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Vision as oculomotor reward: cognitive contributions to the dynamic
control of saccadic eye movements
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Abstract

Humans and other primates are equipped with a foveated visual system. As a consequence, we reorient our fovea to objects

and targets in the visual field that are conspicuous or that we consider relevant or worth looking at. These reorientations are

achieved by means of saccadic eye movements. Where we saccade to depends on various low-level factors such as a

targets’ luminance but also crucially on high-level factors like the expected reward or a targets’ relevance for perception

and subsequent behavior. Here, we review recent findings how the control of saccadic eye movements is influenced by

higher-level cognitive processes. We first describe the pathways by which cognitive contributions can influence the neural

oculomotor circuit. Second, we summarize what saccade parameters reveal about cognitive mechanisms, particularly

saccade latencies, saccade kinematics and changes in saccade gain. Finally, we review findings on what renders a saccade

target valuable, as reflected in oculomotor behavior. We emphasize that foveal vision of the target after the saccade can

constitute an internal reward for the visual system and that this is reflected in oculomotor dynamics that serve to quickly

and accurately provide detailed foveal vision of relevant targets in the visual field.
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Introduction

The visual system of humans and other primates is char-

acterized by a clear division of labor: Whereas the central

part of the visual field, the fovea, can process fine visual

details, peripheral acuity declines rapidly with increasing

eccentricity. The differences between foveal and peripheral

processing start in the retina with the different photore-

ceptors and their density, and the differences are continued

and intensified along the visual hierarchy (for reviews see

Strasburger et al. 2011; Yu et al. 2015; Stewart et al. 2020).

As a consequence of such a foveated visual system, the

fovea must be reoriented towards objects or regions in the

visual field that were selected using the periphery and

considered relevant or interesting for further visual

inspection. This re-orientation of the fovea is achieved by

means of saccadic eye movements, quick movements of the

eyeball which, depending on their amplitude, last between

20 and 80 ms and saturate at an angular velocity of around

500 deg/s (Bahill et al. 1975; Collewijn et al. 1988; Gibaldi

and Sabatini 2020).

In everyday life we make about three saccades per

second. Although saccades subjectively require little if no

cognitive effort, the saccade system has become a role

model to study cognitive processes like attention, learning

and decision making. Its advantages are that the sensory

input can be easily controlled, the motor output can be

directly and objectively measured, and the saccade network

includes almost all major anatomical structures of the

brain. Or as Carpenter (1994) has phrased it: The saccade

system is a ‘‘microcosm of the brain’’. Carpenter (1981)

also noted that two things are very striking about the

reaction time of saccadic eye movements: they are sur-

prisingly long, and they are surprisingly variable. The

shortest possible route from sensory input to motor output,

thus from the retina via the superior colliculus (SC) to the

brainstem and the extraocular muscles, would take

approximately 60 ms of signal transduction. However, the

eyes often require a three- or fourfold of this time before
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they actually start to move. Carpenter (1981; see also

Noorani and Carpenter 2016) remarked that the pathway

through the superior colliculus would do a satisfying job if

all the oculomotor system had to do was to translate a

visual signal into a motor response. Yet, the neurons in the

superior colliculus would only know where the target is,

but not what it is. Determining the identity of a target could

only be achieved in higher cortical areas of the oculomotor

network. These cortical sites provide direct excitatory

input to the SC that sets up the target for the eye movement

as well as indirect inhibitory input to the SC via the basal

ganglia. The latter prevent the superior colliculus from

responding too early until a better analysis of what to look

at is carried out (for review see Hikosaka et al. 2000).

Carpenter (1981) thus remarked that saccadic eye move-

ments can be considered a decision not only in space but

also in time, because saccade latencies are prone to

‘‘oculomotor procrastination’’ and that most of the reaction

time is decision time used to arrive at a more sophisticated

decision of what to look at (Carpenter 1981).

Here, we review evidence that saccadic eye movements

are sensitive to cognitive processes and their sensory

consequences: In the first part, we briefly sketch the neural

oculomotor circuitry and how behavioral relevance and

valuation processes manifest themselves in neural activity.

In the second part, we provide a short overview which

oculomotor parameters can be used to measure higher-level

influences and what these metrics reveal about the under-

lying mechanisms. We specifically focus on saccade

latencies, the kinematics of the movement itself and the

maintenance of saccade accuracy. In the third part, we

review how eye movement control is modulated by reward,

task-relevance and image content, using these metrics as

probes into the system. We emphasize that vision of the

target after the saccade can be a rewarding process itself

and that this is reflected oculomotor behavior.

While this review focusses explicitly on saccades, it is

important to note that other eye movements like

microsaccades and smooth pursuit also show cognitive

influences. Moreover, saccades in turn also influence cog-

nitive processes like memory or visual attention and per-

ception. For these and other topics, we refer the reader to

several excellent review articles (Gegenfurtner 2016;

Hutton 2008; Rolfs 2009; Rucci and Poletti 2015; Schütz

et al. 2011; Spering and Montagnini 2011; Tatler et al.

2011).

Neural circuitry of saccade control

The neural circuit controlling saccadic eye movements

receives sensory input from the visual system, but it does

more than just translating this sensory input into a motor

response. Interposed between motor output and sensory

input is a neural architecture mainly devoted to target

selection mechanisms. Here, we briefly sketch the oculo-

motor circuit with a special emphasis on those sites sen-

sitive to high-level processes and which code the

behavioral relevance of a target or are involved in valua-

tion and learning. For a more complete review of the neural

oculomotor circuit see (Krauzlis 2005; Leigh and Zee

2015; Munoz and Everling 2004; White and Munoz 2011).

At the end of the oculomotor pathway are the three pairs

of extraocular muscles which control all rotations of the

eye and receive their input from a circuit in the brainstem

which is said to act as a burst generator (Robinson 1975;

Scudder 1988; for reviews see Scudder et al. 2002; Sparks

2002). This circuit controlling the transition between

periods of fixation and saccades in turn receives direct

input from the superior colliculus (SC). The SC is a mid-

brain structure at the center of the oculomotor network that

is crucial for orienting responses but also plays an impor-

tant role in covert attention, multisensory integration and

decision making (for reviews see Basso and May 2017;

Krauzlis et al. 2013; Stein and Stanford 2008; White and

Munoz 2011). The superficial layers of the SC (SCs)

mainly receive visual input from two sources, directly from

the retina as well as from visual cortex. The intermediate

layers on the other hand (SCi) receive widespread input

from cortical and subcortical regions. The input sites

include, for example, frontal cortex (frontal eye fields,

FEF; supplementary eye fields, SEF), parietal cortex (lat-

eral intraparietal area, LIP) as well as the basal ganglia. As

a consequence, neurons in SCs can be characterized as

purely visual, whereas neurons in SCi integrate motor

signals, signals from different sensory modalities as well as

cognitive signals. The SCi can thus be considered a final

junction for the control of saccades.

The lateral intraparietal area (LIP) in the parietal cortex

receives input from many visual areas, has interconnections

with frontal areas and projects to the intermediate layers of

the superior colliculus (Baizer et al. 1991; Blatt et al. 1990;

Ferraina et al. 2002; Lewis and van Essen 2000; Paré and

Wurtz 2001). The visual responses of neurons in LIP are

different from the visual responses in lower visual areas in

a way that they do not simply reflect the low-level prop-

erties of the stimulus but also whether the stimulus is

behaviorally relevant or not. Gottlieb et al. (1998) showed

that the firing rate of LIP neurons is higher if a task-irrel-

evant stimulus suddenly appears inside their receptive field

compared to a continuously displayed stimulus that was

brought inside the receptive field by means of a saccade.

The same modulation in firing rate was observed when the

target was behaviorally relevant (Gottlieb et al. 1998) or

signaled the availability of reward (Bendiksby and Platt

2006; Sugrue et al. 2004). Traditionally, the posterior

parietal cortex was associated with either movement
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intention (Andersen and Buneo 2002) or spatial attention

(Colby and Goldberg 1999). More recently however, the

viewpoint emerged that particularly LIP acts as an inte-

grated map combining visual, cognitive and motor signals

in order to code the priority of targets (Bisley and Goldberg

2010; Gottlieb 2007; Gottlieb et al. 1998; Ipata et al. 2009).

The concept of a priority map is based on the saliency-

map model (Itti and Koch 2000). The saliency map is a

theoretical two-dimensional representation of space that

describes how bottom-up visual inputs guide eye move-

ments or visual attention: Visual images are first pre-at-

tentively filtered into different feature maps (orientation,

color, luminance) before the activity in the feature maps is

linearly combined into a single saliency map. The location

with the highest activity in the map is selected as the

subsequent target using a winner-take-all mechanism (Itti

and Koch 2000). The priority map extends this concept by

combining bottom-up information about salience with top-

down information about the behavioral relevance of a tar-

get (Bisley and Mirpour 2019; Fecteau and Munoz 2006;

Serences and Yantis 2006). In addition to LIP, the SCi

(White and Munoz 2011) as well as the frontal eye field

(Thompson and Bichot 2005) have been characterized as a

priority map.

The frontal eye field (FEF) projects to the brainstem via

the SC and also via a direct projection to the burst gener-

ator. Stimulation in FEF elicits contralateral saccades

(Robinson and Fuchs 1969). However, the direct projection

to the burst generator has been described as insufficient in

generating saccades when the SC was pharmacologically

inactivated (Hanes and Wurtz 2001), suggesting that the

signal triggering the saccade reaches the brainstem over

pathways through the SC. In humans, the contribution of

the FEF to saccade initiation is for example shown by the

relationship between premotor activity in FEF and saccadic

reaction times (Connolly et al. 2005). Within the FEF,

conflicting saccade vectors are inhibited preceding saccade

initiation (Schlag et al. 1998) and stimulation in FEF

excites the same but inhibits different saccade vectors in

SC (Schlag-Rey et al. 1992), highlighting that activity in

FEF is not only relevant for selecting a target but also plays

a crucial role in distractor suppression (Cosman et al.

2018). Activity in FEF can reflect value (Roesch and Olson

2003) and the FEF plays a role in decision making as well

as in evaluating preceding choices (Ding and Gold 2012;

Teichert et al. 2014), possibly for the optimization of future

behavior. FEF can modify visual responses in area V4

(Moore and Armstrong 2003) which could be attributed to

dopaminergic activity (Noudoost and Moore 2011).

Two additional sites that play an important role in the

oculomotor circuit are the cerebellum and the basal gan-

glia. Both sites have recurrent connections to cortical

regions and play a profound role in motor control and

learning which becomes apparent from the motor deficits

associated with lesions in either site. Although the cere-

bellum is also involved in cognitive tasks (for reviews see

De Smet et al. 2013; Schmahmann et al. 2019), it is of

particular importance for error-based learning (Doya 2000)

and thus for the maintenance of accuracy in saccade

adaptation paradigms (Optican and Robinson 1980; for

reviews see Pélisson et al. 2010; Soetedjo et al. 2019; Thier

and Markanday 2019). Given the small size of the fovea of

around 1 degree visual angle, saccades must be accurate to

provide high-acuity vision of the target. Moreover, visual

sensitivity is reduced during saccades (Bridgeman et al.

1975; Burr et al. 1994; Dodge 1905) and the need for

corrective saccades would further interrupt visual pro-

cessing. In the laboratory, the maintenance of saccade

accuracy is typically studied by consistently displacing the

target during the saccade (McLaughlin 1967). These dis-

placements give rise to a gradual adjustment of saccades

and a reduction of the visual error which is achieved by an

interplay of simple spike and complex spike activity by

Purkinje cells located in the oculomotor vermis of the

cerebellum. The simple-spike activity of Purkinje cells

shows a population response that encodes the duration

(Thier et al. 2000; Catz et al. 2008) and velocity profile

(Herzfeld et al. 2015) of saccades by which, in turn, the

saccade gain is controlled. Whereas these simple spikes

occur with a high frequency, the less frequent complex

spikes encode the experienced error, with the probability

and temporal distribution of complex spikes being related

to error direction and magnitude respectively. These

complex spikes correspondingly change simple spike

activity and the saccadic movement in the subsequent trial

(Herzfeld et al. 2018). This error signal originates in the

superior colliculus which changes complex spike activity

and thus saccade adaptation via projections to the inferior

olive (Kojima and Soetedjo 2018).

The basal ganglia consist of several subcortical nuclei of

which two have a clearly defined role in the oculomotor

circuit: the substantia nigra pars reticulate (SNr) and the

caudate nucleus (CD). The SNr projects to the SCi and

provides sustained inhibitory input. In turn, the SNr can

receive inhibitory input from the CD which results in dis-

inhibition and thus excitation of the SC (for review see

Hikosaka et al. 2000). Besides this direct CD-SNr-SCi

pathway, additional indirect and hyperdirect pathways

serve the possible enhancement of inhibition (for review

see Nambu et al. 2002), highlighting that the basal ganglia

strongly influence which option is selected and which

option is suppressed by modulating the level of inhibition.

But how does the caudate nucleus decide which target to

select? Findings from the last decade have shaped the view

that the CD-SNr-SCi circuit might be composed of parallel

pathways that code the short-term and the long-term value
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of targets respectively (Kim and Hikosaka 2013, 2015; for

review see Hikosaka et al. 2014). Neurons in the head of

the caudate (CDh) mainly receive input from frontal areas

and are sensitive to value that is flexible and varies on a

short-term basis. In contrast to that, the tail of the caudate

that mainly receives input from temporal areas and codes

value that has been acquired on a long-term basis. Neurons

in the body of the caudate, that are positioned in-between

head and tail respond to both, short-term and long-term

value, suggesting that the caudate represents a gradient

from short-term to long-term value learning rather than two

distinct mechanisms. Yet, head and tail of the caudate

project to different subregions of the SNr whose outputs

converge in the superior colliculus.

Taken together, multiple signals converge in the supe-

rior colliculus: bottom-up visual information, top-down

information inherited from frontal and/or parietal regions

as well as short-term and long-term value information from

the dopaminergic midbrain. These various signals have

their own temporal dynamics (Siegel et al. 2015) and can

be reflected in the command that generates the saccade as

well as the dynamic control of the movement itself (see

below). Although the cerebellum is crucial for oculomotor

learning and thus for the maintenance of saccade accuracy,

recent evidence suggest that the error signal driving sac-

cade adaptation is provided by the superior colliculus. This

allows the contribution of other signals beyond a purely

visual error to participate in the maintenance of saccade

accuracy.

What’s in an eye movement?

Every saccadic eye movement provides a manifold of

information. Most of its temporal and spatial characteris-

tics, as well as the dynamics of the movement itself, are

sensitive to cognitive modulations. We provide a short

overview which aspects of saccadic eye movements can be

used to measure cognitive influences and what these met-

rics reveal about the underlying mechanisms.

Temporal: when the eyes move

How an eye movement is temporally characterized depends

on whether the saccade is initiated voluntarily or as a

response to an external event like the appearance of a

stimulus. In the former case, for example when reading a

book or inspecting a photograph, eye movement behavior

is temporally characterized by the time between two eye

movements: the fixation duration (sometimes also referred

to as dwell time). How long a fixation will last also

depends on what is currently inspected with the fovea. In

reading, fixation durations depend on non-lexical factors

like word-length (Kliegl et al. 2004; Rayner and McConki,

1976) and lexical factors like the predictability of a word in

a given context (Ehrlich and Rayner 1981; for review see

Staub 2015). Similarly, fixation durations in scene viewing

are longer when inspecting objects that are unexpected

given the scene content (Henderson et al. 1999; Loftus and

Mackworth 1978; Võ and Henderson 2009). Studies on

natural scene viewing have further shown that fixation

durations can depend on the current task (Nuthmann 2017;

Nuthmann et al. 2010; Võ and Henderson 2009) as well as

on the competition between the current foveal input and

potential saccade targets inspected in the periphery (Ein-

häuser et al. 2020; Laubrock et al. 2013; Tatler et al. 2017).

In laboratory studies, saccades are often made in

response to an appearing stimulus and the saccadic reaction

time, the saccade latency, is expressed as the temporal

difference between target onset and saccade onset. Sac-

cadic reaction times can be successfully described by rise-

to-threshold mechanisms (Fig. 1): an evidence signal is

accumulated until a threshold is reached and the saccade is

carried out. Although measuring distributions and analyz-

ing them with a rise-to-threshold model requires more data

(Lerche et al. 2017) and is more time-consuming than just

comparing mean values of saccade latencies and choice, it

is often worth the effort, because these models are able to

distinguish processes that might give rise to indistin-

guishable behavioral results (Lerche and Voss 2020). Two

successful applications to distributions of saccadic reaction

times are the LATER model (Linear Approach to Thresh-

old with Ergodic Rate; Carpenter 1981; for reviews see

Noorani 2014; Noorani and Carpenter 2016) and drift–

diffusion modelling (DDM; Ratcliff 1978; Ratcliff et al.

2016; Vandekerckhove and Tuerlinckx 2007). Whereas

LATER has traditionally been used to study saccade

selection, diffusion modelling has found many implemen-

tations in all fields of decision making. The decision which

model to use will depend on the research question or the

research design at hand. LATER is attractive because of its

conceptual simplicity and the few parameters it has,

whereas the drift–diffusion model provides more degrees

of freedom and its usage is facilitated by several freely

available toolboxes (Vandekerckhove and Tuerlinckx

2008; Voss et al. 2015; Wiecki et al. 2013).

Both models can account for the systematic effects of

changing low-level properties of the target as well as

changing the constraints of the task or the state of the

participant (Carpenter 2004; Carpenter and Williams 1995;

Milosavljevic et al. 2010; Palmer et al. 2005; Reddi and

Carpenter 2000). Moreover, both models qualify for the

common analysis of saccade latencies and errors in tasks in

which these two variables are the main measurement of

interest. For example, in the anti-saccade and the Go/No-go

task, two oculomotor tasks often used by clinicians to

probe response inhibition (Antoniades et al. 2013; Gomez
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et al. 2007; Hutton 2008; Noorani and Carpenter 2013).

Either model allows to identify impairments in the under-

lying cognitive processes in diseases like ADHD or

Parkinson’s disease rather than just to describe the

behavioral performance (Huang-Pollock et al. 2017;

Michell et al. 2006; Zhang et al. 2016).

Saccade kinematics: how the eyes move

Every saccadic eye movement is the result of precise

acceleration and deceleration of the eyeball resulting in a

unimodal and mostly symmetrical velocity profile.

Whereas the peak-velocity of saccades can vary strongly

across individuals (Boghen et al. 1974; Reppert et al. 2018)

and between saccade directions (Collewijn et al. 1988;

Vergilino-Perez et al. 2012), peak-velocity as well as the

saccade’s duration are mainly determined by one factor:

saccade amplitude. The relationship between saccade

amplitude on the one hand and peak-velocity and duration

on the other hand is referred to as main sequence (Bahill

et al. 1975; Gibaldi and Sabatini 2020): For amplitudes up

to around 20 degrees visual angle, peak-velocity and

duration increase linearly with amplitude, whereas peak-

velocities start to saturate for larger amplitudes. Therefore,

when comparing peak-velocities between two conditions

one has to bear in mind that changes in peak-velocities

might be caused by changes in saccade amplitude. Two

possibilities to account for the amplitude dependence

would be to either measure a whole range of amplitudes

and compare the whole main sequence or to compute a

velocity index that is independent of saccade amplitude

(e.g. Lebedev et al. 1996).

It recently became clear that despite their strong

dependence on saccade amplitude, peak-velocities are

additionally sensitive to motivation (e.g. Muhammed et al.

2020), valuation (e.g. Reppert et al. 2015) and arousal (for

review see Di Stasi et al. 2013). Due to its relationship with

arousal, peak-velocity has in turn become a marker for

Fig. 1 Rise-to-threshold models for the analysis of saccade latencies.

The panels show, at the bottom, evidence accumulation as a function

of time and, on top, the resulting latency distribution(s). a LATER

model in its simple form. Upon target onset (t on), the evidence starts

at baseline, SO, and accumulates until the saccade threshold, ST, is

reached and the saccade is initiated. The orange line depicts an

exemplary rate-of-rise of the evidence signal. The rate-of-rise is

considered constant within every trial but can vary from trial to trial

(shaded orange region), giving rise to the typical shape of a latency

distribution (blue). The model comprises four parameters: baseline

level, threshold, the mean rate-of-rise, and its variability. Without

physiological data, it is only possible to infer the distance between

baseline level and threshold, but not to attribute changes to either of

the two. The model can be extended to include, for example,

inhibition among potential future saccade targets (Leach and

Carpenter 2001; Noorani and Carpenter 2015) or among potential

saccade targets and the current gaze position (Story and Carpenter

2009; Tatler et al. 2017) (b) Drift–diffusion model. The drift–

diffusion model describes noisy evidence accumulation over time in a

binary choice scenario (for multi-alternative diffusion-modelling see

Krajbich and Rangel 2011). The decision signal starts somewhere in-

between two boundaries and accumulates evidence until one of these

boundaries, a or 0, is reached. Unlike LATER, the rate of evidence

accumulation, the drift rate, is variable within a trial. Thus, even when

the mean drift rate favors one options, the other option can ultimately

be selected due to the noise in the decision process. Traces represent

evidence accumulation in trials with median reaction time for each

response option respectively. In this example, evidence accumulation

starts above a=2, representing an initial bias in the decision. A bias

towards one option can be observed when one of the two options is a

priori more likely or associated with a higher payoff (Leite and

Ratcliff 2011; Mulder et al. 2012). If the boundary separation, a, is

small rather than large, responses occur earlier but will be more error-

prone. The boundary distance, a, therefore characterizes the trade-off

between speed and accuracy (Milosavljevic et al. 2010; Palmer et al.

2005; Ratcliff and Rouder 1998). In addition to the standard

parameters (boundary separation, bias, drift rate and variability), the

model is often extended to include a non-decision time, and its

variability (Ratcliff and Tuerlinckx 2002) as well as variability in the

starting point. The flat horizontal part at the beginning of the two

traces denotes the non-decision time
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fatigue, both in clinical settings (Ferreira et al. 2017; Finke

et al. 2012) as well as in the field of cognitive ergonomics

(Di Stasi et al. 2014; Hirvonen et al. 2010). A further

frequently reported kinematic marker of saccades is the

saccade trajectory that reflects the temporal dynamics of

attraction and inhibition in the oculomotor system and has

been comprehensively reviewed (for reviews see van der

Stigchel 2010; van der Stigchel et al. 2006).

Spatial: keeping eye movements accurate

Visual contrast sensitivity (Burr et al. 1994) as well as

sensitivity to image displacement are drastically reduced

during saccadic eye movements (Bridgeman et al. 1975).

As a consequence, we do not become aware of some

changes to the visual world that occur during saccades.

This can easily be demonstrated by standing close to a

mirror, looking at one of your eyes and then shifting your

gaze from one eye to the other. You will miss seeing most

of your own eye movement. (However, things will be

different if you use a front-facing camera on a mobile

device instead of a mirror. Here, you can actually see your

eyes move because of the temporal lag). Likewise, a slight

displacement of the target during the saccade usually

escapes the awareness of the participant. Moreover, such a

displacement cannot be compensated online (i.e. while the

eyes are in flight), because latencies of visual processing

are longer than usual saccade durations. The result is a

mismatch between the actual saccade endpoint and the

point where the saccade was aimed. The maintenance of

saccade accuracy therefore has to occur from one trial to

the next. Only accurate saccades guarantee high-acuity

processing of the saccade target and reduce the requirement

of further corrective saccades that would in turn again

interrupt visual processing. If the target is consistently

displaced in the direction of the saccade, the oculomotor

system increases saccade amplitude over the course of the

experiment. Conversely, amplitudes shorten when the tar-

get is stepped backward. This dynamic adjustment of

saccade amplitude is referred to as saccade adaptation and

is typically studied using the double-step paradigm

(McLaughlin 1967; for review see Pélisson et al. 2010)

with the displacement of the fixation target to the periphery

being the first and the intra-saccadic displacement being

the second step. Although saccade adaptation is typically

studied using backward or forward steps of the target,

saccades can also adapt if the target is stepped perpendic-

ular to the saccade direction (cross-axis adaptation; e.g.

Chen-Harris et al. 2008; Wallman and Fuchs 1998), lead-

ing either to changes in saccade gain (saccade amplitude

relative to target eccentricity) or changes in saccade

direction. Saccade adaptation does not require the target to

be stepped consistently, but also occurs if the target is

shifted randomly (e.g. Srimal et al. 2008; Havermann and

Lappe 2010). However, with random target steps the

adaptation of saccades is less conspicuous.

Traditionally, saccade adaptation has been thought of as

a reflexive mechanism minimizing the need for corrective

saccades or minimizing the retinal error, i.e. the post-sac-

cadic distance between eye and target position. This view

has changed over the decades. First, because a variety of

studies have meanwhile shown that saccade adaptation is

not necessarily reflexive but can be modulated or even

caused by more high-level aspects, for example by reward-

contingencies or by the behavioral relevance of a target (for

reviews see Madelain et al. 2011a; Souto and Schütz 2020).

Second, studies have revealed that partly different mech-

anisms and brain regions are involved when adapting

reactive saccades using the double-step paradigm com-

pared to the adaptation of voluntary saccades (Deubel

1995; Gerardin et al. 2012; Panouillères et al. 2014; van Es

and Knapen 2019). Third, saccade adaptation can occur in

the absence of corrective saccades (Noto and Robinson

2001; Wallman and Fuchs 1998) and the error signal giving

rise to saccade adaptation involves an internal prediction of

the actual endpoint, not just the factual difference between

end point and target location, i.e. retinal error (Bahcall and

Kowler 2000; Collins and Wallman 2012; Wong and

Shelhamer 2011). Bahcall and Kowler (2000), for example,

asked participants to saccade 75% of the distance to a

peripherally appearing target that was stepped 20% back-

ward during the saccade. Thus, usage of a retinal error

would have predicted forward adaptation. However, sac-

cade amplitude decreased over the course of the experi-

ment which was taken as evidence for the role of prediction

in saccade adaptation. Wong and Shelhamer (2011) had

retinal and prediction error directly compete with each

other in an experiment without explicit instructions. They

made use of the fact that saccades are hypometric and

typically undershoot the target by 5–10%. In their experi-

ment, the saccade target disappeared during the saccade

and appeared after saccade offset, located in-between the

saccade endpoint and the original pre-saccadic target

location. Therefore, usage of a retinal error would have

been consistent with forward and usage of a prediction

error with the actually observed backward adaption. The

data favoured the latter. Fourth, findings that saccadic

adaptation also affects visuospatial perception, specifically

the localization of visual targets (Awater et al. 2005;

Bahcall and Kowler 1999; Gremmler et al. 2014; Her-

nandez et al. 2008; Moidell and Bedell 1988; Zimmermann

and Lappe 2009) have suggested that adaptation occurs at

multiple levels in the visuomotor transformation. Adapta-

tion even occurs for tiny target shifts within the fovea

(Havermann et al. 2014), where visual acuity is not in

question. This shows that the aim of adaptation is not only
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to produce good foveal vision but also to maintain con-

sistency between visual and motor representations of space

in the brain (Collins et al. 2007a; Zimmermann and Lappe

2016).

Saccade adaptation depends on whether saccades are

initiated in response to a peripherally appearing stimulus or

voluntarily. Voluntary saccades are internally rather than

externally triggered and occur, for example, when scanning

a visual scene. It is assumed that adaptation of voluntary

and reactive saccades involves at least partly independent

mechanisms. Deubel (1995) tested whether the adaptation

of voluntary saccades transfers to interleaved reactive

saccade and vice versa. He found transfer of adaptation

within but not between these two categories. This finding

has been replicated by several studies who also showed that

the transfer from voluntary to reactive saccades is stronger

than the other way round (Alahyane et al. 2007; Collins

and Doré-Mazars 2006; Cotti et al. 2007; Kojima et al.

2015). Alahyane et al. (2007) suggested a two-level

scheme for adaptation of reactive and voluntary saccades in

which both types share a common final pathway but rely on

partly independent loci on the previous level. A subsequent

study focusing on patients with cerebellar lesions suggested

that this previous level might be located in the cerebellum

(Alahyane et al. 2008). However, adaptation of these two

saccade types also involves differential cortical contribu-

tions (Gerardin et al. 2012; Panouillères et al. 2014). Fur-

ther differences in the adaptation of reactive and voluntary

saccades can be found in the time course of learning.

Sensorimotor adaptation in general is often described as a

dual-state model, i.e. a combination of a fast process that

learns but also forgets quickly and a slow process that

forgets slowly but also takes more time to learn. Such a

dual-state model is able to account for the time-course of

learning, recovery as well as re-learning, and can be linked

to explicit and implicit learning processes (Ethier et al.

2008; Huberdeau et al. 2015; McDougle et al. 2015; Smith

et al. 2006). A recent study directly compared the contri-

bution of the fast and the slow learning process in adap-

tation of voluntary versus reactive saccades (van Es and

Knapen 2019): Whereas fast and slow learning both con-

tributed to adaptation of reactive saccades, adaptation of

voluntary saccades was mostly determined by slow learn-

ing. The authors concluded that the task demands of vol-

untary saccade adaptation interfered with explicit learning.

Madelain et al. (2011b) showed that saccade adaptation

can be caused by reinforcement learning rather than dis-

placing the target during the saccade. Even if the same

saccade vector is repeated multiple times, the amplitude of

all saccades will not be identical but will vary from trial to

trial. Madelain et al. (2011b) made use of this natural

variability in saccade amplitude and reinforced saccades in

a pre-defined amplitude range. Across different

experiments, they either used an auditory tone or the

appearance of the target at the fovea as reinforcer. They

found overall changes in saccade amplitude that are com-

parable with the overall changes found when displacing the

target during the saccade. Taken together, although saccade

adaptation has classically been considered a low-level

mechanism for error-correction that was mainly attributed

to the cerebellum, the findings noted above highlight the

role of task demands and motivational influences. This

parallels adaptation deficits observed in patients with

Parkinson’s disease (Abouaf et al. 2012; MacAskill et al.

2002) which suggest that areas other than the cerebellum

contribute to the maintenance of saccades. Particularly the

involvement of the basal ganglia underpins the suscepti-

bility of saccade adaptation to reward and motivation.

What renders a saccade target rewarding?

The prospect of reward

When monkeys anticipate a food reward for an eye

movement, changes in oculomotor behavior can be

observed in all of the aforementioned metrics: Saccades are

more accurate, they are initiated with shorter latencies,

higher peak-velocities (Chen et al. 2013; Kawagoe et al.

1998; Platt and Glimcher 1999; Sugrue et al. 2004; Taki-

kawa et al. 2002) and they adapt more rapidly (Fig. 2C;

Kojima and Soetedjo 2017). These behavioral changes

come along with changes in the basal ganglia (Kawagoe

et al. 1998) and the superior colliculus (Ikeda and Hikosaka

2003, 2007). Similar oculomotor changes can be observed

in humans expecting a monetary reward (Chen et al. 2014;

Clark and Gilchrist 2018; Dunne et al. 2015; Manohar et al.

2015, 2017; Milstein and Dorris 2007). These similarities

are not self-evident given both, a potential difference

between species and, in particular, a difference between

primary and secondary rewards (i.e. food vs money). In

humans, different reward types belonging either to primary

or secondary rewards activate a common reward circuitry

but also selectively recruit brain structures depending on

the reward type (for review see Sescousse et al. 2013).

In the study by Milstein and Dorris (2007) participants

received a reward for reactive saccades to single targets.

Targets could appear left or right from fixation and in every

block one of the two locations was associated with a high

reward, the other location with a low reward. The authors

varied the reward magnitude associated with a target as

well as the probability of the target to appear at a given

location. Saccade latencies were affected by both, reward

magnitude and target probability, but showed a clear neg-

ative correlation with expected value, the combination of

the two factors, suggesting that reactive saccades are

indeed sensitive to expected value. However, this result
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pattern arises as a consequence of mixing single-target

responses with choices among two simultaneously dis-

played targets (Wolf et al. 2017). When given the choice to

decide among two differently valued targets, people are

quite reliable in selecting the option with a higher reward.

Interleaving choices with reactive saccades delays reactive

saccades to the less-valued option due to the choice-in-

duced suppression of the target providing fewer reward.

This is reflected in a lateralization of pre-stimulus alpha

power and a lowered baseline activity in the LATER model

respectively (Heuer et al. 2017; Wolf et al. 2017). The

slowing of reactive saccades to the less rewarded option is

particularly pronounced if the non-chosen option becomes

the target for the subsequent single-target response and

depends on the individual preference of one choice target

over the other (Wolf and Schütz 2019). Thus, latencies of

reactive saccades may be sensitive to the presence or

absence of a reward prospect, but not necessarily to dif-

ferent levels of reward magnitude. One explanation for this

might be that reactive saccades are mostly initiated too

early for differentiated value information to be considered.

This might explain why effects of reward magnitude are

more prominent in other effectors, e.g. manual responses,

that come along with higher reaction times (Clark and

Gilchrist 2018; Heuer et al. 2019).

A different picture emerges when multiple potential

saccade targets compete, either because the prospect of

reward might be more strongly reflected in the rejection of

non-desired options, or because of the increase in saccade

reaction times caused by the presence of an additional

distractor. In an experiment by Manohar et al. (2015)

participants fixated one out of three equidistant discs. The

other two discs lit up one after the other and participants

were instructed to look at the disc being lit second. At the

beginning of each trial, it was announced whether correct

selection would go along with a high, low or no reward.

With increasing reward, saccade selection was faster

(earlier saccades as well as higher peak-velocities) and

more accurate at the same time (Fig. 2A, B). This modu-

lation by reward was less pronounced in a group of

Parkinson patients (Manohar et al. 2015), highlighting the

role of dopamine and the basal ganglia for reward-driven

oculomotor behavior in humans. The authors concluded

that motivation by reward can break the lawful relationship

between speed and accuracy by reducing intrinsic neural

noise. Earlier and faster saccades in the face of reward are

compatible with the view that the motor system is tuned to

increase the reward rate, i.e. the amount of reward obtained

per time, by increasing movement vigor via dopaminergic

activity (Beierholm et al. 2013; Niv et al. 2007).

When looking at the temporal dynamics of oculomotor

selection among two competing targets or target regions,

then short-latency saccades are typically guided by physi-

cal salience whereas long-latency saccades are driven by

top-down aspects like the prospect of reward (Ludwig and

Gilchrist 2002; Markowitz et al. 2011; Schütz et al. 2012;

van Zoest et al. 2004; Wolf and Lappe 2020). This dynamic

transition from bottom-up to top-down oculomotor control

could either depend on the time it takes to integrate value

information into the saccade plan (Schütz et al. 2012) or by

the time it takes to inhibit the orienting response caused by

the suddenly appearing salient stimulus. Recent evidence

supports the latter option (Wolf and Lappe 2020): Saccade

endpoints were temporally biased towards salience when-

ever a salient item suddenly appeared or re-appeared close

to a designated and rewarded saccade target. This onset

bias was found even when a saccade to the rewarded target

had been pre-planned and the onset was fully predictable.

Fig. 2 Reward effects on saccadic eye movements. a In anticipation

of a monetary reward human saccades are more accurate (i.e. fewer

erroneous saccades to a distractor) and initiated with a shorter latency

as reward increases (50p: 50 pence). The inset shows how this reward

effect relates to the speed-accuracy trade-off: Reward increases both,

speed and accuracy, thus breaking the typical lawful relationship

between the two. b Increased saccade peak-velocity with increasing

anticipated reward. Error bars denote one standard error of within-

participant variability. Panels (a, b) are adapted from Manohar et al.

(2015). c Stronger saccade adaptation in monkeys following a food

reward (red) compared to unrewarded adaptation (blue). Dots

represent data from individual saccades, solid lines denote fitted

exponential functions. Panel (c) is adapted from Kojima and Soetedjo

(2017)
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Successfully selecting the rewarded target could only be

achieved by pre-viewing the salient stimulus in the

periphery (Wolf and Lappe 2020). These temporal

dynamics share characteristics with the global effect, i.e.

the tendency to saccade in-between the designated saccade

target and a distractor (Findlay 1982). First, early saccades

are biased by the presence of the distractor, long-latency

saccades are mostly accurate (Coëffé and O’Regan 1987;

McSorley and Findlay 2003; Ottes et al. 1985). This time

course might rely on the same oculomotor inhibition

responsible for the dynamic changes observed in saccade

curvature (van der Stigchel 2010). Second, the global effect

can be reduced by the presence of visual information

(Arkesteijn et al. 2020, 2018). Third, it occurs independent

of whether a saccade is preprogrammed or not (Arkesteijn

et al. 2020).

Visual selection in general is not only affected by the

immediate prospect of reward but also by the preceding

individual selection and reward history, both on a short

(e.g. Hickey and van Zoest 2012) and long timescale (e.g.

Anderson et al. 2011; Theeuwes and Belopolsky 2012),

paralleling the findings of short-term and long-term learn-

ing of value in the caudate nucleus (Kim and Hikosaka

2013). These history effects are beyond voluntary control

and can even conflict with behavioral goals (Le Pelley et al.

2015; Theeuwes and Belopolsky 2012). In recent years

many studies focused on how previously selected targets

and reward history bias gaze and attention and this research

is comprehensively covered by recent review articles

(Anderson 2013; Awh et al. 2012; Bourgeois et al. 2016;

Failing and Theeuwes 2018; Le Pelley et al. 2016).

Perceptually relevant targets

The modulation of saccade characteristics by the prospect

of reward highlights that the oculomotor system is sus-

ceptible to motivational influences. Yet, it can be argued

that obtaining a monetary reward for an eye movement is

an artificial scenario, because the oculomotor systems’

purpose in everyday life is to select parts of the visual field

that provide relevant information and reduce visual

uncertainty. Bray and Carpenter (2015) compared saccades

to targets that provided reliable versus unreliable infor-

mation about the subsequent target location. They found

shorter latencies to informative targets and the changes in

latency distributions were consistent with a steeper rate-of-

rise in the LATER decision signal. This suggests that if

multiple targets compete, the one which is expected to

provide more information is more likely to be looked at

which is in line with eye movement behavior in natural

vision (Land et al. 1999; Rothkopf et al. 2007; Sullivan

et al. 2012). These effects might be mediated by neurons in

LIP which are sensitive to the expected gain in information

that can be obtained by making a saccade to a particular

target (Foley et al. 2017; Horan et al. 2019). Moreover, a

sustained response to task information first appears in LIP

and prefrontal cortex before this information is passed on

to other eye movement related areas like FEF (Siegel et al.

2015).

A variety of studies directly compared saccades to tar-

gets that provided task-relevant information with condi-

tions in which saccades were made to irrelevant targets

(Bieg et al. 2012; Guyader et al. 2010; Montagnini and

Chelazzi 2005; Trottier and Pratt 2005; Wolf and Schütz

2017). Montagnini and Chelazzi (2005) measured saccades

to a peripheral target that briefly turned into a letter and

could only be discriminated using foveal vision. Critically,

the peripheral target turned into the letter after a time

period that was determined beforehand by the median

individual saccade latency plus saccade duration. As a

consequence, participants were only able to discriminate

the letter when their latency was below their previously

determined median latency, giving rise to perceptual

urgency. This perceptual urgency manipulation led to

shorter latencies and increased peak-velocities and was

reflected in a steeper and less variable rate-of-rise in the

LATER model. The same pattern of saccade metrics and a

steeper rate-of-rise in the LATER model were obtained by

Bieg and colleagues who compared task-related saccades

and saccades to uninformative targets without introducing

urgency (Fig. 3A, B; Bieg et al. 2012). Importantly, when

making saccades to uninformative targets, participants

were instructed to look at the target as quickly as possible.

The observation of earlier saccades to task-relevant targets

also holds when the periphery provides more task-relevant

information than the post-saccadic foveal image and the

saccade thus comes along with an increase rather than a

reduction of perceptual uncertainty (Wolf and Schütz

2017), suggesting that foveation of relevant targets repre-

sents an overlearned and rigid behavior that can result in

suboptimal information sampling (Clarke and Hunt 2016;

Morvan and Maloney 2012). Such a preference for foveal

sampling (Gloriani and Schütz 2019) might result from the

lifetime experience that most relevant information can be

obtained by directly looking at a target.

The notion that participants prefer to obtain foveal

information about targets rather than relying on their

peripheral vision is additionally supported by experiments

in which multiple relevant locations compete for selection

(Clarke and Hunt 2016; Morvan and Maloney 2012;

Nowakowska et al. 2017; Renninger et al. 2007; Tsank and

Eckstein 2017). In an experiment by Morvan and Maloney

(2012), participants could saccade to a compound of three

horizontally spaced squares in order to localize a small dot

that appeared after the saccade. The dot could appear either

in the most left or the most right square and participants
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had to indicate whether it was located within the upper or

lower half of a square. Across trials, the distance between

squares was varied. Depending on this distance, the opti-

mal saccade strategy would have been to either saccade to

the task-irrelevant central square and monitor the other two

locations using peripheral vision or, if the squares were

further apart, to guess and select one of the outer squares.

Critically, to sample perceptual information efficiently,

participants would have switched from a center-strategy to

a side-strategy with increasing square distance, yet they did

not systematically adjust their saccade endpoints and thus

their saccade strategy. These findings have been replicated

by Clarke and Hunt (2016) who also showed that this

inefficiency is not restricted to the oculomotor domain but

may arise due to the participants’ uncertainty about their

own perceptual, motor or memory abilities. Although other

studies have reported that human observers may exploit

their uncertainty across the retina optimally (Najemnik and

Geisler 2005), saccade endpoint selection can in many

cases be described as reducing uncertainty at the selected

endpoint rather than the global image (Renninger et al.

2007). Such a foveal sampling strategy might be disad-

vantageous in selected laboratory settings, but not in

(more) natural vision where eye movements do not come at

a high perceptual or energetic cost as movements of other

effectors (Solman and Kingstone 2014). Thus, although

characterized as sub-optimal in laboratory studies, addi-

tional fixations due to consecutive foveations might be

used to overcome memory constraints, to visually explore a

scene or to increase perceptual confidence (Hayhoe et al.

2003; Land et al. 1999; Nowakowska et al. 2017).

Making a specific element of a target task-relevant can

elicit saccade adaptation (Fig. 3C; Schütz et al. 2014;

Schütz and Souto 2015; for review see Souto and Schütz

2020). Schütz et al. (2014) had participants saccade to an

either horizontally or vertically stretched compound stim-

ulus consisting of multiple characters. When one of the

characters became task-relevant and had to be discrimi-

nated after the saccade, saccades adapted in the direction of

this task-relevant character. Task-elicited adaptation could

be best captured by a model that combined an immediate

explicit adjustment in addition to the slow, implicit learn-

ing from one trial to the next (Schütz et al. 2014). Like

classical double-step adaptation, task-elicited adaptation

changes saccade amplitudes by a comparable magnitude,

transfers to reactive saccades and affects saccade curvature

(Schütz et al. 2014) as does cross-axis adaptation with an

intra-saccadic step (Chen-Harris et al. 2008). A perceptual

task affects saccade adaptation via target selection pro-

cesses (Collins et al. 2007b; Schütz and Souto 2015; Wolf

et al. 2019). When one pre-saccadic target splits into two

post-saccadic targets which compete for selection, then

saccades normally adapt towards the more salient target.

This default selection mode can be overcome when a

perceptual task renders the less salient target more infor-

mative (Wolf et al. 2019).

Studies on task-irrelevant perceptual learning suggest

that (foveally) obtaining task-relevant information may

provide an internal reward for the visual system (Seitz and

Watanabe 2003, 2005). In an experiment by Seitz and

Watanabe (2003) participants had to foveally discriminate

light-grey target letters presented in a stream of otherwise

Fig. 3 Effects of task-relevance on saccadic eye movements. a,

b When saccades are made to stimuli that also serve as targets for a

perceptual task (‘‘D’’, light blue), saccades are initiated earlier

(A) and with higher peak-velocities (b) compared to when partici-

pants are merely instructed to saccade to the target as quickly as

possible (‘‘L’’, dark blue). a: Saccade latency distributions derived

from fitting the LATER model. Differences in distributions are mostly

caused by a steeper rate-of-rise of the decision signal. b Exponential

fit to the main sequence data. Differences in peak-velocity are

particularly prominent for large amplitude saccades. Panels (a, b)

adapted from Bieg et al. (2012). c Perceptual tasks affect target

selection processes in saccade adaptation. The lines show vertical

saccade amplitude over the time course of the experiment. Partici-

pants had to saccade to a vertical compound stimulus (shown on the

right) and discriminate the opening of one of the elements. During the

pre-adaptation and post-adaptation phase, the central element had to

be discriminated. During the adaptation phase a vertically eccentric

element was task-relevant, causing either upward (light blue) or

downward adaptation (purple). The data (thin lines) can be explained

by a dual-state model (thick lines) that combines an immediate

strategic adjustment and slow gradual learning. Panel (c) is adapted

from Schütz and Souto (2015)
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dark-grey distractor letters. Simultaneously, a task-irrele-

vant random-dot kinematogram was shown surrounding the

letter location. A certain percentage of dots were moving in

the same direction, yet this percentage was set such that no

coherent motion direction could be perceived. Critically,

the same subliminal motion direction was paired with the

foveal presentation of target letters whereas other motion

directions were shown equally often but paired with the

foveally presented distractor letters. After extensive train-

ing, participants showed a benefit in motion discrimination

that was exclusive for the motion direction paired with

target letters. This was interpreted as subliminal learning

not being a passive process that is determined by sheer

exposure, but that successful target recognition triggers an

internal reinforcement signal that causes learning of task-

relevant as well as task-irrelevant signals (Seitz and

Watanabe 2003, 2005). Task-irrelevant perceptual learning

does not necessarily require an internal task-related rein-

forcement signal but can also arise as a consequence of

externally reinforcing one of the foveally presented letters

in the stream (Seitz et al. 2009). This relationship between

external or internal reward signals and task-irrelevant

perceptual learning was suggested to be mediated by neu-

romodulatory factors like acetylcholine and dopamine

(Roelfsema et al. 2010).

Intrinsically valuable stimuli

When we encounter a reward, it first impinges on us

through the sensory input. Empirical findings suggest a

close link between vision on the one hand and reward-

related activity in the dopaminergic midbrain and con-

nected cortical areas on the other hand (Hickey et al. 2010;

Hickey and Peelen 2015; Noudoost and Moore 2011).

Reward-related modulations can even be found in early

visual areas that are typically considered to represent low-

level properties of the target (Serences 2008). In an fMRI

study by Hickey and Peelen (2015), participants had to

report whether exemplars of a cued category were present

or not. One of the three used categories was associated with

a high reward and exemplars of other categories could be

present as distractors. The encoding of these reward-related

targets was enhanced in visual areas. In contrast, the

encoding of reward-related distractors was reduced

although their presence increased reaction times, high-

lighting that reward does not per se enhance the repre-

sentation of reward-related objects, but that they need to be

actively suppressed (Gaspelin et al. 2015; Hickey and

Peelen 2015). This active suppression of salient or reward-

related distractors was related to dopaminergic midbrain

activity (Hickey and Peelen 2015) and is presumably also

reflected in the time course of saccade endpoints when a

distractor and a target compete for overt visual selection

(Arkesteijn et al. 2020; Coëffé and O’Regan 1987; Ottes

et al. 1985; Wolf and Lappe 2020).

This tight link between vision and reward is additionally

underpinned by studies showing that the sensory conse-

quences of saccades, i.e. post-saccadic vision of the target

itself, appear to act like a reward for the visual system

(Collins 2012; Madelain et al. 2011b; Meermeier et al.

2016, 2017b). For example, Collins (2012) showed that

post-saccadic foveal feedback (i.e. seeing the saccade tar-

get) compared to seeing a blank screen after the saccade

led to reduced saccade latencies and improved resistance

against distractors. Furthermore, the post-saccadic target

view can also be used as a reinforcer for saccade adaptation

in the absence of an error signal. Madelain et al. (2011b)

presented the target without retinal error on the fovea after

the saccade whenever the saccade happened to be close to a

goal amplitude and presented a blank screen instead when

the saccade did not match the goal amplitude. This, in time,

resulted in saccades more closely matching the goal

amplitude. The observation that the post-saccadic target

can act as a reinforcer is particularly noteworthy given the

role of dopaminergic midbrain structures for oculomotor

learning (Abouaf et al. 2012; MacAskill et al. 2002) and

motivational contributions to motor control in general

(Manohar et al. 2015; Mazzoni et al. 2007). Reinforcing

saccades by their perceptual consequences is not restricted

to seeing any versus no post-saccadic target in the fovea,

but also by showing a target versus showing a distractor

(Vullings and Madelain 2019). These reinforcing capabil-

ities of seeing a target compared to seeing nothing or

seeing a distractor might therefore be mediated by the same

intrinsic reward signals that are considered causal for task-

irrelevant perceptual learning (Roelfsema et al. 2010; Seitz

and Watanabe 2003, 2005).

Certain categories of stimuli are particularly successful

in facilitating saccades. Saccadic selection of animals

(Kirchner and Thorpe 2006) or especially saccadic selec-

tion of human faces (Crouzet et al. 2010; Kauffmann et al.

2019; Sedaghat-Nejad et al. 2019) can be extremely rapid

(Fig. 4A). Although faces have characteristic low- and

mid-level features, particularly with regard to amplitude

spectrum (Ruiz-Soler and Beltran 2006) that contribute to

rapid saccade selection (Crouzet and Thorpe 2011; Honey

et al. 2008), the special status of faces for oculomotor

behavior goes beyond the low-level image-com-

putable salience as it would be captured by a saliency map

(End and Gamer 2017; Marat et al. 2013; Nummenmaa

et al. 2009). Dissociating the more cognitive, high-level

effects from low-level effects can be achieved by pre-

senting stimuli either only after the saccade (Xu-Wilson

et al. 2009), by equating or exchanging low-level proper-

ties of various targets (Crouzet and Thorpe 2011; Meer-

meier et al. 2016; Willenbockel et al. 2010) or by using
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stimuli that are meaningless or meaningful depending on

the participants’ prior knowledge (Teufel et al. 2018).

What is it that makes it special to look at a face? Unlike

other stimulus categories, faces are processed holistically

(Tanaka and Farah 1993) and a whole neural architecture is

devoted to their analysis (for review see Tsao and Liv-

ingstone 2008). Inverting a face interferes with its holistic

processing (for review see Maurer et al. 2002), rendering

inverted faces a further suitable control condition in vari-

ous cases. The preference to look at images that carry

social information is not restricted to humans but can be

found in other primates (Deaner et al. 2005; Klein et al.

2008). Imaging studies in humans further suggested that

cortical representations of object categories are not uniform

across the visual field, but show an eccentricity bias, i.e.

faces are biased towards the representation of the central

visual field whereas buildings are biased towards the

periphery (Levy et al. 2001). This central visual field bias

also exists for other stimulus categories, like words, that

strongly depend on foveal processing (Hasson et al. 2002).

Yet, although the foveal bias for certain stimuli like faces is

under debate (Rousselet et al. 2005) and although the exact

mechanisms underlying rapid saccades to selected stimulus

categories are not fully understood, the aforementioned

studies show the importance of foveal processing for these

targets, particularly as discrimination performance

decreases rapidly the further a face is placed in the

periphery (Kreichman et al. 2020).

This importance of foveal processing for particular tar-

gets like faces is also mirrored in various studies on sac-

cadic eye movements. These studies corroborate the view

that the oculomotor system is optimized to rapidly provide

clear foveal vision of targets that are either externally

rendered relevant, for example by means of reward, or that

Fig. 4 Effects of image content on saccadic eye movements. a,

b Saccades to intrinsically valuable stimuli like faces are initiated

earlier and with higher peak-velocities compared to meaningless

noise stimuli. a Distribution of mean reaction times for the two image

categories (left panel) as well as the distribution of mean individual

latency differences (right panel). b Left panel: Velocity profile for

saccades towards faces (blue) and saccades towards meaningless

noise patches (orange; mostly hidden). The red line denotes the

within-participant change in the velocity profiles. Note that differ-

ences are more pronounced in the deceleration than the acceleration

phase (see also Kojima and Soetedjo, 2017). Right panel: Distribution

of mean individual peak-velocity differences. a, b are adapted from

Sedaghat-Nejad et al. (2019). c Saccade adaptation to meaningful

images (blue) versus meaningless noise patches (orange). Saccade

adaptation towards meaningful images was more complete when

images were masked 200 ms after saccade offset (intermediate mask,

center panel), allowing a short glimpse of the target but no time for

corrective saccades, compared to conditions in which images were

masked immediately (left panel) or not at all (right panel). Dots

denote mean values across individuals for a given trial number, solid

lines are fitted exponentials. c is adapted from Meermeier et al. (2016)
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are inherently perceptually relevant. In line with the find-

ings on externally relevant targets, this is achieved by the

same oculomotor signature (Fig. 4): reduced saccade

latencies (Crouzet et al. 2010; Kauffmann et al. 2019;

Rothkirch et al. 2013; Sedaghat-Nejad et al. 2019),

increased peak-velocities (Sedaghat-Nejad et al. 2019; Xu-

Wilson et al. 2009) and more strongly modulated saccade

gain in order to have the target accurately placed on the

retina (Meermeier et al. 2016, 2017b).

Xu-Wilson et al. (2009) recorded reactive saccades to a

dot stimulus. After the saccade, an image was displayed at

the post-saccadic position, either a face, an inverted face,

an object or pixel noise. Approximately one second before

the dot appeared, the same face could be shortly pre-

viewed in the periphery and disappeared so that partici-

pants knew in advance which image type they can expect

when making a saccade to the dot. When expecting to see a

face, saccades were characterized by a higher vigor, i.e.

they tended to have higher peak-velocities, shorter dura-

tions, higher peak accelerations and lower peak decelera-

tions. These findings were explained in terms of an optimal

control framework that balances two costs (Shadmehr et al.

2010; Xu-Wilson et al. 2009): a cost associated with a

stronger motor command and a second cost associated with

the passing of time. The first cost increases with the motor

command leading to more endpoint variability (Harris and

Wolpert 1998) and thus favors slower movements. The

second cost is related to an intrinsic value of the target that

is temporally discounted over time and thus favors faster

movements to ensure an earlier foveation, particularly if

the target has a high intrinsic value. The incorporation of

value and its temporal discounting over time in motor

control can explain why deficits in brain areas devoted to

the processing of reward (e.g. the basal ganglia in

Parkinson’s disease) lead to changes in motor control that

appear to be related to implicit motivation rather than

motor abilities (Mazzoni et al. 2007). It can explain the

typical oculomotor signature when saccades are made in

anticipation of reward (Manohar et al. 2015; Takikawa

et al. 2002) or made to targets that are relevant for per-

ception (Bieg et al. 2012; Montagnini and Chelazzi 2005).

Temporally discounting the reward of seeing a target is

reflected in saccade peak-velocities and durations (Haith

et al. 2012). These oculomotor markers vary substantially

across individuals but correlate with an individual’s dis-

counting of reward in decision making, thus the preference

of immediate smaller rewards over larger rewards obtained

at a later point in time (Choi et al. 2014), suggesting that

(oculo)motor control and cognitive decisions may partly

share the same valuation process and the same cost of time.

The intrinsic value of a target is also reflected in changes

in saccade gain and these changes were shown to be par-

ticularly dependent on post-saccadic foveal processing of

the target (Meermeier et al. 2016, 2017b). Based on the

observation that gaze is naturally drawn towards faces and

bodies, Meermeier et al. (2016) studied saccade adaptation

towards images of attractive women and compared this

with saccade adaptation towards meaningless noise pat-

terns (Fig. 4C). Critically, images were either (i) not

masked, (ii) masked immediately, such that no post-sac-

cadic vision of the target was possible, or (iii) masked

200 ms after saccade onset, thus allowing a short post-

saccadic glimpse without the possibility for the execution

of corrective saccades. If oculomotor learning was modu-

lated by the peripheral preview of an intrinsically relevant

target, saccade adaptation to relevant targets would be

expected to be more complete in all three masking condi-

tions. However, this was only the case when a short post-

saccadic glimpse of the target was possible, highlighting

that oculomotor learning was not affected by post-saccadic

foveal vision per se, but by the necessity to foveate the

target with the primary saccade (Meermeier et al.

2016, 2017b).

Two frequent observations in the processing of rewards

are that (i) novel options are assigned higher values which

is reflected in the dopaminergic activity in the basal gan-

glia (Bunzeck and Düzel 2006; Ljungberg et al. 1992;

Wittmann et al. 2008) and that (ii) dopamine neurons

encode a reward prediction error (for review see Schultz

et al. 1997). Thus, they preferably respond when a reward

is unexpectedly large. Recent studies have shown that both

of these observations are also mirrored in the saccade

system. First, saccade adaptation is more complete when a

novel image of a human figure is shown every trial com-

pared to repeatedly showing the same image (Meermeier

et al. 2017a). Second, reward prediction error (RPE) has

recently been shown to affect saccade latencies (Sedaghat-

Nejad et al. 2019). In the experiment by Sedaghat-Nejad

et al. (2019), participants had to make a sequence of two

saccades. The first saccade was made in response to either

a face or a visual noise image. Results of primary saccades

replicated the finding of shorter latencies and higher peak-

velocities towards faces (Fig. 4). During this primary sac-

cade both, the content of the image as well as its position

could be changed. As a consequence, participants had to

make a second saccade to foveate the image. Importantly,

images could either change from a low-value noise stim-

ulus to a high-value face stimulus (implying a positive

RPE) or the other way around from a face to a noise

stimulus (implying a negative RPE). Conditions in which

only the location of the target was changed but not its

identity served as control. Following a positive RPE, sec-

ondary saccades were initiated earlier compared to the

control condition in which a face was also shown at the

primary location, whereas the opposite was true for sec-

ondary saccades following a negative RPE. Thus, the
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higher the reward prediction error, the earlier a target was

foveally inspected.

The stimuli used in oculomotor studies of intrinsic

reward have typically been images of faces, bodies, or

animals. It is currently not known whether other image

categories provide similar intrinsic value, which aspects of

an image are responsible for its rewarding properties, or

whether images in general are seen as rewarding. However,

initial experiments with images that acquired value through

second-order conditioning revealed that primary image

content is the main rewarding aspect for saccadic adapta-

tion (Meermeier et al. 2017b). Images of written words or

images taken from rewarding configurations of tiles in a

popular computer game did not produce the enhancement

of saccadic adaptation seen with images of faces. Thus,

depending on their content (e.g. faces) images may con-

stitute a primary visual reward as reflected in oculomotor

learning.

Conclusions and future directions

In this review, we summarized how the control of saccadic

eye movements is affected by higher-level mechanisms,

particularly by reward, task-relevance, and image content,

and we emphasized that foveal vision of the target can

constitute an internal reward that can be reflected in ocu-

lomotor behavior. Beforehand, we laid out which param-

eters of saccadic eye movements can be used to study

cognitive influences and how these influences might be

manifested in the underlying neural circuit.

We stressed that saccades to targets that either provide

reward, are task-relevant or are intrinsically valuable all

share a similar oculomotor signature: (i) shorter latencies,

(ii) higher peak-velocities and (iii) faster or more complete

saccade adaptation. However, this does not necessarily

imply that identical mechanisms are involved. Whereas the

anticipation of reward is sufficient to decrease latencies and

increase peak-velocities (Manohar et al. 2015), earlier and

more vigorous saccades to faces or other intrinsically

valuable targets might be driven by peripheral preview of

the target image. Thus, changes in oculomotor behavior

due to reward anticipation might rely on top-down signals

originating in frontal areas, whereas saccades to intrinsi-

cally valuable stimuli might require specific bottom-up

signals that can further be modulated, for example, by the

presence of a reward prediction error (Sedaghat-Nejad

et al. 2019). Increased efficiency of saccadic adaptation, on

the other hand, requires a view the post-saccadic image and

peripheral preview is not sufficient (Meermeier et al.

2016).

Distinguishing different possible mechanisms given

similar behavioral output remains an open task for future

work. Even in the study by Xu-Wilson et al. (2009) where

saccades were made in response to appearing dots, images

were shown beforehand at the designated location for a

brief time. The motor program could thus have been pre-

programmed and executed at a later time point with the

same or similar kinematics. Perceptually, pre-saccadic

peripheral face information is used for post-saccadic face

processing (Buonocore et al. 2020), highlighting the

peripherally inspected content is processed. Yet, there is

contradictory evidence that, for example, the emotional

valence of a face is reflected in saccades towards that face

(e.g. Kulke 2019; Nummenmaa et al. 2009), possibly

because saccades to faces often occur too early for higher-

level image content to exert an influence. The fact that any

error signal driving saccade adaptation can only be evalu-

ated after the saccade and thus provides more time for

visual processing, might qualify saccade adaptation as a

more sensitive and adjustable tool for measuring for the

intrinsic value of images.
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