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Abstract— We present a quadrotor system capable of au-
tonomously landing on a moving platform using only onboard
sensing and computing. We rely on state-of-the-art computer
vision algorithms, multi-sensor fusion for localization of the
robot, detection and motion estimation of the moving platform,
and path planning for fully autonomous navigation. Our system
does not require any external infrastructure, such as motion-
capture systems. No prior information about the location of
the moving landing target is needed. We validate our system in
both synthetic and real-world experiments using low-cost and
lightweight consumer hardware. To the best of our knowledge,
this is the first demonstration of a fully autonomous quadrotor
system capable of landing on a moving target, using only on-
board sensing and computing, without relying on any external
infrastructure.

SUPPLEMENTARY MATERIAL

Video of the experiments: https://youtu.be/

Tz5ubwoAfNE

I. INTRODUCTION

Quadrotors are highly agile and versatile flying robots.

Recent work has demonstrated their capabilities in many

different applications including but not limited to: search-

and-rescue, object transportation, inspection, surveillance

and mapping [1], [2], [3]. The drawback of multirotors

in general is a lower efficiency of the propulsion system

when compared to other aerial vehicles, such as fixed-wing

aircrafts. This limits the autonomy and utility of quadrotors

as the time during which the vehicle can remain airborne is

relatively short. One possible solution is to have a quadrotor

autonomously land on a ground-station where its battery is

charged or replaced.

Search and rescue robotics is a domain that could greatly

benefit from aerial robots capable of landing autonomously

on moving platforms. One day, flying robots will assist

rescuers during their missions by providing an optimal plat-

form for aerial inspection and mapping of the surroundings.

Allowing these vehicles to autonomously land on predefined

targets for battery charging/swapping or delivery of supplies

would drastically enhance their usefulness while requiring

limited or no human intervention. This would represent

a major step forward in the use of autonomous robots

in search-and-rescue missions, whose duration is usually

significantly longer then the typical flight time of a drone.

This work focuses on the case where the ground-station

moves inside a large mission area of known size (cf. Fig. 1).
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Fig. 1: Our quadrotor during the landing on a moving

platform.

Our system relies on state-of-the-art algorithms for state

estimation, trajectory planning, quadrotor control and detec-

tion of the moving target, all using only onboard sensing

and computing. To the best of our knowledge, this is the

first demonstration of a fully autonomous quadrotor system

capable of landing on a moving target, using only onboard

sensing and computing, without relying on any external

infrastructure.

A. Related Work

Unmanned Aerial Vehicle (UAV) landing on a desired

target has been an active research field during the last

decades. A large body of the literature focuses on landing

a UAV on a static target, such as a predefined tag or a

runway. The state of the flying vehicle is estimated using

motion-capture systems [4], GPS [5], [6] or computer vision

[7]. Computer vision is the most common approach when

it comes to detecting the landing target [6], [5], [7], [8].

Nevertheless, solutions for detecting the target based on

motion-capture systems [4], or other sensors (e.g., GPS [9])

are available in the literature. Although interesting results

have been achieved, they are not necessarily applicable to

dynamically moving targets in an open outdoor environment.

In regard to moving targets, a number of works focused on

collaboration between a flying and a ground-based vehicle

to coordinate the landing maneuver [10], [11], [12]. In this

work, we do not assume that the two platforms are able to

communicate or coordinate a landing.

In order to detect the landing platform, most state-of-the-

art works exploit computer vision from onboard cameras.

Visual servoing is a valid option to some extent [13], [14];

nevertheless, it requires the landing platform to be visible

throughout the entire duration of the task, the reason being

that the UAV is pulled towards the goal using solely visual
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information from its camera. To deal with missing visual

information, model-based approaches have been proposed to

predict the motion of the landing target [15], [16]. Alternative

solutions are realized with the use of additional sensors

attached to the moving target. Among many, these sensors

include Inertial Measurement Units (IMU), GPS receivers

[11], [17] or infrared markers [18].

For the UAV to be truly autonomous, all of the com-

putation necessary to achieve the goal must be performed

onboard. This is by no means standard in the literature, since

all the approaches mentioned before rely on external compu-

tation for state estimation, trajectory planning or control [13],

[15], [16]. Additionally, GPS [9], [19], [11], [16] or motion-

capture systems [13], [12] are often used for state estimation,

either only while patrolling or throughout the entire task.

Conversely, we rely only on onboard visual-inertial odometry

for state estimation.

B. Contribution

In this paper, we present a quadrotor system capable

of autonomously landing on a moving target using only

onboard sensing and computing. No prior knowledge about

the location of the moving landing target is needed. We

exploit state-of-the-art visual-inertial odometry to estimate

the state of the quadrotor itself, complemented by nonlinear

control algorithms to drive the vehicle. Our system detects

the landing target using an onboard camera and deals with

temporarily missing visual information by exploiting the the

target’s dynamical model. Therefore, no external infrastruc-

ture such as a motion-capture system is needed. We compute

trajectories that take into account the dynamical model of

the quadrotor and are optimal with respect to a cost function

based on the energy necessary to execute it. We validate our

approach in simulation as well as in real-world experiments,

using low-cost, lightweight consumer hardware.

The remainder of this paper is structured as follows:

Sec. II provides an overview on the proposed framework

and details the algorithms used to estimate the state of

the quadrotor, detect and track the moving platform, plan

trajectories for the aerial vehicle, and control it along these

trajectories. Sec. III describes the experimental platform and

the simulation tools used to validate our approach, and

provides the experimental results. In Sec. IV, we discuss the

proposed method and provide insights on the experiments.

Finally, we draw conclusions in Sec. V.

II. SYSTEM OVERVIEW

Our system makes use of the following modules:

• quadrotor state estimation (Sec. II-A);

• moving target detection (Sec. II-B);

• moving target state estimation (Sec. II-C);

• trajectory planning (Sec. II-D);

• quadrotor control (Sec. II-E);

• state machine (Sec. II-F).

Fig. 2 provides a visual overview of these components.

The modular structure of our framework allows us to easily

modify or replace the algorithms inside each module without

requiring changes to the others. Therefore, the one proposed

in this work is a general purpose approach for landing a UAV

on a moving target. It requires relatively few changes to be

adapted to different platforms (e.g., fixed wings), algorithms,

or scenarios.

A. Quadrotor State Estimation

We use monocular visual-inertial odometry to estimate the

state of the quadrotor. More specifically, we rely on our

previous work [20] for pose estimation. Pose estimates are

computed at 40Hz and fused with measurements coming

from an Inertial Measurement Unit (IMU) using an Extended

Kalman Filter [21] at 200Hz. Our state estimation pipeline

provides an accurate estimate of the vehicle position, linear

velocity and orientation with respect to the world frame

{W}. The complete pipeline runs entirely on the onboard

computer.

B. Vision-based Platform Detection

We employ onboard vision to estimate the position of

the moving platform in a world frame {W}. To simplify

the detection task, our moving platform is equipped with

a visually distinctive tag. In this work, we leverage a tag

like the one depicted in Fig. 3. The tag consists of a black

cross surrounded by a black circle with a white backdrop.

Nevertheless, our framework can easily generalize to a vari-

ety of tags, as for example April Tags [22], and to different

detection algorithms. Our algorithm attempts to detect the

landing platform in each camera image and estimate its

position in the quadrotor body frame {B}. We first convert

the image from the onboard camera into a binary black-

and-white image by thresholding. Next we search for the

white quadrangle with the largest area. In the case where no

white quadrangle is visible, the landing platform cannot be

found and the detection algorithm is concluded. Conversely,

if a white quadrangle is found, we search for the pattern

inside the quadrangle that composes our tag and extract its

corners. More specifically, we first search for the circle and

approximate it with a polygon, whose corners are used to

estimate the position of the platform. If the circle is not

entirely visible, we search for the four inner corners of

the cross. If neither cross nor circle are visible, we use

the four corners of the white quadrangle. To render our

algorithm robust to outliers, we use RANSAC for geometric

verification. Assuming the metric size of the tag to be known

allows us to use the detected corners to solve a Perspective-n-

Points (PnP) problem. In doing so, we obtain an estimate of

the landing platform’s position with respect to the quadrotor.

Finally, we exploit the knowledge of the quadrotor’s pose in

world frame {W} to transform the position of the ground

platform from frame {B} to {W}. The algorithm used to

detect the platform is summarized in Alg. 1, and runs at

20Hz on the onboard computer.

C. Platform State Estimation

The algorithm presented in Sec. II-B provides an estimate

of the position of the ground vehicle in the world frame W .
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Fig. 2: A schematic representing our framework. Blue boxes represent software modules, green boxes are hardware

components. The quadrotor platform is represented in red. Communication between modules happens through ROS.

Fig. 3: The tag we used to detect the landing platform. Our

framework does not strictly depend on specifics of the tag,

and thanks to its modularity can easily generalize to other

patterns.

However, the landing platform is not guaranteed to be visible

at all times. To deal with missing visual detections, as well as

to estimate the full state of the platform (namely the position,

velocity and orientation), we use an Extended Kalman Filter

[23]. We exploit a dynamic model of a ground vehicle based

on non-holonomic movement constraints for the prediction

phase [24], and consider tag detections from the onboard

camera as measurements for the correction phase. For brevity

reasons, we report only the main equations of the filter and

refer the reader to [23] and [25] for further details.

1) Time Update: In the prediction step, the filter provides

a prediction of the state of the moving platform based on the

following non-linear equation:

ẋ(t) = f(x(t),u(t)) +w(t), (1)

where x(t), u(t) and w(t) are the state of the system,

the input and the process noise, respectively. We model

the process noise as white Gaussian noise, namely w(t) ∼
N (0, σ2

w). The function f(x,u) represents the dynamical

Algorithm 1 Moving landing platform detection

1: Input: Onboard camera image

2: Outputs: Landing platform position in {W}

3: binary image ← black and white(camera image)
4: polygons ← detect polygons(binary image)
5: landing tag ← largest quadrangle(polygons)
6: if landing tag found then

7: if circle ← detect circle in(landing tag) then

8: return circle.position()
9: else

10: if cross ← detect cross in(landing tag) then

11: return cross.position()
12: else

13: return landing tag.position()

14: else

15: return 0

model of the moving platform:

ṗx = vt cos(θ) (2a)

ṗy = vt sin(θ) (2b)

ṗz = 0 (2c)

θ̇ = u1 (2d)

v̇t = u2 (2e)

In (2), px, py, pz are the 3D coordinates of the position of

the platform in the world frame {W}, θ is the angle between

the x-axis of the vehicle’s body frame (i.e., its forward

direction) and the world x-axis, vt is the tangential velocity

of the vehicle (see Fig.4), and u1 and u2 represent the control

input to the system. In our case, we assume the velocity of

the platform to be constant and therefore, that the inputs

u1 and u2 are zero all the time. If any prior information

about the motion of the vehicle is available (e.g., the path

along which it moves), this can be easily incorporated into

the dynamical model.

2) Measurement Update: The correction phase is per-

formed each time a measurement zk (the 3D position of
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Fig. 4: A schematics representing the dynamical model of

the moving platform. The world frame is indicated as {W},
while the platform body frame as {P}.

the moving platform) is provided by the detection algorithm,

according to the following equations:

ˆ̇x(t) = f(x̂(t),u(t)) +K(t)(z(t)− h(x̂(t)), (3)

where the matrix K(t) represents the Kalman gain.

D. Trajectory Planning

We use the approach proposed in [26] to plan optimal,

feasible trajectories that prevent the vehicle from colliding

with obstacles. The authors of that work propose a fast

polynomial trajectory generation method that minimizes the

third derivative of the position (namely, the jerk). Such an

approach solves the minimization problem in closed form,

therefore it is able to provide an optimal trajectory within

a few micro-seconds running entirely onboard. Furthermore,

the same method provides tools to verify whether the planned

trajectory is feasible or not. More specifically, it allows the

system to quickly check that each candidate: (i) does not

exceed the physical actuation constraints of the platform,

and (ii) does not collide with known obstacles (e.g., with

the ground).

Additionally, during the platform following stage, we

exploit the speed of the trajectory planning method [26]

to provide the quadrotor with a set of feasible candidate

trajectories, and we select the one with the lowest cost. Such

a cost is the integral of the jerk along the trajectory, which

the authors of [26] show to be an upper bound on the product

of the inputs to the vehicle, namely the collective thrust and

the angular velocities around the three body axes. Also, this

allows us to quickly replan the desired trajectory during the

platform following phase (see Sec. II-F). At each control

cycle, we select n prediction times tk by uniformly sampling

a fixed-duration prediction horizon. For each time tk, we

predict the future state x̂(tk) that the landing platform will

reach, starting from its last estimate available x̂(tc) at the

current time tc. The prediction is based on the dynamical

model proposed in Sec. II-C. The future predicted state is

used as the final state for each candidate trajectory. Out of all

candidate trajectories, the one requiring a minimum amount

of energy for execution is selected. We indicate the duration

of the selected candidate as ts.

tc ts tn... ...t1t0

Fig. 5: An example of our planning strategy. The quadrotor

plans n trajectories to reach the moving platform. Each

one starts from its current position and has the ground

vehicle’s predicted position and velocity as final state. The

future state of the moving target is predicted using its

dynamical model, starting from the last estimate available

from the Kalman Filter. Trajectories requiring inputs outside

the allowed bounds or colliding with obstacles (e.g., with

the ground), are rejected (dashed red lines in this image).

We select the minimum-energy trajectory (green solid line,

duration ts) out of the set of all the feasible candidate

trajectories (blue dashed lines).

E. Quadrotor Control

We use state-of-the-art, nonlinear control to drive our

quadrotor along the desired trajectory. Broadly speaking, our

controller is composed of a high-level controller for posi-

tion and attitude corrections, and a low-level controller for

reaching the required body rates. The high-level controller

takes the difference between desired and estimated position,

velocity, acceleration and jerk as input and returns the desired

collective thrust and body rates. These body rates are passed

as input to the low-level controller, which computes the

necessary torques to be applied to the rigid body. The desired

torques and the collective thrust are then converted to single

motor thrusts. We refer the reader to our previous works [27]

and [28] for further details on the dynamical model and the

control algorithm used in this work.

F. State Machine

The state machine module governs the behavior of the

quadrotor during the entire mission. It has four states,

namely: takeoff, exploration, platform tracking, landing.

Fig. 6 depicts the state machine with its states and the

respective transitions triggered by events. In the following

few sections we describe each of states in more detail.

1) Takeoff: Our quadrotor launches from the ground and

is commanded to reach a hover point within a given amount

of time. During the takeoff maneuver, we rely solely on the

onboard IMU and a distance sensor. Once the vehicle is

hovering, we initialize our visual odometry pipeline (Sec. II-

A) to acquire and maintain a full state estimate. At this point,

we switch the state machine to the exploration mode.

2) Exploration: The quadrotor explores an bounded area

with known dimensions, flying at a given height. The vehicle

autonomously computes waypoints to inspect the area and

generates trajectories according to the strategy in Sec. II-

D. This mode ends when the quadrotor detects the landing

platform for the first time.
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3) Platform Tracking: In this phase, the quadrotor follows

the moving platform and attempts to reach it and fly above

it. We initialize the Kalman Filter (Sec. II-C) after the first

detection and use its output to provide the trajectory planner

with waypoints. At each control cycle, the quadrotor plans

a set of candidate trajectories as described in Sec. II-D.

Once the best candidate is selected, it is compared with the

previous candidate and is executed only if the final position

of the two trajectories differ significantly. We consider the

tracking phase concluded when the quadrotor is above the

ground platform and is moving at the same velocity.

4) Landing: When the vehicle is close enough to the

landing platform and has matched its velocity, the state

machine switches to the landing mode. In this phase, we

command the vehicle to start a descent at a given vertical

speed, while continuing to match the speed of the landing

platform along the x and y axes. We use an onboard distance

sensor to estimate the relative vertical distance between the

quadrotor and the ground platform. The vehicle stops the

motors when the distance to the platform is below a given

threshold, concluding the landing maneuver.

III. EXPERIMENTS

A. Simulation Environment

We used RotorS [29] and Gazebo to validate our frame-

work in simulation. We replaced the default controller pro-

vided in the simulator with our own described in Sec. II-E.

State estimation is provided by a simulated odometry sensor

and, to bring the simulation closer to real experiments, we

added white Gaussian noise to the estimated state of the

vehicle. Furthermore, we used an onboard simulated camera

to detect the landing platform. We used a Clearpath Husky

UGV simulated model as ground vehicle, on top of which

we mounted the tag to be detected.

B. Simulation Results

We tested our framework using this simulation environ-

ment in a number of different scenarios. More specifically,

we run simulation experiments with the landing platform

moving along paths with different properties (i.e., straight

line, circle, figure-8). The landing platform’s speed is varied

between 1m/s and 4.2m/s. In our experiments, the quadro-

tor takes off from the ground and explores a pre-defined area.

When the landing platform is detected, the quadrotor starts

following. Once it is close enough, the quadrotor initiates

the landing maneuver. The results of one of our simulated

experiments are visualized in Fig. 7.

C. Experimental Platform

For validating our framework in the real world, we used a

custom-made quadrotor platform. The vehicle (cf. Fig. 8) is

constructed from both, off-the-shelf and custom 3d-printed

components. We used a DJI F450 frame, equipped with

RCTimer MT2830 and soft 8-inch propellers from Parrot for

safety reasons. The motors are driven by Afro Slim Electronic

Speed Controllers (ESC). The ESCs are commanded by the

PX4 autopilot, which also sports an Inertial Measurement

Unit. Our quadrotor is equipped with two MatrixVision

mvBlueFOX-MLC200w cameras providing an image resolu-

tion of 752× 480-pixel. One camera is looking forward and

is tilted down by 45°, while the second is facing towards

the ground. We motivate this camera setup in Sec. IV-B.

Furthermore, we mounted a TeraRanger One distance sensor

to estimate the scale of the vision-based pose estimation, as

well as to help the quadrotor during the takeoff and landing

maneuvers. The software modules of our framework (i.e.,

trajectory planning, quadrotor control, visual odometry and

visual-inertial fusion, platform detection and tracking) run in

real time in ROS on one of the two onboard Odroid XU4

computers. The two computers are interconnected through

their Ethernet ports, providing a low latency connection. The

overall weight of the platform is 1 kg, with a thrust-to-weight

ratio of 1.85.

D. Landing Platform

In our real-world experiments we use a Clearpath Jackal 1

as ground vehicle carrying the landing platform and control

it manually. In nominal conditions the platform can reach

a maximum speed of 2m/s. We installed a 150× 150 cm
wooden landing pad equipped with the tag on the top of

the vehicle, reducing its maximum speed to approximately

1.5m/s due to the additional weight.

E. Real Experiments Results

We demonstrated our framework in a number of real ex-

periments using the previously describe quadrotor platform.

Similarly to our simulations, we tested the effectiveness of

the proposed approach in different scenarios. More specif-

ically, we had the landing platform moving along different

paths, at different speeds. Fig. 9 reports the results for one

of the experiments we conducted, with the landing platform

moving on a straight line at 1.2m/s. The choice of such a

speed is not due to limitations of our quadrotor system, but

rather to the maneuverability of the ground robot used as

moving target. The quadrotor starts the exploration at t = 0.

The first platform detection happens at t = td, when the

quadrotor starts the following phase. At t = tl, the state

machine detects that the vehicle is above the platform and

1https://www.clearpathrobotics.com/jackal-small-unmanned-ground-
vehicle/
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Fig. 7: The results of one of our simulations. We report data for position (left and right columns) and velocity (center

column). The quadrotor starts the exploration at t = 0 and detects the moving platform for the first time at t = td. At

this point, the tracking starts and the vehicle starts the landing phase at t = tl. The maneuver is completed at t = tf . The

platform moves at a constant speed of 4.2m/s along a figure-8 path.

Fig. 8: The quadrotor used in our experiments. (1) The on-

board computer running our algorithms. (2) The downward-

looking camera used to detect the platform. (3) The PX4

autopilot. (4) The TeraRanger distance sensor. (5) The 45°

angled-down camera used for visual odometry.

moves at approximately its speed, entering the landing stage.

Finally, the quadrotor reaches the platform at t = tf and

the maneuver is completed. For brevity reasons, we do not

report any comparison between the estimated state of the

quadrotor and ground-truth. We refer the reader to [20] for

an extensive evaluation of the performance of our visual

odometry pipeline.

IV. DISCUSSIONS

A. Generality of the Framework

With the modular architecture of our framework as pre-

sented in Sec. II it is straight-forward to adapt it for different

scenarios: Depending on the severity, changes in the hard-

ware setup might require adjustments of the state estimation

(Sec. II-A and quadrotor control (Sec. II-E) modules. In

most cases, however, a re-tuning of the low- and high-level

controller’s parameters should suffice. Should it be required

to equip the landing platform with a different kind of tag

or markers or even active beacons, all necessary changes

are confined to the target detection module (Sec. II-B).

Likewise, the module for estimating the moving target’s

state (Sec. II-C) can be modified in cases where the landing

platform exhibits drastically different dynamics than our

model described in Eq (2). By modifying the state machine

(Sec. II-F), the nature of the task can be altered. An example

of such are autonomous reconnaissance missions where the

quadrotor takes off and lands on a larger mobile robot.

Another use case might be to have the quadrotor, or any kind

of UAV for that matter, track a ground vehicle and provide

a bird’s view of it.

B. Motivation of the Vision Hardware Setup

Our experimental platform is equipped with two cameras,

one forward-facing and is tilted down by 45° for visual

odometry, one downward-looking to detect the platform. We

chose this setup in order to have robust state estimation and

to better detect the platform. Indeed, when the quadrotor

is close to the ground vehicle, the image from the camera

looking downwards contains mainly, if not only, the moving

platform. Thus our visual odometry pipeline would estimate
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Fig. 9: The results of one of real experiments. We report data for position (left and right columns) and velocity (center

column). The quadrotor starts the exploration at t = 0 and detects the moving platform for the first time at t = td, starting

the tracking stage begins. During the landing stage, starting at t = tl, the platform exits the field of view of the camera and

the prediction of its motion is based solely on the dynamical model. The maneuver is completed at t = tf . The platform

moves at a constant speed of 1.2m/s along a straight line.

only the relative motion with respect to the platform instead

of a static world frame. A forward-looking camera solves

this problem.

C. Computational Load

As mentioned in Sec. III-C, our quadrotor is equipped

with two onboard computers even though all algorithms

composing our framework can be run off a single computer.

The second computer is used solely for data recording and

rapid prototyping. Our control and visual odometry pipelines

have been demonstrated to run onboard the quadrotor in

our previous work [1] and we refer the reader to that for

further details. The trajectory planning algorithm we use

in this work typically needs approximately 0.02ms per

trajectory. Since we replan our desired trajectory at 50Hz,

we can potentially compute up to 1000 candidate trajectories

per replanning-cycle. Nevertheless, we fix the number of

candidate trajectories to be computed at 20, which is usually

sufficient to find a feasible trajectory during the platform

following phase.

The statistics of the time required by our vision-based

platform detection algorithm are reported in Table I. On

average, it takes approximately 12ms to detect the landing

platform in each image, leading to a potential maximum rate

of approximately 80Hz. However, we found that a rate of

20Hz is sufficient to obtain reliable and accurate results in

tracking the landing platform.

TABLE I: Computation time statistics for our onboard,

vision-based platform detection algorithm.

Mean Standard Deviation

Image Thresholding 0.87 0.51 [ms]

Quadrangle Detection 4.35 1.89 [ms]

Circle Detection 0.06 0.03 [ms]

Cross Extraction 1.81 1.01 [ms]

Perspective-n-Points 4.95 2.31 [ms]

Total 12.04 5.75 [ms]

D. Trajectory Planning

In this work, we use trajectories that minimize the jerk to

provide our controller with reference states that drive the ve-

hicle towards the accomplishment of the mission (cf. Sec. II-

D). Previous work has shown that trajectories that minimize

the snap, namely the fourth derivative of the position, lead

to a smoother behavior for a quadrotor [30]. However, com-

puting minimum snap trajectories typically requires longer

then the closed form solution for minimum jerk trajectories

we exploit. Also, to the best of our knowledge, no efficient

feasibility verification method is available for minimum snap

trajectories. In our experiments, we observed a better overall

behavior of the entire pipeline when using minimum jerk

trajectories. The reasons behind this are twofold: (i) the very

efficient computation of minimum jerk trajectories make it



possible to re-plan the desired trajectory at high frequency to

deal with changes in the motion of the moving target; (ii) the

feasibility verification method lets us plan trajectories which

satisfy the physical limits of the platform, i.e. avoid motors

saturation.

E. Dealing with Missing Platform Detection

We deal with temporarily missing detections of the moving

platform during the following and landing phases by using

the Extended Kalman Filter described in Sec. II-C. Despite

the lack of prior information about the motion of the platform

and the constant velocity assumption, the dynamical model

used for the prediction phase provides reliable results in

both simulation and real world experiments. Therefore, our

framework is capable of landing a quadrotor on a moving

target even in the case when the platform is not temporarily

visible.

V. CONCLUSIONS

In this work, we presented a quadrotor system capable

of autonomously landing on a moving platform using only

onboard sensing and computing. We relied on state-of-

the-art computer vision algorithms, multi-sensor fusion for

localization of the UAV, detection and motion estimation

of the moving platform, and path planning for fully au-

tonomous navigation. No external infrastructure, such as

motion-capture systems or GPS, is needed. No prior infor-

mation about the location of the moving landing target is

required to execute the mission. We validated our frame-

work in simulation as well as with real-world experiments

using low-cost and lightweight consumer hardware. To the

best of our knowledge, this is the first demonstration of a

fully autonomous quadrotor system capable of landing on a

moving target, using only onboard sensing and computing,

without relying on any external infrastructure.
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