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Abstract

Background: Despite the effectiveness of levodopa for treatment of Parkinson’s disease (PD), prolonged usage

leads to development of motor complications, most notably levodopa-induced dyskinesia (LID). Persons with PD

and their physicians must regularly modify treatment regimens and timing for optimal relief of symptoms. While

standardized clinical rating scales exist for assessing the severity of PD symptoms, they must be administered by a

trained medical professional and are inherently subjective. Computer vision is an attractive, non-contact, potential

solution for automated assessment of PD, made possible by recent advances in computational power and deep

learning algorithms. The objective of this paper was to evaluate the feasibility of vision-based assessment of

parkinsonism and LID using pose estimation.

Methods: Nine participants with PD and LID completed a levodopa infusion protocol, where symptoms were

assessed at regular intervals using the Unified Dyskinesia Rating Scale (UDysRS) and Unified Parkinson’s Disease Rating

Scale (UPDRS). Movement trajectories of individual joints were extracted from videos of PD assessment using

Convolutional Pose Machines, a pose estimation algorithm built with deep learning. Features of the movement

trajectories (e.g. kinematic, frequency) were used to train random forests to detect and estimate the severity of

parkinsonism and LID. Communication and drinking tasks were used to assess LID, while leg agility and toe tapping

tasks were used to assess parkinsonism. Feature sets from tasks were also combined to predict total UDysRS and

UPDRS Part III scores.

Results: For LID, the communication task yielded the best results (detection: AUC = 0.930, severity estimation:

r = 0.661). For parkinsonism, leg agility had better results for severity estimation (r = 0.618), while toe tapping

was better for detection (AUC = 0.773). UDysRS and UPDRS Part III scores were predicted with r = 0.741 and

0.530, respectively.

Conclusion: The proposed system provides insight into the potential of computer vision and deep learning

for clinical application in PD and demonstrates promising performance for the future translation of deep

learning to PD clinical practices. Convenient and objective assessment of PD symptoms will facilitate more

frequent touchpoints between patients and clinicians, leading to better tailoring of treatment and quality of care.
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Background

Parkinson’s disease (PD) is the second most common

neurodegenerative disorder after Alzheimer’s disease [1],

affecting more than 10 million people worldwide [2].

The cardinal features of PD are bradykinesia (slowness

of movement), followed by tremor at rest, rigidity, and

postural instability [3]. Prevalence of PD increases rap-

idly over the age of 60 [4], and both global incidence

and economic costs associated with PD are expected to

rise rapidly in the near future [5, 6]. Since its discovery

in the 1960s, levodopa has been the gold standard treat-

ment for PD and is highly effective at improving motor

symptoms [7]. However, after prolonged levodopa therapy,

40% of individuals develop levodopa-induced dyskinesia

(LID) within 4–6 years [8]. LIDs are involuntary move-

ments characterized by a non-rhythmic motion flowing

from one body part to another (chorea) and/or involun-

tary contractions of opposing muscles causing twisting of

the body into abnormal postures (dystonia) [9].

To provide optimal relief of parkinsonism and dyskin-

esia, treatment regimens must be tailored on an individual

basis. While PD patients regularly consult their neurolo-

gists to inform treatment adjustments, these consultations

occur intermittently and can fail to identify important

changes in a patient’s condition. Furthermore, the stand-

ard clinical rating scales used to record characteristics of

PD symptoms require specialized training to perform and

are inherently subjective, thus relying on the experience of

the rater [10]. Paper diaries have also been used for patient

self-reports of symptoms, but patient compliance is low

and interpretation of symptoms can differ significantly be-

tween patients and physicians [11, 12].

Computerized assessments are an attractive potential

solution, allowing automated evaluation of PD signs to be

performed more frequently without the assistance of a

clinician. The information gathered from these assess-

ments can be relayed to a neurologist to supplement exist-

ing clinic visits and inform changes in management. In

addition, computerized assessments are expected to pro-

vide an objective measurement of signs, and therefore be

more consistent than a patient self-report. Computer vi-

sion is an appealing modality for assessment of PD and

LID: a vision-based system would be completely noncon-

tact and require minimal instrumentation in the form of a

camera for data capture and a computer for processing.

To address the inherent subjectivity and inconveni-

ence of current practices in PD assessment, efforts have

been made to develop systems capable of objective

evaluation of signs. Studies generally involve the record-

ing of motion signals while participants perform tasks

from clinical rating scales or execute a predefined proto-

col of activities of daily living (ADL).

Wearable sensing has thus far been the most popular

technology for PD assessment, using accelerometers,

gyroscopes, and/or magnetometers to record move-

ments. These sensors are often packaged together as

inertial measurement units (IMU). Keijsers et al. con-

tinuously monitored participants during a 35 item ADL

protocol and predicted dyskinesia severity in one minute

time intervals [13]. Focusing on upper limb movements,

Salarian et al. attached gyroscopes to the forearms to

estimate tremor and bradykinesia severity [14], while

Giuffrida et al. used a custom finger mounted sensor to

estimate severity of rest, postural, and kinetic tremors

[15]. Patel et al. investigated multiple tasks from the

Unified Parkinson’s Disease Rating Scale (UPDRS) motor

assessment to determine the best tasks and movement

features for predicting tremor, bradykinesia, and dyskin-

esia severity [16]. With a single ankle-mounted IMU,

Ramsperger et al. were able to identify leg dyskinesias in

both lab and home environments [17]. Delrobaei et al.

used a motion capture suit comprised of multiple IMUs

to track joint angles and generated a dyskinesia severity

score that correlated well with clinical scores [18]. Par-

kinsonian gait has also attracted considerable attention

and is the most studied type of gait using wearable sen-

sors [19]. While wearable systems have the potential to

be implemented in a discreet and wireless fashion, they

still require physical contact with the body. Furthermore,

standardization is required regarding the quantity and

placement of sensors needed to capture useful move-

ment signals.

In contrast to wearable sensors, vision-based assess-

ment requires only a camera for data capture and com-

puter for processing. These assessments are noncontact,

and do not require additional instrumentation to capture

more body parts. However, the current state of vision-

based assessment for PD and LID is very limited.

Multi-colored suits were used for body part segmenta-

tion in parkinsonian gait analysis [20, 21], or environ-

ments were controlled to simplify extraction of relevant

movements [22, 23]. Points on the body were also

manually landmarked in video and tracked using image

registration to observe global dyskinesia [24]. More

complex camera hardware (e.g. Microsoft Kinect) can

track motion in 3D with depth sensors and has been

used to characterize hand movements [25], as well as

analyze parkinsonian gait [26, 27] and assess dyskinesia

severity [28] using the Kinect’s skeletal tracking capabil-

ities. Multi-camera motion capture systems can capture

3D movements more accurately by tracking the position

of reflective markers attached to the points of interest.

While they have been explored in the context of PD [29,

30], their prohibitive costs and complicated experimental

setup make them impractical outside of research use.

While human pose estimation in video has been ac-

tively studied in computer science for several decades,

the recent emergence of deep learning has led to
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substantial improvements in accuracy. Deep learning

is a branch of machine learning built on neural net-

works. These networks, inspired by simplified models

of the brain, are composed of layers of neurons that

individually perform basic operations, but can be con-

nected and trained to learn complex data representa-

tions. One major advantage of deep learning is

automatic discovery of useful features, while conven-

tional machine learning approaches use hand engi-

neered features that require domain knowledge to

achieve good performance. Convolutional neural net-

works (CNNs) are a specific deep learning architec-

ture that takes advantage of inherent properties of

images to improve efficiency. Toshev and Szegedy

were the first to apply deep learning for pose estima-

tion, where they framed joint position prediction as a

cascaded regression problem using CNNs as regres-

sors [31]. Chen and Yuille took advantage of the rep-

resentational power of CNNs to learn the conditional

probabilities of the presence of body parts and their

spatial relations in a graphical model of pose [32].

Wei et al. iteratively refined joint positions by incorp-

orating long range interactions between body parts

over multiple stages of replicated CNNs [33].

The use of deep learning for PD assessment is still

in early stages, although a few recent studies have ap-

plied deep learning for classification of wearable

sensor data [34, 35] as well as extraction of gait pa-

rameters [36]. Therefore, an excellent opportunity ex-

ists to assess the readiness of deep learning models

for vision-based assessment of PD. We have previ-

ously shown that features derived from videos of PD

assessments using deep learning pose estimation algo-

rithms were correlated to clinical scales of dyskinesia

[37]. This paper substantially extends the preliminary

results by analyzing additional motor tasks for parkin-

sonism and by evaluating the predictive power of the

chosen feature set.

The key contributions of this paper are as follows:

1. Evaluating the feasibility of extracting useful

movement information from 2D videos of

Parkinson’s assessments using a general purpose

deep learning-based pose estimation algorithm

2. Extracting features from movement trajectories

and training of a machine learning algorithm

for objective, vision-based assessment of motor

complications in PD (i.e. parkinsonism and LID)

3. Determining the accuracy of predicting scores

of individual tasks in validated, clinical PD

assessments using vision-based features as well as

predicting total scores of PD assessments using a

subset of the full clinical assessment suitable for

video analysis

Methods

Dataset

Data was recorded at the Movement Disorders Centre of

Toronto Western Hospital with approval from the Univer-

sity Health Network Research Ethics Board and written

informed consent from all participants. The primary pur-

pose of the initial study was to determine clinically im-

portant changes in parkinsonism and LID rating scales,

including the UPDRS and the Unified Dyskinesia Rating

Scale (UDysRS). Results of the study and detailed informa-

tion about the protocol including inclusion/exclusion cri-

teria, demographics, and clinical characteristics of study

participants are available in [38]. Participants completed a

levodopa infusion protocol that allows a standard assess-

ment of PD and LID severity. Assessments were per-

formed every 15–30 min using tasks from standard

clinical rating scales for parkinsonism and LID for a

period of 2–4 h. Videos were captured using a consumer

grade video camera at 30 frames per second at a reso-

lution of 480 × 640 or 540 × 960. The participants were

seated and facing the camera in all videos. All videos were

rated by two or three neurologists who were blinded to

the time elapsed when the video was recorded. The agree-

ment between neurologists was high for the total UPDRS

Part III (Krippendorff α = 0.842) and the total UDysRS

Part III (Krippendorff α = 0.875).

Nine participants (5 men, median age 64 years) com-

pleted the study. All participants had a diagnosis of idio-

pathic PD and stable bothersome peak-dose LID for

more than 25% of the day, defined as a rating ≥ 2 on

UPDRS item 4.1 (Time Spent with Dyskinesias) and a

rating ≥ 1 on the Lang-Fahn Activities of Daily Living

Dyskinesia Scale. The UDysRS Part III was used to rate

the severity of dyskinesia and the UPDRS Part III was

used to rate the severity of parkinsonism. Participants

had a median score of 28.5 (IQR 24.2–34.8) on the

UPDRS Part III in off state and a median score of 14

(IQR 11–16) on the UDysRS Patient Dyskinesia Ques-

tionnaire (Part 1b) [38]. A subset of tasks was selected

for automated assessment based on perceived feasibility

of vision-based analysis and on correlation to the total

validated assessment score. The tasks selected were:

� Communication (UDysRS Part III) – the participant

describes an image, engages in discussion with the

examiner, mental math or recall

� Drinking from a cup (UDysRS Part III)

� Leg agility (UPDRS Part 3.8) – stomping of the leg

vertically with as much speed and amplitude as

possible

� Toe tapping (UPDRS Part 3.7)

The tasks of interest were manually segmented from

the complete assessment videos. While the camera was
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positioned on a tripod, occasional adjustments were

made by the experimenter, thus introducing camera mo-

tion. Videos containing severe occlusions or camera mo-

tion were removed. Video information can be found in

Table 1. The UDysRS Part III contains seven scores for

each task for different parts of the body from 0 (no dys-

kinesia) to 4 (incapacitating dyskinesia). The seven parts

of the body rated are the face, neck, left and right arm/

shoulder, left and right leg/hip, and trunk. The total vali-

dated score is the sum of the seven highest scores for

each body part across all tasks. The UPDRS Part III also

uses a five-point scale for severity in each task, and body

parts may be rated separately depending on the task. For

leg agility and toe tapping, there are ratings for the left

and right sides of the body, and these tasks are designed

to capture lower body parkinsonism. The total validated

score for the UPDRS Part III is the sum of 28 available

item scores. Due to practical reasons, it was not possible

to perform certain items in the assessments and thus,

they are not part of the total score calculation. The

dressing task was omitted from the UDysRS and the

rigidity assessment was omitted from the UPDRS.

Trajectory extraction

Pose estimation was conducted using Convolutional

Pose Machines (CPM) [33]. The CPM library can be

found at https://github.com/shihenw/convolutional-po

se-machines-release. CPM is a state-of-the-art deep

learning-based pose estimation algorithm that iteratively

refines heatmaps of joint predictions using long range

dependencies between joints. CPM was pre-trained on

the MPII Human Pose Dataset, which contained 25,000

images with annotated body joints and covered over 400

human activities [39]. To assist pose estimation, a

bounding box was annotated around the participant in

the first frame of each video. Video frames were resized

and padded to 368 × 368 before being input to CPM.

The output of CPM was a 14-point skeleton with anno-

tation of the head, neck, shoulders, elbows, wrists, hips,

knees, and ankles. Joint trajectories were extracted inde-

pendently for each frame. Sample detections are shown

in Fig. 1. As tasks captured different facets of PD and

LID, preprocessing strategies were tailored for each task.

Preprocessing, feature extraction, and evaluation were

performed using Python 2.7 with OpenCV 2.4.9 and

scikit-learn 0.17.0.

Communication and drinking

Both communication and drinking tasks were rated

using the UDysRS Part III, which contains seven sub-

scores for dyskinesia of the face, neck, arms, trunk, and

legs. The face dyskinesia subscore was not considered as

it requires more complex modelling than available

through pose estimation.

a. Camera shake removal – Camera motion was

isolated by tracking the movement of stationary

points in the scene. This was done by detecting and

tracking points outside the bounding box where the

person was identified using the Kanade-Lucas-

Tomasi (KLT) tracker [40]. A maximum of 500

points were tracked, and the median of the frame-

to-frame motions was taken as the camera

trajectory. Joint trajectories were stabilized by

subtracting the camera trajectory.

b. Discontinuity removal – Due to the frame-by-frame

nature of the pose estimation approach, temporarily

poor estimation can introduce large discontinuities

in the joint trajectories. To identify discontinuities,

a threshold was placed on the 2D frame-to-frame

motion of the joint trajectories. The threshold was

half of the head length, so that the threshold would

be invariant to the distance of the participant from

the camera. Joint trajectories were split when the

threshold was exceeded, creating multiple temporal

segments. The goal of grouping temporal segments

is to identify segments that were similarly located

spatially and to reject outliers. Grouping of

segments proceeded as a forward temporal pass

of the entire trajectory. For the current segment,

the separation distance between the start of the

segment and the end of the existing segment

groups was computed. The current segment was

added to the group with the minimum separation

distance provided the distance was less than the

threshold. If this constraint could not be satisfied,

the segment became a new group. The confidence of

pose estimations from CPM was used to determine

which group of segments was most likely to reflect

the actual movement. The confidence was the height

of the maximum on the heatmap produced by CPM

indicating the joint location. The group of segments

with the highest median confidence was selected, and

Table 1 Video durations for each task

Task # of videos Total duration (h:mm:ss) Average duration (s)

Communication 134 1:13:26 32.9

Drinking 124 15:20 7.4

Leg agility 134 24:05 10.8

Toe tapping 134 21:17 9.5
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gaps between segments were filled using linear

interpolation. Segments that did not span the entire

signal were truncated at the segment end points.

c. Face tracking - Although the skeleton from CPM

contains a head annotation, it is located on the top

of the head and was therefore unsuitable for

tracking head turning. To resolve this, a bounding

box was placed on the face, which was tracked

using the MEEM object tracker [41]. The bounding

box was initialized as a square centered at the

midpoint between the head and neck annotations,

where the side length was the vertical distance

between the head and neck. The bottom two thirds

and middle 50% horizontally of the square are used

as the final bounding box. The bounding box was

tracked over time using MEEM and the motion

of the center of the bounding box was taken as

the face trajectory. By tracking salient facial features

such as the eyes, nose, and mouth, the object

tracker was able to track head turning as the

bounding box stayed centered on the nose. The face

trajectory replaced the head and neck trajectories

from CPM.

Leg agility

Leg agility parkinsonism was assessed using the UPDRS

Part 3.8, containing two item scores for the left and right

side. Camera shake removal was the same as for the

communication and drinking tasks. Due to the wide

range in leg movement amplitudes for varying levels of

parkinsonism, it was not possible to define a threshold

suitable for all leg agility videos. Therefore, in lieu of dis-

continuity removal, a low pass filter was used for

smoothing. The filter was a 5th order Butterworth filter

with a cut-off frequency of 5 Hz, selected to preserve leg

movements while removing high frequency jitter caused

by frame-to-frame detection noise.

Toe tapping

Toe tapping parkinsonism was assessed using the

UPDRS Part 3.7, which contains two item scores for the

left and right feet. As the skeleton from CPM included

ankle locations and not the feet, dense optical flow was

used to capture the toe tapping movements [42]. It was

assumed that the participant was sitting upright with

their feet flat on the floor, such that there was no signifi-

cant ankle motion and the foot was located directly

below the ankle. Therefore, the median ankle position in

the video was used to infer the area of the foot. A square

bounding box was positioned below the ankle, such that

the ankle was at the center of the top edge. As the head

length provided an approximation of the scale of the

person in the image, it was used as the side length of the

bounding box. The bounding box was truncated if it ex-

tended beyond the video frame.

Given a set of frame-to-frame optical flows, the aggre-

gate toe tapping velocity was computed as the median of

non-zero optical flows. Flow velocities greater than 5.0 ×

10− 4 pixels/frame were considered non-zero. Discon-

tinuity removal was not required as optical flow uses ad-

jacent frames to infer motion. As a result, the aggregate

velocity signal does not have the discontinuities present

in frame-by-frame pose estimation. A schematic of the

process for extracting the velocities from toe tapping is

shown in Fig. 2.

Feature extraction

A total of 13 joint trajectories exist after CPM and pre-

processing. These trajectories are the left and right

shoulders, elbows, wrists, hips, knees, ankles from the

Fig. 1 Examples of poses from the dataset estimated using Convolutional Pose Machines
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CPM skeleton and the face trajectory from MEEM. Tra-

jectories were normalized by head length to ensure fea-

tures were comparable across videos. A Savitzky-Golay

filter (polynomial order = 3, window length = 11 samples)

was used for smoothing and for computing signal deriv-

atives. As each task rating contains subscores that are

focused on different anatomical regions, only relevant

joint trajectories were used for each subscore. Table 2

provides a legend of the abbreviations used to refer to

each joint, while the joints used for each task are shown

in Table 3.

For all tasks besides toe tapping, 32 features were ex-

tracted per joint trajectory. There were 15 kinematic fea-

tures: the maximum, median, mean, standard deviation,

and interquartile range of the speed, magnitude of accel-

eration, and magnitude of jerk. Scalar kinematic features

were used as the magnitude of movement was more im-

portant than the direction. The inclusion of higher order

kinematics was inspired by measures of movement

smoothness in stroke recovery [43]. Spectral features

were computed from the Welch power spectral density

(PSD) of the displacement and velocity signals. The hori-

zontal and vertical components of the movement signal

were combined as a complex signal before spectral esti-

mation to produce an asymmetric spectrum. Afterwards,

the positive and negative halves of the full spectrum

were summed. There was a total of 16 spectral features:

the peak magnitude, entropy, total power, half point (i.e.

frequency that divides spectral power into equal halves),

and power bands 0.5–1 Hz, > 2 Hz, > 4 Hz, > 6 Hz for

both the displacement and velocity PSDs. The PSDs

were normalized before computing power bands such

that they were relative to the total power. The final fea-

ture was the convex hull, which quantifies the area that

a joint moved within.

Since the signal for the toe tapping task was an aggre-

gate velocity, the feature extraction approach was modi-

fied. Kinematic features were computed separately for

Fig. 2 Schematic of extracting velocity of toe tapping using dense optical flow

Table 2 Abbreviations for annotated joints

Joint Abbreviation

Face Face

Left shoulder Lsho

Left elbow Lelb

Left wrist Lwri

Left hip Lhip

Left knee Lkne

Left ankle Lank

Right shoulder Rsho

Right elbow Relb

Right wrist Rwri

Right hip Rhip

Right knee Rkne

Right ankle Rank

Table 3 Joint trajectories for each task

Task Subscore Joints used

Communication/Drinking (UDysRS) Neck Face

Rarm Rsho, Relb, Rwri

Larm Lsho, Lelb, Lwri

Trunk Rsho, Lsho

Rleg Rhip, Rkne, Rank

Lleg Lhip, Lkne, Lank

Leg agility (UPDRS) Right Rhip, Rkne, Rank

Left Lhip, Lkne, Lank

Toe tapping (UPDRS) Right Ranka

Left Lanka

aFor the toe tapping task, ankle locations were used to create a bounding box

for motion extraction

Li et al. Journal of NeuroEngineering and Rehabilitation           (2018) 15:97 Page 6 of 13



the total speed and for the horizontal and vertical veloci-

ties. In addition to the 15 features used for the other

tasks, measures of distribution shape (skew and kurtosis)

were also computed for velocity, acceleration, and jerk,

yielding 21 features per signal for a total of 63 kinematic

features. As there was no displacement signal, spectral

features were only extracted from the velocity signal.

The horizontal and vertical components of the aggregate

velocity were used to compute four velocity PSDs: com-

bined horizontal and vertical as a complex signal, hori-

zontal only, vertical only, and magnitude of velocity.

Each PSD had eight features, for a total of 32 spectral

features. Convex hull could not be computed without a

displacement signal. Overall, there were 95 features per

joint for the toe tapping task.

As the communication task involved multiple subtasks,

transitions between subtasks often contained voluntary

movements or the video was cut by the examiner. There-

fore, the communication task was divided into subtasks,

features were computed for each subtask and then aver-

aged to get the overall communication task features.

Evaluation

All experiments (i.e. binary classification, regression, and

multiclass classification) were performed using leave-one-

subject-out cross-validation and random forest. Specific

implementation details and metrics are described in the

following sections. Random forest hyperparameters were

selected using 200 iterations of randomized search.

Possible values for hyperparameters are given in Table 4

(m = number of features).

Binary classification

Binary classification can be framed as the detection of

pathological motion, whether PD or LID. For each sub-

score of the UDysRS and UPDRS, ratings were on a

scale of 0–4, where 0 indicated normal motion and 4 in-

dicated severe impairment. The rating for each task was

the average of multiple ratings from neurologists who

scored the same video. Score thresholds for binarization

were selected to balance classes. For the communication

and drinking tasks, a threshold of 0.5 was used for binar-

izing scores, where average scores equal to or less than

0.5 were considered normal motion. For the leg agility

and toe tapping tasks, there were fewer low ratings so

thresholds of 1 and less than 2 (not inclusive) were se-

lected, respectively, for binarization of scores. Metrics

used were the F1-score and area under the curve (AUC).

Regression

The goal of regression is prediction of the clinical rating

of PD or LID severity based on movement features.

While these rating scales have been validated based on

clinimetric properties, the single items that comprise the

scales have not been validated as standalone measures.

Therefore, in addition to predicting scores on single

items, performance is also evaluated for prediction of

total scores using pooled features from the relevant rat-

ing scales. The communication and drinking tasks were

used to predict their respective UDysRS Part III item

scores, while the leg agility and toe tapping tasks were

used to predict their UPDRS Part III item scores. The

total validated score for the UDysRS Part III contains

the highest subscores for each body part across all tasks

(0–4) and the sum of subscores (0–28), while the total

validated score for the UPDRS Part III was the sum of

all task scores (0–112). For the UDysRS Part III, features

were combined from the communication and drinking

tasks. For the UPDRS Part III, features were combined

from the communication, leg agility, and toe tapping

tasks. While the communication task is not an item in

the UPDRS Part III, the involuntary movements could

be a useful proxy of other items, such as 3.14 - global

spontaneity of movement. Since the UPDRS Part III also

describes upper body movements, all recorded joints

from the leg agility task were included, not only those

in Table 3. Metrics used were the RMS error and Pear-

son correlation between predictions and clinician rat-

ings. Mean correlations were computed using Fisher

z-transformation [44].

Multiclass classification

There are three possible classifications of motions – PD,

PD with LID, or normal. For tasks to be suitable, they

require ratings for both PD and LID. Although the com-

munication task does not explicitly have a rating for PD,

Table 4 Possible hyperparameter choices for random forest. Ranges are integer intervals

Possible values

Hyperparameter Classification (Binary/Multiclass) Regression

Max features to try ½1;…; b ffiffiffiffi

m

p c� [1,…, ⌊m/3⌋]

Min samples to split node [1,…, 11]

Min samples to be leaf node [1,…, 11]

Number of trees [25,…, 50]a

Impurity criterion Gini index/Entropy N/A

aexcept UPDRS Part III total score, [64,…, 128]
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the UPDRS Part 3.14 (global spontaneity of movement)

is used as a replacement as it is a global rating of PD.

Ratings were averaged across all applicable body part

subscores to generate a single severity score. Given rat-

ings of both PD and LID, if neither score was greater

than 1, the motion was considered normal. Otherwise,

the motion was assigned the label corresponding to the

higher score. If ratings were equal and greater than 1,

the motion was omitted as it could not be definitively

considered PD or LID. The metric used to assess per-

formance was accuracy.

Results

Binary classification and regression results for communi-

cation and drinking tasks are shown in Table 5, while re-

sults for the leg agility and toe tapping tasks are given in

Table 6. Errors provided are the standard deviation of re-

sults when cross-validation was run multiple times. For

binary classification, the number of ratings binarized to

the negative class (i.e. “no dyskinesia” or “no parkinson-

ism”) is denoted by n0 and informs if the classification

task was well balanced. There are some disparities be-

tween the number of videos (Table 1) and the number

of samples shown in Tables 5 and 6, as some videos did

not have all possible ratings available.

Binary classification of communication task features

achieved a mean AUC of 0.930, while drinking task per-

formance had a mean AUC of 0.634. For the leg agility

task, the mean AUC was 0.770, while the AUC for the

toe tapping task was 0.773. The mean correlation be-

tween LID severity predictions and ground truth ratings

for the communication task was 0.661, compared to

0.043 for the drinking task. For PD severity predictions,

the mean correlations were 0.618 and 0.372 for the leg

agility and toe tapping tasks, respectively.

For multiclass classification, the overall accuracy on

the communication task was 71.4%. Sensitivity and spe-

cificity for each class are provided in Table 7. For pre-

dicting the total validated scores on the UDysRS Part III

and UPDRS Part III, the results are given in Table 8.

The correlation between predicted and ground truth rat-

ings was 0.741 and 0.530 for the UDysRS and UPDRS,

respectively.

Discussion

The purpose of this study was to determine if features

derived from PD assessment videos using pose estima-

tion could be used for detection and severity estimation

of parkinsonism and dyskinesia. Random forest classi-

fiers and regressors were trained for the communication,

drinking, leg agility, and toe tapping tasks. The task with

the best performance was the communication task. This

was not surprising, as it is well-known clinically that the

communication task elicits involuntary movements [45].

Despite the RMS error appearing similar for the drinking

task, the correlation of 0.043 shows performance was

poor in comparison to the communication task. This

was because most ratings for the drinking task were be-

tween 0 and 2, thus emphasizing that both RMS and

correlation are necessary to accurately portray perform-

ance. However, the mean AUC greater than 0.5 indicates

that features from the drinking task still had slight

discriminative power for detecting dyskinesia, even

though they were inconsistent for measuring the severity

of dyskinesia. Drinking task arm subscore performance

Table 5 Results for communication and drinking tasks (UDysRS)

Communication (n = 128)

Binary Classification Neck
n0 = 48

Rarm
n0 = 60

Larm
n0 = 54

Trunk
n0 = 60

Rleg
n0 = 57

Lleg
n0 = 59

Mean

F1 0.941 ± 0.003 0.920 ± 0.004 0.929 ± 0.014 0.960 ± 0.009 0.819 ± 0.007 0.865 ± 0.007 0.906 ± 0.002

AUC 0.935 ± 0.006 0.957 ± 0.004 0.946 ± 0.005 0.983 ± 0.002 0.852 ± 0.007 0.907 ± 0.005 0.930 ± 0.001

Regression Neck Rarm Larm Trunk Rleg Lleg Mean

RMS 0.559 ± 0.008 0.399 ± 0.008 0.465 ± 0.011 0.513 ± 0.011 0.579 ± 0.009 0.590 ± 0.011 0.518 ± 0.005

r 0.712 ± 0.017 0.760 ± 0.022 0.645 ± 0.029 0.760 ± 0.024 0.522 ± 0.021 0.490 ± 0.024 0.661 ± 0.011

Drinking (n = 118)

Binary Classification Neck
n0 = 61

Rarm
n0 = 79

Larm
n0 = 81

Trunk
n0 = 60

Rleg
n0 = 70

Lleg
n0 = 66

Mean

F1 0.711 ± 0.026 0.148 ± 0.054 0.289 ± 0.068 0.643 ± 0.013 0.594 ± 0.046 0.617 ± 0.020 0.500 ± 0.015

AUC 0.774 ± 0.007 0.418 ± 0.033 0.557 ± 0.015 0.687 ± 0.014 0.673 ± 0.027 0.696 ± 0.012 0.634 ± 0.005

Regression Neck Rarm Larm Trunk Rleg Lleg Mean

RMS 0.724 ± 0.003 0.737 ± 0.005 0.575 ± 0.005 0.701 ± 0.008 0.586 ± 0.008 0.622 ± 0.009 0.657 ± 0.003

r 0.075 ± 0.008 −0.150 ± 0.015 −0.003 ± 0.018 0.099 ± 0.020 0.087 ± 0.026 0.147 ± 0.025 0.043 ± 0.008
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was noticeably worse than for other subscores, which

was likely due to inability to discern voluntary from in-

voluntary movements, as well as increased occlusion of

upper limbs during movement. Multiclass classification

of the communication task had poor sensitivity (< 10%)

in detecting normal movements. The class that was best

discriminated was LID. Intuitively, the communication

task does not prompt participants to move voluntarily,

therefore the slowness or absence of movement in PD

and the lack of voluntary movement in the normal class

can be confused with each other. This contrasts with the

larger involuntary movements present in LID, which are

easily identifiable.

Although only features from a subset of the full assess-

ments were used to predict the total UPDRS Part III and

UDysRS Part III scores, predictions had moderate to

good correlation with total scores. This implies that this

technology could use an abbreviated version of these

clinical scales, although further analyses with a larger

population would be required for validation. Previous

studies have used measures derived from simple tasks

such as the timed up and go [46] and a touchscreen fin-

ger tapping and spiral drawing test [47] to achieve mod-

erate to good correlation with the total UPDRS Part III

score. While the RMS error for the total UPDRS Part III

appears much larger than the RMS error for the UDysRS

Part III, this is consistent with the range of possible

values for each scale. The UPDRS Part III had a range of

0–112 compared to the UDysRS Part III’s range of 0–28.

It may be possible to improve performance on task sub-

scores by using joints from the entire body. It is likely

that motor complications in one part of the body will be

correlated to motor complications elsewhere. However,

these correlations would be unlikely to generalize across

a population, as each person’s PD will manifest

differently. Likewise, only features extracted from a spe-

cific task were used for predicting the task’s rating des-

pite possible performance boost from using additional

task features. Each task was included in their respective

rating scales to capture different facets of motor compli-

cations, and the correlations between these tasks would

be unique to each individual.

No explicit feature selection was performed despite

having many features compared to samples. Although

the random forest algorithm is generally resistant to

overfitting, feature selection can often still reduce fea-

tures that are not useful. However, after evaluating sev-

eral feature selection methods, no performance boost

was observed compared to applying random forest with

all features. Dimensionality reduction methods were not

tested as feature transformation would reduce interpret-

ability, thus making further analysis more difficult.

Likewise, more complex algorithms that learn feature

representations were not considered as discovered fea-

tures may not have been clinically useful. While the em-

phasis of this analysis was on model accuracy, the parity

of performance even after feature selection indicates that

future models could be built with comparable perform-

ance and a smaller set of features. Identification of fea-

tures that consistently perform well or poorly is the next

step towards deployment of more lightweight models.

The use of 2D pose estimation was motivated by visual

inspection of motor complications during Parkinson’s

assessments and observation of gross movements. It was

hypothesized that 2D pose estimation would be success-

ful at extracting movement information accurate enough

to infer the severity of motor complications. While the

results indicate that features derived from CPM pose es-

timation could capture clinically relevant information

Table 6 Results for leg agility and toe tapping tasks (UPDRS)

Leg agility (n = 75) Toe tapping (n = 76)

Binary Classification Right
n0 = 43

Left
n0 = 36

Mean Right
n0 = 39

Left
n0 = 36

Mean

F1 0.538 ± 0.012 0.725 ± 0.036 0.631 ± 0.022 0.755 ± 0.018 0.694 ± 0.027 0.725 ± 0.019

AUC 0.699 ± 0.017 0.842 ± 0.028 0.770 ± 0.007 0.842 ± 0.006 0.704 ± 0.015 0.773 ± 0.010

Regression Right Left Mean Right Left Mean

RMS 0.648 ± 0.024 0.462 ± 0.023 0.555 ± 0.013 0.614 ± 0.014 0.615 ± 0.014 0.614 ± 0.009

r 0.504 ± 0.049 0.710 ± 0.058 0.618 ± 0.029 0.383 ± 0.034 0.360 ± 0.032 0.372 ± 0.022

Table 7 Multiclass classification results for communication task

n Sensitivity Specificity

LID 26 96.2% ± 3.8% 95.7% ± 0.9%

Normal 17 9.4% ± 3.2% 89.7% ± 3.0%

PD 34 83.5% ± 4.5% 68.4% ± 1.3%

Overall Accuracy 77 71.4% ± 2.8%

Table 8 Results for prediction of validated scores. UDysRS Part III

is predicted using features from the communication and drinking

tasks, while UPDRS Part III is predicted using features from the

communication, leg agility (all joints) and toe tapping tasks

Regression UDysRS Part III (n = 118) UPDRS Part III (n = 74)

RMS 2.906 ± 0.084 7.765 ± 0.154

r 0.741 ± 0.033 0.530 ± 0.026
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from videos, this serves as an indirect measure of the ac-

curacy of pose estimation. In preliminary testing, a

benchmark made of frames of video from the dataset

was used to assess CPM. All body parts were

well-detected except for the knees. Knee detection was

complicated due to the hospital gowns worn by partici-

pants, which resulted in insufficient texture to discern

knee location. This means that the involuntary opening

and closing motions of the knees were poorly tracked,

which may explain why leg subscore predictions were

the worst in the communication task. However, ankles

were well-tracked so this is not expected to have signifi-

cantly affected performance on the leg agility task.

As the MPII dataset that CPM was trained with con-

tained images of individuals sitting, the model could

generalize to the PD assessment videos. A further evalu-

ation by Trumble et al. supports the accuracy of CPM,

as a CPM-based 3D pose estimation with multiple views

performed well in comparison to other vision-based and

wearable algorithms when validated against motion cap-

ture data [48]. The quality of trajectories generated using

CPM and derived features should generalize well to

other studies of PD assessments, as the video recording

quality is consistent with recommended recording pro-

tocols and videos used for initial validation of the

UDysRS [49, 50]. However, the CPM model pre-trained

on MPII is limited by inability to track head turning and

does not detect feet and hands. In the future, an im-

proved model could be trained specifically with images

more representative of clinical or home environments,

as well as augmented datasets that include head orienta-

tion, foot, and hand positions. Models that impose bio-

mechanical restrictions on joint positioning [51] or

integrate video information for 3D pose estimation [52]

could also improve performance.

The optical flow-based method for extracting motion

from toe tapping took advantage of the foot being an-

chored by the heel. The algorithm may not be transfer-

rable to other applications as it relied on assumptions of

foot location with respect to the ankle. For example,

upper body measures of parkinsonism such as hand

open/close and pronation/supination often involved sig-

nificant arm motion and video motion blur, which would

not be feasible to track accurately using the optical

flow-based method without a more complicated ap-

proach. Furthermore, generalizability to other toe tap-

ping applications could be limited by differences in

recording conditions. While this toe tapping algorithm

cannot be directly evaluated by its accuracy at tracking

foot motion, it is possible to compare its relative per-

formance against other studies that have assessed toe

tapping. Heldman et al. used an accelerometer

heel-clip mounted to the person’s shoe while Kim et

al. used a gyrosensor mounted on the top of the foot

[53, 54]. Heldman et al. achieved r = 0.86 and RMS of

0.44 and Kim et al. achieved r = 0.72–0.81 for differ-

ent features when compared against the UPDRS toe

tapping score. There is a gap in performance as the

vision-based method presented is less accurate at

tracking the motion. However, the tradeoff is conveni-

ence for accuracy, as vision-based is still easier to use

than wearables due to lack of special hardware re-

quirements and attachment of sensors.

Due to differing experimental conditions and rating

scales used in past studies, it is difficult to perform a dir-

ect comparison in terms of system performance. The

closest study in terms of experimental protocol was Rao

et al., who analyzed videos of the communication task

and tracked manually landmarked joint locations to de-

velop a dyskinesia severity score [24]. They report good

correlation between their score and the UDysRS Part IV

(single rating of disability) score (Kendall tau-b correl-

ation 0.68–0.85 for different neurologists). Their study

used non-rigid image registration for tracking, which

was not able to infer joint positions if occluded and

could not recover if the joint position was lost. In con-

trast, deep learning-based pose estimation learns the

structure of the human body after seeing training data

and can often make accurate predictions of joint loca-

tions even when the joints are not visible. Dyshel et al.

leveraged the Kinect’s skeletal tracking to extract move-

ment parameters from tasks from the UPDRS and Ab-

normal Involuntary Movement Scale (AIMS) [28]. They

trained a classifier to detect dyskinesia with an AUC of

0.906 and quantified the dyskinesia severity based on the

percent of a movement classified as dyskinetic. This

quantitative measure had good correlation with AIMS

scores (general correlation coefficient 0.805). In wearable

sensing, Patel et al. reported classification errors of 1.7%

and 1.2% for parkinsonism and dyskinesia, respectively,

using tasks from the UPDRS [16]. Tsipouras et al. de-

tected dyskinesia with 92.51% accuracy in a continuous

recording of multiple ADLs [55]. Eskofier et al. used

CNNs on accelerometer recordings of the pronation/su-

pination and hand movements tasks and achieved par-

kinsonism classification accuracy of 90.9% [34]. In our

work, the best performance for binary classification of

dyskinesia was in the communication task, with an AUC

of 0.930. This is comparable with other studies, includ-

ing those using wearables, although the difficulty of clas-

sification is highly dependent on the length of the

motion segments to be classified and the type of motion

performed. For parkinsonism, the best binary classifica-

tion performance was for the toe tapping task, with an

AUC of 0.773. This is not as high as dyskinesia classifi-

cation performance and can likely be attributed to the

distribution of ratings. In the communication task, 30–

40% of ratings for subscores were at the lower limit of
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the scale (i.e. 0), whereas for the leg agility and toe tap-

ping tasks, this percentage was much smaller (less than

3%). Threshold selection for binarizing scores was based

on balancing classes, and therefore may not have been

optimal with respect to clinical definitions. Ideally, the

solution would be to gather sufficient data to represent

all ratings and to select thresholds either based on clin-

ical supervision or by discovery of an optimal separation

between groups.

Limitations

As the videos from this dataset were not captured for

subsequent computer vision analysis, there were record-

ing issues that introduced noise, including different cam-

era angles and zoom. Despite these concerns, the videos

are representative of the quality of videos used by clini-

cians for PD assessment, and the availability of the data

outweighed the unnecessary burden on participants re-

quired to perform a new experiment. However, manual

intervention was required for task segmentation and

person localization. For this feasibility study, the videos

were of sufficient quality; however, standardization of re-

cording protocols to eliminate camera shake should im-

prove algorithm performance and consistency. Future

studies could use deep learning algorithms that take ad-

vantage of temporal information in videos for more ac-

curate pose estimation [52]. In addition, CPM’s accuracy

for pose estimation was limited by the resolution of the

input video (368 × 368). Performance could be improved

with algorithms accepting a higher resolution video or

by applying refinements for subpixel accuracy. Calibrat-

ing cameras to a known distance in advance would en-

able movement amplitudes to be measured in a unit of

length comparable to other studies (e.g. metres). Al-

though single-camera systems offer the possibility of

convenient, non-contact measurement of PD motor

complications, occlusions and the fixed nature of cam-

eras can limit use cases, especially in outdoor environ-

ments. Resolving human pose in 3D is also significantly

more difficult and inaccurate without using multiple

cameras. The optical flow-based method used for toe

tapping has not been validated in the context of foot

motion estimation. It will be important to define the

scope of applications to mitigate these limitations.

The recruitment criteria selected individuals with

moderate levels of dyskinesia. Therefore, the study

population reflects only a segment of the patient popula-

tion. The small sample size should also be increased in

follow-up studies to ensure generalizability of results. In

addition, a small number of tasks from the UPDRS and

UDysRS were not assessed for practical reasons. While

adjustments of rating scales are common practice, stud-

ies have shown that the UPDRS and UDysRS retain val-

idity despite multiple missing items [56, 57]. Future

studies should also include healthy participants as

controls.

Regression performance is reported using correlation;

however, it is unclear what would be a clinically useful

level of agreement. Furthermore, while a high correl-

ation may indicate that a method is able to mimic clini-

cians, validation based on agreement with clinical

ratings does not provide insight into whether such tech-

nologies can achieve better sensitivity to clinically im-

portant changes than subjective rating scales. Additional

investigation is required to compare the sensitivity of the

proposed system to validated clinical measures.

Conclusion

This paper presents the first application of deep learning

for vision-based assessment of parkinsonism and LID.

The results demonstrate that state-of-the-art pose esti-

mation algorithms can extract meaningful information

about PD motor signs from videos of Parkinson’s assess-

ments and provide a performance baseline for future

studies of PD with deep learning. The long-term goal for

this system is deployment in a mobile or tablet applica-

tion. For home usage, the application could be used by

patients to perform regular self-assessments and relay

the information to their doctor to provide objective sup-

plemental information for their next clinic visit. An au-

tomated system capable of detecting changes in

symptom severity could also have major impact in accel-

erating clinical trials for new therapies.
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