is

small in vision applications since the solid angles sub-

tended by the source and the observer with respect to

each other are small (see Middleton (1949)). In the re-

mainder of the paper, we refer to the terms direct trans-

mission model and attenuation model interchangeably.

Finally, in some situations such as heavy fog, the

exponential law may not hold due to significant mul-

tiple scatterings of light by atmospheric particles. We

will assume here that once light flux is scattered out

of a column of atmosphere (seen by a pixel, say), it

does not re-enter the same column (or only an insignif-

icant amount does). Multiple scattering can also cause

blurring in the image of a scene. In other words, the

flux scattered out of an atmospheric column (visible to

a pixel) enters another column (seen by a neighboring

pixel). In this work, we do not model the blurring effects

of multiple scattering.

3.2. Airlight

A second mechanism causes the atmosphere to behave

like a source of light. This phenomenon is called airlight

(Koschmieder, 1924) and it is caused by the scatter-

ing of environmental illumination by particles in the
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atmosphere. The environmental illumination can have

several sources, including, direct sunlight, diffuse sky-

light and light reflected by the ground. While attenua-

tion causes scene radiance to decrease with pathlength,

airlight increases with pathlength. It therefore causes

the apparent brightness of a scene point to increase

with depth. We now build upon McCartney’s (1975)

derivation of airlight as a function of pathlength.

Consider the illumination and observation geometry

shown in Fig. 4. The environmental illumination along

the observer’s line of sight is assumed to be constant

but unknown in direction, intensity and spectrum. In

effect, the cone of solid angle dω subtended by a sin-

gle receptor at the observer’s end, and truncated by a

physical object at distance d , can be viewed as a source

of airlight. The infinitesimal volume dV at distance x

from the observer may be written as the product of the

cross section area, dω x2, and thickness dx :

dV = dω x2 dx . (6)

Irrespective of the exact type of environmental illumi-

nation incident upon dV , its intensity due to scattering

in the direction of the observer is:

d I (x, λ) = dV kβ(λ) = dωx2 dxkβ(λ), (7)

where, β(λ) is the total scattering coefficient and the

proportionality constant k accounts for the exact na-

ture of the illumination and the form of the scattering

function.

Figure 4. The cone of atmosphere between an observer and an

object scatters environmental illumination in the direction of the

observer. It therefore acts like a source of light, called airlight, whose

brightness increases with pathlength.

If we view element dV as a source with intensity

d I (x, λ), the irradiance it produces at the observer’s

end, after attenuation due to the medium, is given by

(5):

d E(x, λ) =
d I (x, λ)e−β(λ)x

x2
. (8)

We can find the radiance of dV from its irradiance as:

d L(x, λ) =
d E(x, λ)

dω
=

d I (x, λ)e−β(λ)x

dωx2
. (9)

By substituting (7) we get d L(x, λ) = kβ(λ)e−β(λ)x dx .

Now, the total radiance of the pathlength d from the

observer to the object is found by integrating this

expression between x = 0 and x = d:

L(d, λ) = k
(
1 − e−β(λ)d

)
. (10)

If the object is at an infinite distance (at the horizon), the

radiance of airlight is maximum and is found by setting

d = ∞ to get L∞(λ) = k. Therefore, the radiance of

airlight for any given pathlength d is:

L(d, λ) = L∞(λ)
(
1 − e−β(λ)d

)
. (11)

As expected, the radiance of airlight for an object right

in front of the observer (d = 0) equals zero. Of great

significance to us is the fact that the above expression

no longer includes the unknown factor k. Instead, we

have the airlight radiance L∞(λ) at the horizon, which

is an observable.

3.3. Overcast Sky Illumination

Allard’s attenuation model in (5) is in terms of the

radiant intensity of a point source. This formulation

does not take into account the sky illumination and

its reflection by scene points. We make two simpli-

fying assumptions regarding the illumination received

by a scene point. Then, we reformulate the attenuation

model in terms of sky illumination and the BRDF of

scene points.

Usually, the sky is overcast under foggy conditions.

So, we use the overcast sky model for environmen-

tal illumination (Gordon and Church, 1966; Moon and

Spencer, 1942). We also assume that the irradiance at

each scene point is dominated by the radiance of the

sky, and that the irradiance due to other scene points

is not significant. In Appendix A, we show that the
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attenuated irradiance at the observer is given by,

E(d, λ) = g
L∞(λ)ρ(λ)e−β(λ)d

d2
. (12)

where L∞(λ) is the horizon radiance. ρ(λ) represents

the sky aperture (the cone of sky visible to a scene

point), and the reflectance of the scene point in the di-

rection of the viewer. g represents the optical settings of

the camera (aperture, for instance). Note that we refer

to (5) as the direct transmission model while dealing

with images of light sources taken at night. However,

while dealing with images of scenes taken during day-

light, we refer to (12) as the direct transmission model.

4. Depths of Light Sources from Attenuation

Consider the image of an urban setting taken at night

(see Fig. 5). Environmental illumination of the scene

due to sunlight, skylight and reflected ground light are

minimal and hence airlight can be safely ignored. The

bright points in the image are mainly sources of light

such as street lamps and windows of lit rooms. On a

clear night, these sources are visible to a distant ob-

server in their brightest and clearest forms. As haze or

fog sets in, the radiant intensities of the sources dimin-

ish due to attenuation. Our goal here is to recover the

relative depths of the sources in the scene from two

images taken under different (unknown) atmospheric

conditions.

Since environmental illumination is negligible at

night, the image irradiance of a light source in the scene

can be expressed using the attenuation model (5) as:

E(d, λ) = g
Io(λ)e−β(λ)d

d2
, (13)

Figure 5. The relative depths of sources of unknown intensities can

be recovered from two images taken under different but unknown

atmospheric conditions.

where, Io(λ) is the radiant intensity of the source, d

is the distance between the source and the camera and

the constant gain g accounts for the optical parameters

(aperture, for instance) of the camera. It is important

to note that β(λ) is the total scattering coefficient and

not the angular one. We are assuming here that the

lines of sight are not too inclined and hence all lines

of sight pass through the same atmospheric conditions.

This removes all dependence on the exact form of the

scattering function; the attenuation is determined by a

single coefficient β(λ) that is independent of viewing

direction.

If the detector of the camera has spectral response

s(λ), the final image brightness recorded is determined

as:

E ′ =

∫
s(λ)E(d, λ) dλ =

∫
gs(λ)

Io(λ)e−β(λ)d

d2
dλ.

(14)

For the visible light spectrum, the relationship be-

tween the scattering coefficient β, and the wavelength

λ, is given by the inverse power law (analogous to

Rayleigh’s law for small air particles):

β(λ) =
Constant

λγ
, (15)

where γ ∈ [0, 4]. Fortunately, for fog and dense haze,

γ ≈ 0 (see Middleton (1952) and McCartney (1975)).

In these cases, β does not change appreciably with

wavelength. Furthermore, since the spectral bandwidth

of the camera is rather limited (visible light range for

a gray-scale camera, and even narrower spectral bands

when the camera is color), we will assume the scatter-

ing coefficient β(λ) to be constant over this bandwidth.

Then, we have:

E ′ = g
e−βd

d2

∫
s(λ)I (λ) dλ = g

e−βd

d2
I ′. (16)

Now consider two different weather conditions, say,

mild and dense fog. Or, one of the conditions could be

clear with β = 0. In either case we have two different

attenuation coefficients, β1 and β2. If we take the ratio

of the two resulting image brightness values, we get:

R =
E ′

1

E ′
2

= e−(β1−β2)d . (17)

Using the natural log, we obtain: R′ = ln R = −(β1 −

β2)d . This quantity is independent of the sensor gain

and the radiant intensity of the source. In fact, it is
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nothing but the difference in optical thicknesses (DOT)

of the source for two weather conditions. In the at-

mospheric optics literature, the term DOT is used as a

quantitative measure of the “change” in weather con-

ditions. Now, if we compute the DOTs of two different

light sources in the scene (see Fig. 5) and take their ra-

tio, we determine the relative depths of the two source

locations:

R′
i

R′
j

=
di

d j

(18)

Hence, the relative depths of all sources (with unknown

radiant intensities) in the scene can be computed from

two images taken under unknown but different haze or

fog conditions. Since we may not entirely trust the DOT

computed for any single source, the above calculation

may be made more robust by using:

R′
i∑ j=N

j=0 R′
j

=
di∑ j=N

j=0 d j

(19)

By setting the denominator on the right hand side to an

arbitrary constant we have computed the depths of all

sources in the scene up to a scale factor.

Figure 6 shows experimental results on the recovery

of light sources from night images. This experiment

and all subsequent ones are based on images acquired

using a Nikon N90s SLR camera and a Nikon LS-2000

slide scanner. All images are linearized using the ra-

diometric response curve of the imaging system that

is computed off-line using a color chart. Figure 6(a)

shows a clear day image of a scene with five lamps.

This image is provided only to give the reader an idea

of where the lamps are located in the scene. Figures

6(b) and (c) are clear night and foggy night images of

the same scene. The above algorithm for depth estima-

tion was used to recover the locations of all five light

sources up to a scale factor. Figure 6(d) shows different

perspectives of the recovered coordinates of the lamps

in three-dimensional space. The poles and the ground

plane are added only to aid visualization of the results.

5. Structure from Airlight

Under dense fog and close by objects or mild fog and

distant objects, attenuation of object brightness is se-

vere and airlight is the main cause of image irradiance.

Also, in the case of dense haze around noon, airlight

dominates. In such cases, airlight causes object bright-

ness to increase with distance from the observer. Here,

we present a simple method for computing scene struc-

ture from a single airlight image. A different but re-

lated method for computing depth cues was proposed

by Cozman and Krotkov (1997).

Let a scene point at depth d produce airlight radiance

L(d, λ). If our camera has a spectral response s(λ), the

final brightness value recorded for the scene point is:

E ′(d) =

∫
gs(λ)L(d, λ) dλ, (20)

where, g accounts for the constant of proportionality

between scene radiance and image irradiance (Horn,

1986). Substituting the model for airlight given by (11)

we get:

E ′(d) =

∫
gs(λ)L∞(λ)

(
1 − e−β(λ)d

)
dλ (21)

where, L∞(λ) is again the radiance of airlight at the

horizon. As before, we will assume that the scatter-

ing coefficient β(λ) is more or less constant over the

spectral band of the camera. This allows us to write:

E ′(d) = E∞(1 − e−βd ). (22)

Let us define:

S =
E∞ − E ′(d)

E∞

. (23)

By substituting (22) in the above expression and taking

the natural logarithm, we get:

S′ = ln S = −βd. (24)

Hence, the three-dimensional structure of the scene

can be recovered up to a scale factor (the scattering

coefficient β) from a single image. Clearly, at least

a small part of the horizon must be visible to obtain

E∞. If so, this part is easily identified as the bright-

est region of the image. If there is a strong (direc-

tional) sunlight component to the illumination, scat-

tering would be greater is some directions and airlight

could be dependent on viewing direction. This problem

can be alleviated by using the horizon brightness E∞

that lies closest to the scene point under consideration.

Figure 7 shows the structure of an urban setting com-

puted from a hazy image taken around noon, and the

structure of a mountain range computed using a foggy

image. Given that some of the objects are miles away
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Figure 6. Relative depths from brightness decay of point sources at night. (a) A scene with five light sources (street lamps). This image is shown

only to convey the relative locations of the sources to the reader. (b) An image of the scene taken on a clear night. (c) An image of the scene taken

on a foggy night. The three-dimensional coordinates of the five sources were computed from images (b) and (c). (d) Rotated graphical illustrations

used to demonstrate the computed lamp coordinates (small bright spheres). The lamp poles and the ground plane are added only to aid visualization.

from the camera, such scene structures are hard to com-

pute using stereo or structure from motion. An interest-

ing study of the visibility of distant mountains taking

into account earth’s curvature can be found in Porch

(1975).

6. Dichromatic Atmospheric Scattering

Thus far, we have not taken into account the chro-

matic effects of atmospheric scattering. Furthermore,

we have described attenuation and airlight separately.

However, in most situations the effects of both attenua-

tion and airlight coexist. In the remainder of the paper,

we discuss the chromatic effects of atmospheric scat-

tering that include both attenuation and airlight, and

hence develop a general framework for analyzing color

images taken in bad weather. For this, we first present

a new model that describes the appearance of scene

colors in poor visibility conditions.

As we know, attenuation causes the radiance of the

surface to decay as it travels to the observer. In addition,

if the particle sizes are comparable to the wavelengths
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Figure 7. Structure from one image taken under dense fog/haze. (Left column) (a) Image of an urban scene taken under noon haze. (b) Depth

map of the scene computed using the image in (a). (c) A three-dimensional rendering of the scene. (Right column) (d) Image of a mountain

range taken under foggy conditions. (e) Depth map computed from the image in (d). (f) A three-dimensional rendering of the scene. Some of

the objects in these scenes are several kilometers away from the camera.

of the reflected light, the spectral composition of the re-

flected light can be expected to vary as it passes through

the medium. For fog and dense haze, these shifts in

the spectral composition are minimal (see Middleton

(1952) for details), and hence we may assume the hue

of direct transmission to be independent of the depth

of the reflecting surface. The hue of airlight depends

on the particle size distribution and tends to be gray or

light blue in the case of haze and fog. Therefore, the

final spectral distribution E(d, λ) received by the ob-

server is a sum of the distributions D(d, λ) of directly

transmitted light and A(d, λ) of airlight, which are de-

termined by the attenuation model (12) and the airlight

model (11) respectively:

E(d, λ) = D(d, λ) + A(d, λ),

D(d, λ) = g
e−β(λ)d

d2
L∞(λ)ρ(λ), (25)

A(d, λ) = g
(
1 − e−β(λ)d

)
L∞(λ).

Here, L∞(λ) is the radiance of the horizon (d = ∞),

and g is a constant that accounts for the optical settings

of the imaging system. ρ(λ) represents the reflectance
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properties and sky aperture of the scene point. We refer

to the above expression as the dichromatic atmospheric

scattering model. It is similar in its spirit to the dichro-

matic reflectance model (Shafer, 1985) that describes

the spectral effects of diffuse and specular surface re-

flections. A fundamental difference here is that one of

our chromatic components is due to surface and vol-

ume scattering (transmission of reflected light) while

the other is due to pure volume scattering (airlight). If

a chromatic filter with a spectral response f (λ) is in-

corporated into the imaging system, image irradiance

is obtained by multiplying (25) by f (λ) and integrating

over λ:

E ( f )(d) = D( f )(d) + A( f )(d). (26)

In the case of a color image detector several such filters

(say, red, green and blue) with different sensitivities

are used to obtain a color measurement vector. The

dichromatic model can then be written as:

E(d) = D(d) + A(d) (27)

where, E = [E ( f1), E ( f2), . . . . E ( fn )]T . As we men-

tioned earlier (see (15)), for fog and haze, the depen-

dence of the scattering coefficient β(λ) on the wave-

length (within the small bandwidth of the camera) of

light tends to be rather small. Therefore, except in the

case of certain types of metropolitan haze, we may as-

sume the scattering coefficient to be constant with re-

spect to wavelength (β(λ) = β). Then, expression (26)

may be simplified as:

E ( f )(d) = p′(d)D( f ) + q ′(d)A( f ), (28)

where:

D( f ) =

∫
g f (λ)L∞(λ)ρ(λ) dλ,

A( f ) =

∫
g f (λ)L∞(λ) dλ, (29)

p′(d) =
e−βd

d2
, q ′(d) = (1 − e−βd ).

Here, D( f ) is the image irradiance due to the scene point

without atmospheric attenuation and A( f ) is the image

irradiance at the horizon in the presence of bad weather.

We are assuming here that the clear and bad weather

have illuminations with similar spectral distributions.

Hence, the color measurement given by (27) can be

rewritten as: E(d) = p′(d)D+q ′(d)A. Since the inten-

sity of illumination (or magnitude of the illumination

Figure 8. Dichromatic atmospheric scattering model. The color E

of a scene point on a foggy or hazy day, is a linear combination of

the direction D̂ of direct transmission color, and the direction Â of

airlight color.

spectrum) at a scene point is expected to vary between

clear and bad weather, it is more convenient to write:

E(d) = m|L∞|p′(d)D̂ + n|L∞|q ′(d)Â (30)

where D̂ and Â are unit vectors and m and n are scalars.

|L∞| is the magnitude of the illumination spectrum. For

convenience, the dichromatic model is re-written as:

E = pD̂ + qÂ, (31)

where p is the magnitude of direct transmission, and q

is the magnitude of airlight (see Fig. 8). From (30) we

have,

p =
E∞re−βd

d2
, q = E∞(1 − e−βd ). (32)

where E∞ = n|L∞|, is termed as the sky intensity and

r = m/n is a function that depends on the properties

of the scene point (reflectance and sky aperture). For

our analysis, the exact nature of r is not important; it

suffices to note that r does not depend on the weather

condition β.1 This simplified dichromatic scattering

model will prove useful in the coming sections when we

attempt to recover scene structure and remove weather

effects from images.

It is easy to see that the simplified dichromatic model

(31) is linear in color space. In other words, D̂, Â and

E lie on the same dichromatic plane in color space. As
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Figure 9. For fog and haze, the transmittance (e(−β(λ)d)) does not

vary appreciably with wavelength within the visible spectrum. The

plots were generated using the atmospheric transmission software

MODTRAN 4.0, with a fixed viewing geometry (distance, d and

viewing directions are fixed).

stated earlier, we impose the restriction that the hue of

illumination under various weather conditions remains

the same although its intensity can vary. It follows that

the unit vectors D̂ and Â do not change due to dif-

ferent atmospheric conditions (say, mild fog and dense

fog). Therefore, the colors of any scene point, observed

under different atmospheric conditions, lie on a single

dichromatic plane (see Fig. 10(a)).

We performed simulations using the atmospheric

transmission software MODTRAN 4.0 (Acharya et al.,

1999) to verify that the scattering coefficient does

not vary with wavelength within the visible spectrum

(0.4µ–0.7µ). Figure 9 shows plots of transmittance

(e−β(λ)d ) for a particular viewing geometry in fog and

haze respectively. The distance from the observer to the

scene was fixed at d = 0.2 km and the viewing direc-

tion was fixed at 5 degrees off the ground plane. The

plots show that the variation in β is very small within

the visible spectrum.

Experiments with real scenes (shown in Fig. 17)

were performed to verify this model under three differ-

ent fog and haze conditions. The sky was overcast in

all these conditions. The images used contained around

half a million pixels. The dichromatic plane for each

pixel was computed by fitting a plane to the colors of

that pixel, observed under the three atmospheric condi-

tions. The error of the plane-fit was computed in terms

of the angle between the observed color vectors and

the estimated plane. The average absolute error (in de-

Figure 10. (a) Dichromatic plane geometry and its verification. The

observed color vectors Ei of a scene point under different (two in this

case) foggy or hazy conditions lie on a plane called the dichromatic

plane. (b) Experimental verification of the dichromatic model with

two scenes imaged under three different foggy and hazy conditions,

respectively. The error was computed as the mean angular deviation

(in degrees) of the observed scene color vectors from the estimated

dichromatic planes, over half a million pixels in the images.

grees) for all the pixels in each of the two scenes is

shown in Fig. 10(b). The small error values indicate

that the dichromatic model indeed works well for fog

and haze.

7. Weather Removal and Structure using

Chromatic Decomposition

Consider color images of a scene taken under clear

weather and foggy or hazy weather. Assume that the

clear day image is taken under environmental illumi-

nation with similar spectral characteristics as the bad

weather image. If not, a white patch in the scene may

be used to apply the needed color corrections. The sky

in the bad weather image reveals the direction of the

airlight color Â. The direction of the color D̂ of each

scene point is revealed by the clear weather image.

Therefore, Eq. (31) can be used to decompose the bad

weather color E at each pixel into its two components

and determine the airlight magnitude q(d). The result-

ing airlight image is then used to compute a depth

map as described in Section 5. Figure 11 shows ex-

perimental results obtained using the above decompo-

sition method. Figure 12 demonstrates a simple form of

weather removal by defogging windows of buildings.

In computing depth from the airlight component, we

have assumed that the atmosphere itself is uniformly

illuminated. Consider a pathlength that extends from a

point on a building to an observer. Clearly, atmospheric

points closer to the building see less of the sky due to

occlusion by the building. This effect increases towards

the foot of the building. Some of the errors in the com-

puted structure can be attributed to this illumination
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Figure 11. Structure from chromatic decomposition. (a) Clear day

image of buildings. (b) Foggy day image of the same scene. (c) The

direct transmission component (brightened) estimated by the chro-

matic decomposition algorithm. Black and gray points (windows)

are discarded due to lack of color. (d) Depth map of the scene com-

puted from the airlight component (depths of window areas are inter-

polated). (e) A three-dimensional rendering of the computed depth

map.

Figure 12. Demonstration of fog removal. (a) A clear day image

of a building taken under an overcast sky. The color directions (and

not magnitudes) of scene points (non-window regions) are recorded

as true colors or clear day colors. (b) A foggy day image of the

same scene again captured under an overcast sky. Note: Even though

both images in (a) and (b) were taken on overcast days (ie., spectral

composition of the daylight on both days are more or less identical),

the horizon brightnesses (and/or camera exposure parameters) can

vary. (c) The true colors recorded were used to decompose the foggy

image into direct transmission and airlight components. The airlight

component was subtracted from the window regions to demonstrate

a simple form of weather removal.
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occlusion effect (see Appendix B for a more detailed

treatment).

Finally, there are certain limitations to this type of

decomposition. First, we cannot decompose (31) if

both the airlight and scene points have the same color.

Also, this algorithm for chromatic decomposition is re-

strictive since it requires a clear day image of the scene.

In the remainder of the paper, we develop more general

constraints and algorithms to compute structure as well

as recover “clear day” colors, without requiring a clear

day image of the scene.

8. Computing the Direction of Airlight Color

The direction of airlight (fog or haze) color can be

simply computed by averaging a patch of the sky on

a foggy or hazy day (as was done in Section 7), or

from scene points whose direct transmission color is

black.2 However, these methods necessitate either (a)

the inclusion of a part of the sky (which is more prone to

color saturation or clipping) in the image or (b) a clear

day image of the scene with sufficient black points to

yield a robust estimate of the direction of airlight color.

Here, we present a method that does not require either

the sky or a clear day image, to compute the direction

of airlight color.

Figure 13 illustrates the dichromatic planes for two

scene points Pi and Pj , with different direct transmis-

sion colors D̂(i) and D̂( j). The dichromatic planes Qi

Figure 13. Intersection of two different dichromatic planes yields

the direction Â of airlight color.

and Q j are given by their normals,

Ni = E
(i)
1 × E

(i)
2 ,

(33)
N j = E

( j)

1 × E
( j)

2 .

Since the direction Â of the airlight color is the same for

the entire scene, it must lie on the dichromatic planes of

all scene points. Hence, Â is given by the intersection

of the two planes Qi and Q j ,

Â =
Ni × N j

‖Ni × N j‖
. (34)

In practice, scenes have several points with different

colors. Therefore, we can compute a robust intersec-

tion of several dichromatic planes by minimizing the

objective function

ǫ =
∑

i

(Ni · Â)2. (35)

Thus, we are able to compute the color of fog or haze

using only the observed colors of the scene points under

two atmospheric conditions, and not relying on a patch

of the sky being visible in the image.

We verified the above method for the two scenes

shown in Fig. 17. First, the direction of airlight color

was computed using (35). Then, we compared it with

the direction of the airlight color obtained by averag-

ing an unsaturated patch of the sky. For the two scenes,

the angular deviations were found to be 1.2◦ and 1.6◦

respectively. These small errors in the computed di-

rections of airlight color indicate the robustness of the

method.

9. Dichromatic Constraints for Iso-depth

Scene Points

In this section, we derive a simple constraint for scene

points that are at the same depth from the observer. This

constraint can then be used to segment the scene based

on depth, without knowing the actual reflectances of

the scene points and their sky apertures. For this, we

first prove the following lemma.

Lemma. Ratios of the direct transmission magni-

tudes for points under two different weather conditions

are equal, if and only if the scene points are at equal

depths from the observer.

Proof: Let β1 and β2 be two unknown weather con-

ditions with horizon brightness values E∞1
and E∞2

.
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Let Pi and Pj be two scene points at depths di and d j ,

from the observer. Also, let r (i) and r ( j) represent sky

apertures and reflectances of these points.

From (32), the direct transmission magnitudes of Pi

under β1 and β2, can be written as

p
(i)
1 =

E∞1
r (i)e−β1di

d2
i

, p
(i)
2 =

E∞2
r (i)e−β2di

d2
i

.

Similarly, the direct transmission magnitudes of Pj

under β1 and β2, are

p
( j)

1 =
E∞1

r ( j)e−β1d j

d2
j

, p
( j)

2 =
E∞2

r ( j)e−β2d j

d2
j

.

Then, we immediately see that the relation:

p
(i)
2

p
(i)
1

=
p

( j)

2

p
( j)

1

=

(
E∞2

E∞1

)
e−(β2−β1)d , (36)

holds if and only if di = d j = d .

So, if we have the ratio of direct transmissions for

each pixel in the image, we can group the scene points

according to their depths from the observer. But how

do we compute this ratio for any scene point without

knowing the actual direct transmission magnitudes?

Consider the dichromatic plane geometry for a scene

point P , as shown in Fig. 14. Here, we denote a vector

by the line segment between its end points. Let p1 and

p2 be the unknown direct transmission magnitudes of P

Figure 14. Geometric constraint for iso-depth scene points. The

ratio p2/p1 of the direct transmissions for a scene point under two

different atmospheric conditions is equal to the ratio |E2 At |/|Ei O|

of the parallel sides. Shaded triangles are similar.

under β1 and β2, respectively. Similarly let q1 and q2 be

the unknown airlight magnitudes for P under β1 and β2.

We define a magnitude |O At | on the airlight vector

such that E2 At ‖ E1 O . Also, since the direction of di-

rect transmission color for a scene point does not vary

due to different atmospheric conditions, E1 A1 ‖ E2 A2.

Here A1 and A2 correspond to the end points of the

airlight magnitudes of P under β1 and β2, as shown in

Fig. 14. Thus, △E1 O A1 ∼ △E2 At A2. This implies,

p2

p1

=
q2 − |O At |

q1

=
|E2 At |

|E1 O|
. (37)

Since the right hand side of (37) can be computed using

the observed color vectors of the scene point P , we

can compute the ratio (p2/p1) of direct transmission

magnitudes for P under two atmospheric conditions.

Therefore, from (36), we have a simple method to find

points at the same depth, without having to know their

reflectances and sky apertures.

Let us now consider the numerical stability of the

direct transmission ratio (37). Under heavy fog/haze (or

when the dynamic range of the sensor is low), the direct

transmission magnitudes are low and their ratio could

be unstable. In such cases, the ratio constraint can be

supported by another constraint for depth segmentation

we describe briefly. Consider the dichromatic planes of

two different scene points as illustrated in Fig. 15. It

Figure 15. Another geometric constraint for two scene points to be

equidistant from the observer. The dichromatic planes for the two

points P1 and P2 are shown. Note that superscripts denote scene

points while subscripts denote weather conditions. Shaded triangles

are similar if and only if P1 and P2 are equidistant from the observer.

Hence the iso-depth constraint is E
(1)
1 E

(2)
1 ‖ E

(1)
2 E

(2)
2 .
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can be shown (using the geometric analysis in Fig. 14)

that the shaded triangles are similar if and only if the

two scene points are at equal depths from the observer.

Therefore, the constraint for two scene points to be

iso-depth is given in terms of observables,

E
(1)
1 E

(2)
1 ‖ E

(1)
2 E

(2)
2 . (38)

Using the constraints in (36) and (38) a sequential la-

beling like algorithm can be used to efficiently segment

scenes into regions of equal depth.

10. Scene Structure from Two Bad

Weather Images

We extend the direct transmission ratio constraint given

in (36) one step further and present a method to con-

struct the complete structure of an arbitrary scene, from

two images taken under poor weather conditions.

From (36), the ratio of direct transmissions of a scene

point P under two atmospheric conditions, is given

by

p2

p1

=
E∞2

E∞1

e−(β2−β1)d . (39)

Note that we have already computed the left hand side

of the above equation using (37). Taking natural loga-

rithms on both sides, we get

(β2 − β1)d = ln

(
E∞2

E∞1

)
− ln

(
p2

p1

)
. (40)

So, if we know the horizon brightness values, E∞1
and

E∞2
, then we can compute the scaled depth (β2 −β1)d

at P . As before, (β2 − β1)d is just the difference in

optical thicknesses (DOT) for the pathlength d , under

the two weather conditions.

10.1. Estimation of E∞1
and E∞2

The expression for scaled depth give in (40), includes

the horizon brightness values, E∞1
and E∞2

. These two

terms are observables only if some part of the sky is

visible in the image. However, the brightness values

within the region of the image corresponding to the

sky, cannot be trusted since they are prone to intensity

saturation and color clipping. Here, we estimate E∞1

and E∞2 using only points in the “non-sky” region of

the scene.

Let q1 and q2 denote the magnitudes of airlight for

a scene point P under atmospheric conditions β1 and

β2. Using (32), we have

q1 = E∞1
(1 − e−β1d ), q2 = E∞2

(1 − e−β2d ). (41)

Therefore,

E∞2
− q2

E∞1
− q1

=
E∞2

E∞1

e−(β2−β1)d . (42)

Substituting (39), we can rewrite the previous equation

as
(

p2

p1

)
=

q2 − c

q1

, where, c = E∞2
−

(
p2

p1

)
E∞1

.

(43)

Comparing (43) and (37), we get c = |O At | (see

Fig. 14). hence, the expression for c in (43) repre-

sents a straight line equation in the unknown param-

eters, E∞1
and E∞2

. Now consider several pairs of

{c(i), (p
(i)
2 /p

(i)
1 )} corresponding to scene points Pi , at

different depths. Then, the estimation of E∞1
and E∞2

is reduced to a line fitting problem. Quite simply, we

have shown that the horizon brightnesses under dif-

ferent weather conditions can be computed using only

non-sky scene points.

Since both the terms on the right hand side of (40) can

be computed for every scene point, we have a simple

algorithm for computing the scaled depth at each scene

point, and hence the complete scene structure, from two

images taken under different atmospheric conditions.

10.2. Experimental Results

We now present results showing scene structure recov-

ered from both synthetic and real images. The synthetic

scene we used is shown on the left side of Fig. 16(a)

as a 200 × 200 pixel image with 16 color patches. The

colors in this image represent the direct transmission or

“clear day” colors of the scene. We assigned a random

depth value to each color patch. The rotated 3D struc-

ture of the scene is shown on the right side of Fig. 16(a).

Then, two different levels of fog (β1/β2 = 0.67) were

added to the synthetic scene according to the dichro-

matic model. To test robustness, we added noise to the

foggy images. The noise was randomly selected from a

uniformly distributed color cube of dimension 10. The
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Figure 16. Experiments with a synthetic scene. (a) On the left, a

200 × 200 pixel image representing a synthetic scene with 16 color

patches, and on the right, its rotated 3D structure. (b) Two levels of

fog (β1/β2 = 0.67) are added to the synthetic image according to

the dichromatic model. To test robustness, noise is added by random

selection from a uniformly distributed color cube of dimension 10.

(c) The recovered structure (3 × 3 median filtered).

resulting two foggy (and noisy) images are shown in

Fig. 16(b). The structure shown in 16(c) is recovered

from the two foggy images using the technique we de-

scribed above.

Simulations were repeated for the scene in Fig. 16(a)

for two relative scattering coefficient values (β1/β2),

and three different noise levels. Once again, the noise

was randomly selected from a uniformly distributed

color cube of dimension η. Table 2 shows results of sim-

ulations for two parameter sets {β1/β2, E∞1
, E∞2

} =

{0.5, 100, 255} and {0.67, 200, 400}. The computed

Figure 17. Structure from two bad weather images. (a) A scene im-

aged under two different foggy conditions. (b) Depth map computed

from images in (a). (c) Another scene imaged under two different

hazy conditions. (d) Depth map computed from images in (c). All

these images were captured under overcast sky conditions.

values for E∞1
, E∞2

, and the percentage RMS error

in the recovered scaled depths, computed over all

200 × 200 pixels are given. These results show that

our method for recovering structure is robust for rea-

sonable amounts of noise.

Experiments with two real scenes under foggy and

hazy conditions are shown in Fig. 17. The first of the

two scenes was imaged under two foggy conditions,

and is shown in 17(a). The second scene was imaged
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Table 2. Simulations were repeated for the scene in Fig. 16(a), for

two sets of parameter values, and three different noise levels. Noise

was randomly selected from a uniformly distributed color cube of

dimension η.

Noise (η) 0 5 10 15

Actual values {β1/β2, E∞1
, E∞2

} = {0.5, 100, 255}

Estimated E∞1
100 108.7 109.2 119.0

Estimated E∞2
255 262.7 263.6 274.0

Depth error (%) 0.0 7.14 11.7 15.3

Actual values {β1/β2, E∞1
, E∞2

} = {0.67, 200, 400}

Estimated E∞1
200 204.3 223.7 249.5

Estimated E∞2
400 403.8 417.5 444.2

Depth error (%) 0.0 12.3 15.3 17.8

under two hazy conditions as shown in 17(c).

Figure 17(b) and (d) shows the corresponding re-

covered depth maps.

11. Clear Day Scene Colors

As we stated in the beginning of the paper, most out-

door vision applications perform well only under clear

weather. Any discernible amount of scattering due to

fog or haze in the atmosphere, hinders a clear view

of the scene. Earlier we presented a simple form of

weather removal that requires a clear day image of the

scene (see Figs. 11 and 12 in Section 7). In this section,

we compute the scene colors as they would appear on

a clear but overcast day from two bad weather images.

More precisely, we compute the direct transmission

colors of the entire scene using minimal a priori scene

information. For this, we first show that, given addi-

tional scene information (airlight or direct transmission

vector) at a single point in the scene, we can compute

the clear day colors of the entire scene from two bad

weather images.

Consider the dichromatic model given in (31). The

color of a scene point Pi under weather condition β is,

E(i) = p(i)D̂(i) + q (i)Â, (44)

where p(i) is the direct transmission magnitude, and

q (i) is the airlight magnitude of Pi . Suppose that the

direction D̂(i) of direct transmission color for a single

point Pi is given. Besides, the direction Â of airlight

color for the entire scene can be estimated using (35).

Therefore, the coefficients p(i) and q (i) can be computed

using (44). Furthermore, the optical thickness βdi of

Pi can be computed from (32).

Since we have already shown how to compute the

scaled depth of every scene point (see (40)), the relative

depth d j/di of any other scene point Pj with respect

to Pi can be computed using the ratio of scaled depths.

Hence, the optical thickness and airlight for the scene

point Pj , under the same atmospheric condition are

given by

βd j = βdi (d j/di ),
(45)

q ( j) = E∞(1 − e−βd j ).

Finally, the direct transmission color vector of Pj can

be computed as

p( j)D̂( j) = E( j) − q ( j)Â. (46)

Thus, given a single measurement (in this case, the

direction of direct transmission color of a single scene

point), we have shown that the direct transmission and

airlight color vectors of any other point, and hence the

entire scene can be computed. But how do we specify

the clear day color of any scene point without actually

capturing the clear day image?

For this, we assume that there exists at least one

scene point whose direct transmission color D lies on

Figure 18. The observed color E of a scene point, its airlight di-

rection Â and clear day color direction D̂ are shown in the R-G-B

color cube. q̃ is the distance from E to a surface of the cube along

negative Â. For scene points whose clear day colors do not lie on the

cube surface, q̃ is greater than the true airlight magnitude q .
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Figure 19. [(a) and (c)] Clear day scene colors recovered from the

two foggy and hazy images shown in Fig. 17(a) and (c) respectively.

The colors in some of the dark window interiors are dominated by

airlight and thus their clear day colors are computed to be black.

The images are median filtered to reduce noise and brightened for

display purposes. [(b) and (d)] Actual clear day images of the scenes

are shown for qualitative comparison. Note: The clear day images

on the right and the bad weather images (Fig. 17) were captured

on different days. Some differences between actual and recovered

clear day colors are due to the different spectral distributions of

illumination in the scene, during image acquisition.

the surface of the color cube (including origin or black)

and we wish to identify such point(s) in the scene auto-

matically. Consider the R-G-B color cube in Fig. 18. If

the clear day color of a scene point lies on the surface

Figure 20. (a) and (b) Foggy images of a scene under an overcast

sky. (c) Defogged image. (d) Actual clear day image taken under a

partly cloudy sky.



Vision and the Atmosphere 251

Figure 21. (a) Depth map computed using images in Fig. 20(a) and (b). Depth map is brightened for display purposes. (b) Table comparing

the computed relative depths with ground truth relative depths of 5 different regions, d1 − d4, in the scene. The relative depths are averaged over

small neighborhoods. Note that scaled depth can be computed only approximately due to the illumination occlusion problem (see Appendix B

for more details). The depths in some window interiors are not reliable since they changed during acquisition of images over time.

of the color cube, then the computed q̃ is equal to the

airlight magnitude q of that point. However, if it lies

within the color cube, then clearly q̃ > q . For each

point Pi , we compute q̃ (i) and optical thickness β̃1di .

Note that β̃1di may or may not be the correct optical

thickness. We normalize the optical thicknesses of the

scene points by their scaled depths (DOTs) to get

α̃i =
β̃1di

(β2 − β1)di

. (47)

For scene points that do not lie on the color cube sur-

face, α̃i is greater than what it should be. Since we have

assumed that there exists at least one scene point whose

clear day color is on the surface of the cube, it must be

the point that has the minimum α̃i . So, q̃ (i) of that point

is its true airlight. Hence, from (45), the airlights and

direct transmission colors of the entire scene can be

computed without using a clear day image. For robust-

ness, we use k least α̃′
i s. We call this the Color Cube

Boundary Algorithm.

Figure 19 illustrates experiments with real scenes.

Usually in urban scenes, window interiors have very

little color of their own. Their intensities are solely

due to airlight and not due to direct transmission. In

other words, their direct transmission color is black

(the origin of the color cube). We detected such points

in the scene using the above technique and recovered

the clear day colors of foggy and hazy scenes. A second

result is shown in Figs. 20 and 21.

12. Summary

Research in atmospheric optics has been around for

over two centuries. The physical processes that govern

the effects of atmospheric scattering on scene appear-

ance are well established. This article is just an initial

attempt at understanding and exploiting the manifesta-

tions of weather in order to interpret, recover and ren-

der scenes under various atmospheric conditions. We

summarized existing models in atmospheric optics and

proposed new ones, keeping in mind the constraints

faced by most vision applications. We presented sev-

eral simple algorithms for recovering scene structure

from one or two bad weather images and demonstrated

that bad weather can be put to good use. Using scene

structure, algorithms to remove weather effects were

developed. We intend to use these results as building

blocks for developing more advanced weather-tolerant

vision techniques. Potential applications of this work

are in outdoor surveillance, navigation, underwater ex-

plorations and image based rendering.

Appendix A: Direct Transmission Under

Overcast Skies

We present an analysis of the effect of sky illumina-

tion and its reflection by a scene point, on the direct

transmission from the scene point. For this, we make

two simplifying assumptions on the illumination re-

ceived by scene points. Usually, the sky is overcast un-

der foggy conditions. So we use the overcast sky model
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Figure 22. The illumination geometry of a scene point P with sur-

face normal n̂. The irradiance of P is due to the airlight radiance of

its sky aperture �.

(Gordon and Church, 1966; IRIA, 1978) for environ-

mental illumination. We also assume that the irradiance

of each scene point is dominated by the radiance of the

sky, and that the irradiance due to other scene points is

not significant. See Langer and Zucker’s work (1994)

for a related analysis.

Consider the illumination geometry shown in

Fig. 22. Let P be a point on a surface and n̂ be its

normal. We define the sky aperture � of point P ,

as the cone of sky visible from P . Consider an in-

finitesimal patch of the sky, of size δθ in polar angle

and δφ in azimuth as shown in Fig. 22. Let this patch

subtend a solid angle δω at P . For overcast skies,

Moon (Moon and Spencer, 1942) and Gordon (Gordon

and Church, 1966) have shown that the radiance of

the infinitesimal cone δ�, in the direction (θ, φ) is

given by L(θ, φ) = L∞(λ)(1 + 2 cos θ )δω, where δω =

sin θ δθ δφ. Hence, the irradiance at P due to the entire

aperture �, is given by

E(λ) =

∫∫

�

L∞(λ)(1 + 2 cos θ ) cos θ sin θ dθ dφ,

(48)

where cos θ accounts for foreshortening (Horn, 1986).

If R is the BRDF of P , then the radiance from P toward

the observer can be written as

Lo(λ) =

∫∫

�

L∞(λ) f (θ )R(θ, φ, λ) dθ dφ, (49)

where f (θ ) = (1 + 2 cos θ ) cos θ sin θ . Let σ be the

projection of a unit patch around P , on a plane per-

pendicular to the viewing direction. Then, the radiant

intensity of P is given by Io(λ) = σ Lo(λ). Since L∞(λ)

is a constant with respect to θ and φ, we can factor it

out of the integral and write concisely as

Io(λ) = L∞(λ)ρ(λ), (50)

where

ρ(λ) = σ

∫∫

�

f (θ )R(θ, φ, λ) dθ dφ. (51)

The term ρ(λ) represents the sky aperture and the re-

flectance in the direction of the viewer. Substituting for

Io(λ) in the direct transmission model in (5), we obtain

E(d, λ) = g
L∞(λ)ρ(λ)e−β(λ)d

d2
, (52)

where g represents the optical setting of the camera

(exposure, for instance). We have thus formulated the

direct transmission model in terms of overcast sky il-

lumination and the reflectance of the scene points.

Appendix B: Illumination Occlusion Problem

In deriving the expression for the radiance due to

airlight in Section 3.2, we assumed that the atmosphere

is illuminated uniformly regardless of the type of illu-

mination. This is not always true since not all points

in the atmosphere “see” the same solid angle of the

sky. In fact, the scene itself occludes part of the sky

hemisphere visible to a point in the atmosphere. For

explanation purposes, consider a scene with a single

building. The solid angle subtended at any point in the

atmosphere by the sky is called its sky aperture. As seen

in Fig. 23, this solid angle decreases as the distance

increases from the observer for any given pathlength.

Similarly, the solid angle is smaller for points near the

bottom of the building.

We now present a simplified analysis of this effect.

We assume that the atmosphere is illuminated mainly

by overcast skylight (ground light is ignored here).

Then, the irradiance received by any point in the

atmosphere is given by (see Eq. (48)),

E = E (hemisphere) − E (occluded),

E (occluded) =

∫ φ

−φ

∫ θ

0

L∞(1 + 2 cos θ )

× cos θ sin θdθdφ, (53)

E (hemisphere) =

∫ π

−π

∫ π/2

0

L∞(1 + 2 cos θ )

× cos θ sin θdθdφ,
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Figure 23. The scene occludes the sky aperture of points in the

atmosphere. As a result points in the atmosphere are not uniformly

illuminated by the sky.

where E (hemisphere) is the irradiance the point would

receive from the entire sky hemisphere (as if there

were no occlusions). Eoccluded is the irradiance the point

would have received from the occluded part. θ and φ

denote the polar and azimuth of the occluded region.

The above equation simplifies to

E = L∞

7π − 7φ cos2 θ (3 + 4 cos θ )

3
. (54)

To correct for the radiance of airlight in Section 3.2,

we multiply by the fraction of irradiance received by

each point and rewrite the airlight radiance (10) of a

pathlength d as

L(d, λ)

= k
(
1 − e−β(λ)d

)
−

∫ d

0

k

(
φ cos2 θ (3 + 4 cos θ )

π

)

× β(λ)e−β(λ)x dx . (55)

Note here that both θ and φ depend on the depth from

the observer x (see Fig. 23). In other words, the integral

in the previous equation depends on the exact extent of

occlusion by the scene. In our experiments, we have as-

sumed uniform illumination of the atmosphere and thus

some of the errors in the depth maps can be attributed

to this effect.
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Notes

1. We do not handle situations where wet materials may appear

darker than dry materials.

2. Sky and black points take on the color of airlight on a bad weather

day.
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