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Optics-based tracking of civil structures is not new, due to historical application in sur-

veying, but automated applications capable of tracking at rates that capture dynamic 

effects are now a hot research topic in structural health monitoring. Recent innovations 

show promise of true non-contacting monitoring capability avoiding the need for phys-

ically attached sensor arrays. The paper reviews recent experience using the Imetrum 

Dynamic Monitoring Station (DMS) commercial optics-based tracking system on Humber 

Bridge and Tamar Bridge, aiming to show both the potential and limitations. In particular, 

the paper focuses on the challenges to �eld application of such a system resulting from 

camera instability, nature of the target (arti�cial or structural feature), and illumination. The 

paper ends with evaluation of a non-proprietary system using a consumer-grade camera 

for cable vibration monitoring to emphasize the potential for lower cost systems where if 

performance speci�cations can be relaxed.

Keywords: vision-based system, camera calibration, template matching, optical �ow, structural displacement

INTRODUCTION

Bridge performance can be characterized via a number of metrics such as internal forces or reaction 
forces, stresses, strains, and accelerations but perhaps the most useful of all is deformation, since 
practically all the other metrics can be derived from it via di�erentiation in space (giving strain) or 
time (giving velocity and acceleration).

Serviceability is also re�ected through deformation, since extreme values and ranges indicate 
problems that may limit operational use, e.g., as excessive vibrations or movement across expansion 
joints. Measurements of deformation also provide direct calibration of physical or numerical simula-
tions of load/response relationships via controlled vehicle load tests and monitoring of performance 
in strong winds. Deformation measurements also provide a powerful diagnostic tool, for example, 
for the investigation of the truss-end link that closed the Forth Road Bridge in late 2015 (BBC News, 
2016).

Optics-based systems are widely used for surveying structural con�guration but tend to be 
limited to long sample intervals to capture quasi-static response due to wind and vehicles. Robotic 
total stations (RTS) provide some capability for automated multi-point deformation tracking but 
struggle to capture dynamic response due to wind and seismic e�ects. �ere are only a few examples 
of RTS used in bridge monitoring system, e.g., at Jiangyin Suspension Bridge (Ko and Ni, 2005) and 
Tamar Bridge (Brownjohn et al., 2015) although some studies have targeted RTS on a single point 
to track low-frequency bridge vibration modes, e.g., on the Bosporus Bridge, Istanbul (Erdoğan and 
Gülal, 2011).

One of the earliest examples of optics-based monitoring at dynamic rates was Tacoma Narrows 
Bridge (University of Washington, 1954) using a movie camera, and there have been a few examples 
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of optics-based dynamic tracking, e.g., Humber Bridge (Stephen 
et al., 1993; Brownjohn et al., 1994) and Second Severn Crossing 
(Macdonald et  al., 1997), both of which were operated by 
University of Bristol researchers. �e Bristol “Vision System” 
used parallel processing hardware and a predictive search algo-
rithm to track an arti�cial target at dynamic rates in real time 
(at Second Severn Crossing) or by post-processing (Humber 
Bridge). �e Vision System was commercialized by University of 
Bristol spin-out Imetrum Ltd. and now uses a patented algorithm 
for tracking multiple natural or arti�cial targets using standard 
high speci�cation industrial cameras to achieve resolution to a 
small fraction of a pixel. Other commercial products include the 
Noptel PSM system (Ahola and Tervaskanto, 1991) that measures 
deviations transverse to a LED beam at ranges up to several 100 m 
and the Polytec laser Doppler vibrometer that measures both 
displacement and velocity along line of sight to high resolution 
in time and space (Ozbek et al., 2009). Meanwhile, research into 
and application of camera-based tracking systems for multiple 
static and dynamic targets continue to be a growth area.

During the past few years, such systems have improved in 
hardware, tracking techniques, and application ranges. For 
example, with a�ordable high-quality digital imaging sensors, 
cheaper cameras with high resolution have been shown to be a 
feasible option for structural monitoring and system identi�ca-
tion (Yoon et al., 2016). Arti�cial targets required in systems such 
as the Bristol Vision System are very cumbersome and can be 
avoided by using advanced feature-based tracking algorithms 
(Feng et  al., 2015; Khuc and Necati Catbas, 2016; Yoon et  al., 
2016). In addition to measurement of two-dimensional structural 
displacement, monitoring three-dimensional dynamic vibration 
responses of structures is now also feasible by adopting calibra-
tion principals of stereoscopic vision (Schreier, 2004; Chang 
and Ji, 2007; Oh et al., 2015; Santos et al., 2016). �is involves 
coordinate transformations that in turn require the information 
of camera-to-structure distance known structure dimensions.

�e problem with such systems is that they mostly remain in 
the research domain and while they may have been evaluated 
on full-scale structures, instrumentation, and monitoring con-
tractors geared up for commercial application and support are 
unlikely to risk using non-mature technology.

Hence, a�er a brief review of optics-based deformation track-
ing technology, this paper concentrates on application of the 
commercial Imetrum system on bridges in the UK, speci�cally 
Humber Bridge (1,410 m main span) and Tamar Bridge (335 m 
main span). �e aim is to show the capabilities of such a tracking 
system, how it should be used and what are the limitations and 
issues that apply equally to bespoke systems developed and used 
by researchers.

VISION-BASED SYSTEM FOR 

STRUCTURAL DEFORMATION 

MONITORING

Review of Video-Processing Methods
�e implementation of optical monitoring is the process of set-
ting up a camera or multiple cameras in stable locations looking 

at a “target” contained in the structure and deriving the structural 
motion information through tracking the target motions in image 
sequences. “Target” here could be either arti�cial feature (pre-
installed marker, LED lamp, or planar panel with special patterns) 
or existing structural feature (e.g., bolts or holes).

�e implementation comprises hardware and video-processing 
components. �e hardware comprises camera(s), a computer 
with video-processing package, and accessories such as camera 
mount, camera lens, and optional arti�cial targets. �e role of 
the video-processing package is acquiring the video frames 
covering the target regions, tracking the target locations in image 
sequences, and �nally transforming the target location informa-
tion in image into the time history of structural displacement.

For various vision-based systems in the literature, the hardware 
is almost the same [except the mixed systems, e.g., combing the 
camera system with total station (Ehrhart and Lienhart, 2015)] 
while the main di�erence is in the video-processing packages. A 
typical video-processing package can be decomposed into three 
components according to the procedures of measurement goal 
realization.

�e �rst step is camera calibration to obtain transformation 
metrics using methods such as “scaling factor,” “planar homogra-
phy,” and “full projection matrix.” It is aimed at determining the 
transformation metric between the image natural units (pixels) 
and the real world units (e.g., millimeters).

�e scaling factor method (Stephen et al., 1993) is the sim-
plest. It links the image motion to the structural displacement 
via a coe�cient estimated by camera-to-target distance or one 
dimension correspondence in the image plane and in the struc-
tural coordinate system. �is method, however, is based on the 
assumption that the camera principal axis is perpendicular to the 
target surface plane, which sets constraints on the camera-to-
target geometry relation on site. �e planar homography method 
(Xu et  al., 2016) calculates the transformation relationship 
between the 2D image plane and the 2D target surface plane in 
the structure. �is method considers projection distortion under 
non-perpendicularity of the camera principal axis but neglects 
out-of-plane motion of the target. �e planar homography matrix 
could be determined by direct linear transformation (2D DLT) 
based on at least four sets of 2D-to-2D point correspondences 
(Hartley and Zisserman, 2003). �e full projection matrix (Chang 
and Ji, 2007) is the general form to build the projection from the 
3D structural coordinate system to the 2D image plane with no 
assumption, and supports the reconstruction of 3D structural 
displacement. �e full projection matrix is usually calculated 
from multiplication of the two camera matrices that are deter-
mined separately (Chang and Ji, 2007; Martins et al., 2015): (i) 
laboratory calibration to determine the camera intrinsic matrix 
and (ii) site calibration to determine the camera extrinsic matrix.

�e second step of target tracking is aimed at determining the 
target locations in a frame sequence in a video record using target 
matching or motion estimation techniques in computer vision. 
Template matching (Stephen et al., 1993) is a classical technique 
for target tracking through matching a rectangular subset region 
between two images using a similarity metric. Optical �ow esti-
mation detects motion or �ows of each pixel within the target 
region based on one temporal constraint about image properties 
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FIGURE 1 | Camera system con�guration in a short-span bridge monitoring test.
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[e.g., brightness constancy in Lucas–Kanade method (Tomasi and 
Kanade, 1991) or local phase constancy in phase-based method 
(Fleet and Jepson, 1990)]. Feature point matching involves 
matching salient feature points in two images based on their local 
appearance [i.e., local feature descriptor (Szeliski, 2010)], e.g., 
Fast Retina Keypoint matching (Khuc and Necati Catbas, 2016).

�e last step of structural displacement calculation delivers 
the structural displacement sequence using single or multiple 
cameras. It aims to derive the structural displacement given the 
image location sequences of the targets (which are the output of 
the target tracking step) and a transformation metric (the output 
of the camera calibration step).

For single camera applications using scaling factor or planar 
homography matrix as the transformation metric, the 2D struc-
tural displacement is derived uniquely, whereas for multiple 
camera applications using full projection matrix as the trans-
formation metric, a least squares estimate is required to extract 
the 3D structural displacement by solving the underdetermined 
linear equations. Some researchers attempted to extract more 
information about target motion (up to 6 DOF) from single cam-
era using the pose estimation technique (Chang and Xiao, 2010; 
Greenbaum et al., 2016) in which target position and orientation 
in structure is estimated by tracking multiple target points (at 
least four) in a rigid target.

Dynamic Monitoring Station (DMS)
�e Vision System originating from research at the University of 
Bristol (Stephen et al., 1993; Macdonald et al., 1997) led to the 
“Video Gauge” so�ware that was commercialized via the univer-
sity spin-out Imetrum formed in 2003. �e implementation of 
the Video Gauge in a hardware platform is called the Dynamic 

Monitoring Station (DMS) which includes one or more GigE high 
performance cameras.

A typical implementation of the DMS for bridge monitoring is 
shown in Figure 1. High-resolution cameras equipped with long 
focal length lens are connected to the controller (computer) via 
Ethernet cables and a group of up to four cameras are available 
for time-synchronized recording and real-time video processing. 
Cameras used for case studies in this paper have a resolution of 
2,048 × 1,088 pixels and sensor size of 11.26 mm × 5.98 mm.

In the video-processing package, target tracking algorithms 
used are correlation-based template matching and super resolu-
tion techniques (Potter and Setchell, 2014) which enable better 
than 1/100 pixel resolution at sample rates beyond 100  Hz in 
�eld applications. �e tracking objects could be either arti�cial 
targets or an existing feature (i.e., bolts or holes) on the bridge 
surface. �e system supports either 2D structural displacement 
measurement by single camera or 3D structural displacement 
measurement by multiple cameras. In this study, single camera 
con�guration was used to extract the 2D bridge displacement 
along the vertical and transverse directions at bridge mid-span 
and planar homography method based on coplanar dimension 
correspondences as used in camera calibration.

�e system used by University of Exeter has been trialed in 
several 1-day �eld campaigns on a number of bridges in the 
UK, particularly Humber and Tamar Bridges. Such a 1-day �eld 
campaign on the Humber Bridge is described in the next section.

FIELD DEMONSTRATION

Before deploying on the Humber Bridge, trials on displacements 
of a short-span bridge with assumed “known” displacements 
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FIGURE 2 | Camera system con�guration in the Humber Bridge test: 

(A) DMS near tower foundation and (B) custom-made target installed 

at mid-span.
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obtained by direct measurement as obtained by other sensors 
(e.g., LVDT) were used to check requirements of target size in 
terms of camera pixels. �ese studies are described in the context 
in a later section of this paper and showed that to obtain an accu-
rate and stable measurement, the ideal image size of the target 
is near 80 × 80 pixels and suggested to be not less than 40 × 40 
pixels. If a custom-made target panel is required, the dimension 
of the panel could be estimated from the required image size and 
the camera-target distance using the scaling factor method (Feng 
et al., 2015).

Application on Humber Bridge
�e Humber Bridge (Brownjohn et al., 2015), opened in 1981, 
has a main span of 1410 m and is known to experience mid-span 
deformations around 1  m in strong winds (Brownjohn et  al., 
2015).

A long-term monitoring system has been operating at 
Humber Bridge since 2010 (Brownjohn et al., 2015) and includes 
a base station at the bridge tower, two GPS rover receivers (Leica 
GMX902) mounted on the main cables at mid-span and three 
QA750 accelerometers mounted inside the steel box girder at 
mid-span (two vertical and one lateral/horizontal) (Brownjohn 
et al., 2015). �e sample rates of GPS and QA accelerometers in 
the monitoring system are 1 and 20 Hz, respectively.

A single day of �eld testing using the DMS was performed to 
measure the lateral and vertical displacement at mid-span on a 
clear mid-summer day with low winds and normal tra�c load. 
�e DMS performance was evaluated in time and frequency 
domains by comparing with a GPS “reference sensor.”

In the �eld test, the camera and controller along with battery 
power supply were located near the foundation of the North 
(Hessle) tower shown in Figure 2A, to the East of the pylon. A 
concrete plinth built between the pylons for the 1990s Vision 
System deployment (Stephen et  al., 1993) was not used due to 
poor sightline to the target attached to the bridge parapet. A 
300 mm f/2.8 lens was attached to both camera and tripod via a 
rigid double-support translation stage (described in a later sec-
tion of the paper). A custom-made 1 m square steel frame holding 
an arti�cial target was mounted on the parapet at the mid-span 
710 m from the lens as shown in Figure 2B. �e pattern of the 
target is a set of concentric rings with a gradual blend from black 
to white at the edges.

�e frequency range of interest containing the majority of 
signi�cant vibration modes was less than 1 Hz, so the frame rate 
of the DMS system was chosen as 10 Hz. To save storage space, the 
image size of each frame was saved as 850 × 400 pixels although 
the default image size is 2,048 × 1,088 pixels.

Both the custom-made target and a natural feature target at 
mid-span were tracked. Figure 3 shows a single captured video 
frame. �e red dashed boxes in the �gure include the custom-
made target and the natural target. �e latter comprises ribs of 
the box deck on the bridge so�t and while it is judged to be close 
to the arti�cial target it could be at a spanwise location di�ering 
by a few meters. To transform the image natural units (pixels) 
to the real world units (e.g., millimeters), a transformation 
metric re�ecting the geometric relation between the 2D image 
plane and the 3D structural coordinate system is required, and 

planar homography method for camera calibration is used in 
this application. With the knowledge (Brownjohn et  al., 2015) 
that the out-of-plane motion along the longitudinal direction 
of the bridge is negligible, the planar homogrpahy matrix was 
estimated based on four coplanar line correspondences between 
the 2D image plane and the 2D target surface plane. �e lines 
with known dimensions came from the edge and diagonal of the 
installed arti�cial target frame.

Measurement Evaluation in Time Domain
During the test, a D-SLR camera was adapted to video-record 
tra�c on the bridge. Figure 4A shows one captured frame from 
the video recorded when two heavy good vehicles (trucks) 
approached each other at mid-span from opposite directions. 
Figure  4B shows the corresponding measurement using the 
DMS in the vertical direction, with vertical de�ection at mid-
span caused by the two vehicles reaching 221 mm. In general, the 
measurements from tracking each of the two targets agree well; 
the DMS demonstrates similar performance for tracking either 
target.
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FIGURE 3 | Captured frame from DMS video records with marked 

custom-made target and natural feature target.

FIGURE 4 | DMS measurement with two heavy vehicles approaching mid-span from opposite directions: (A) captured frame from video �le by D-SLR 

camera and (B) vertical displacement measured by DMS.
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Displacement from tracking the custom-made target was 
used for comparison with the displacement data from one of the 
mid-span GPS receivers. Figure 5A shows the vertical displace-
ment measurement by DMS and the GPS receiver; the cross 
correlation coe�cient of two signals is calculated to be 98.8%. 
Figure 5B shows a zoom-in view of 1-min of data. Consistent 
with reported GPS standard accuracy of 35  mm in vertical 
direction (Nickitopoulou et al., 2006), the accuracy of the GPS 
observation at Humber was at the centimeter level. For vision-
based systems, it is hard to quantify the measurement accuracy on 
site since the true bridge motion is unknown. One approximate 

way to estimate the measurement accuracy is from target tracking 
accuracy using the scaling factor method

 
I

S

f

D

disp

disp

pixel=  (1)

where Idisp and Sdisp are the target motions in the image plane (e.g., 
pixel) and structural system (e.g., millimeter); fpixel is the focal 
length of camera lens in terms of pixel units corresponding the 
focal length in terms of millimeters scaled by the camera sensor 
resolution; and D denotes the distance between the camera opti-
cal center and the target surface plane.

�e nominal resolution of Idisp in target tracking can be better 
than 0.01 pixel while the reported accuracy varies from 0.5 to 
0.01 pixel (Bing et  al., 2006) which is related to target pattern 
(texture contrast) (Busca et al., 2013) and illumination condition 
(reported in Section “Change of Target Pattern Due to Shadow 
and Illumination”). In this application, given the focal length 
of 300  mm, the camera sensor resolution at 0.0055  mm/pixel, 
and the camera-to-target distance at approximately 710 m, the 
accuracy of 0.1 pixel (arti�cial target of high-contrast pattern) in 
image plane corresponds to an accuracy (or rather resolution) of 
1.3 mm in the structural system.

�e power spectral densities of the DMS displacement 
signal, the GPS displacement signal, and the acceleration data 
were obtained by Welch’s method as shown in Figure 5C. From 
the previous studies on the bridge, it is known that (vertical) 
modal frequencies exist at 0.117, 0.31, and 0.46  Hz (Rahbari 
et  al., 2015). �e DMS captured the �rst and second vertical 
modal frequencies while the GPS captured only the �rst one.  
In theory, the DMS and GPS measurement sampled at 10 and 
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FIGURE 5 | Comparison of vertical displacement by DMS and GPS: (A) 10-min signals of vertical displacement; (B) zoom of the area marked by 

rectangle in panel (A); and (C) power spectral density of displacement measurement signals.
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1 Hz, respectively, have the chance to capture modal frequencies 
in the range 0–0.5 Hz, but in fact they have failed. �is is because 
the displacement induced by vehicle loads is always dominated by 
the static and quasi-static components while the dynamic compo-
nent of displacement is relatively small (i.e., the root mean square 
of de-trended acceleration signal during this time interval is only 
0.0016 g) and easily contaminated by the measurement noise. It 
indicates that the displacement sensor (either DMS or GPS) has 
the capacity to capture the dominant frequency component but 

might fail to capture some frequency components lower than the 
Nyquist frequency.

CHALLENGES OF OPTICAL-BASED 

STRUCTURAL MONITORING IN FIELD

�e challenges and performance limits using the DMS were 
investigated using four bridges including Humber Bridge, along 
with two short-span bridges in Exeter (the Exe North Bridge and 
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FIGURE 6 | Lens mounting: (A) old approach and (B) new approach.
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the Station Road Bridge), and Tamar Bridge (Plymouth). �e �rst 
issue to be explored was stability of the camera resulting in its 
movement and the consequent e�ect on apparent target position. 
�e second issue was the e�ect of varying lighting conditions and 
shadows on the target.

Error Induced by Camera Movement
Error Correction Methods
In vision-based monitoring, structural displacement is derived 
from the di�erence in spatial location of structure target(s) 
relative to the camera center. As the reference, the camera pose 
(position and orientation) must remain unchanged during the 
test since very small rotations of the camera can translate to large 
errors in target position estimation. However, it is very challeng-
ing to guarantee this condition with full-scale applications. In 
the �eld, cameras might be shaken by the wind and the support 
might de�ect due to movement of the ground, which could be 
due to people walking nearby. All these lead to errors in extracted 
structural displacement.

One solution is to provide a more rigid camera mounting. 
Figure 6A shows the original mounting of a 300 mm lens that is 
in e�ect a cantilever, and Figure 6B shows an improved and more 
substantial mounting. Although wind is still an issue, more robust 
results could be obtained with the new mounting (Brownjohn 
et al., 2016).

Improvement of the camera mounting could mitigate camera 
shake, but is not a direct solution to deal with the camera motion 
issue. Two methods are feasible to remove the error induced by 
camera motion:

 (i) supplementary measurement of camera motion (Ehrhart and 
Lienhart, 2015) and

 (ii) estimation of camera motion by tracking another target 
which is �xed in reality (Yoneyama and Ueda, 2012).

�e �rst method requires additional sensors and data 
acquisition system as well as data fusion with the direct optical 
monitoring results. Ehrhart and Lienhart (2015) proposed a 
mixed system combing the camera with the total station. �e 
total station provides angle measurement along the horizontal 
and vertical directions used to correct the camera motion in�u-
ence. �e second method is more promising and uses the same 
optical system. In the next section, the necessity and e�ectiveness 
of camera motion correction will be demonstrated through a 
mid-span deformation test on Tamar Bridge.

Example: Mid-Span Deformation Test at Tamar 

Bridge
Tamar Bridge spans the River Tamar between Plymouth (Devon) 
on the East bank and Saltash (Cornwall) on the West bank. A 
single day of �eld testing using the DMS was intended to measure 
the lateral and vertical displacement at mid-span of the bridge. 
�e system performance was evaluated by comparing with meas-
urements by GPS.

As at Humber Bridge, the hardware included a GigE camera 
equipped with a 300-mm lens, data acquisition system, and a 
(smaller) arti�cial target. �e camera was installed at the top of a 
steel tower shown in Figure 7A, 380 m away from mid-span. �e 
data acquisition system including the controller and a monitor in 
Figure 7C was set at the nearby o�ce of the bridge maintenance 
team. A custom-made 750 mm square target frame was mounted 
on the parapet at mid-span indicated in Figure 7B. Figure 7D 
shows one frame captured from the video �les recorded on the 
test day. �e derived output was the mid-span displacement in the 
vertical and lateral directions.

To evaluate the performance of the optical system, an inde-
pendent GPS system (TOPCON GR-5 RTK) was used in the test. 
�e base station was mounted on a sheltered and stable survey-
ing tripod near the Tamar Bridge o�ce while the GPS rover was 
attached to the top of the target frame at mid-span in Figure 7B. 
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FIGURE 7 | Camera system con�gurations in the Tamar Bridge test: (A) camera mounting location; (B) arti�cial target installed at mid-span; (C) data 

acquisition system for camera system; and (D) one captured video frame.
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Sample rates for vision-based system and GPS were 10 and 2 Hz, 
respectively.

First, the direct measurement by the vision-based system is 
evaluated by comparing with the GPS measurement and the 
possible reasons for di�erences are discussed. Next, the direct 
measurement by the vision-based system is corrected according 
to the tracked “motion” of bridge tower and the corrected result 
is again compared with the GPS measurement. Note that GPS is 
not assumed to provide the true displacement signal, but rather 
a means of comparison.

Ten-min signals of the DMS and GPS measurement (between 
11:20 a.m. and 11:30 a.m.) in vertical direction are shown with 
label “DMS (Target)” and “GPS” in Figure 9A. �e signals are 
arti�cially o�set in the vertical direction by 35 mm to provide a 
clear view. It is expected that the two measurement signals have 
the exact same movement shape and amplitude; however, the 
DMS measurement includes what appear to be high-frequency 
“vibrations” (e.g., from 11:22 to 11:24) and sharp peaks (e.g., 
11.26) that do not appear in the GPS measurement.

�e main working principle of vision-based system is by track-
ing the location of target projection in image and transforming 
the target locations in image to the true locations in structure via 

a transformation metric. �us the error of displacement measure-
ment is mainly induced by the error of the target tracking results 
and the estimated transformation metric. �e target tracking 
accuracy varies from 0.5 to 0.01 pixel (Bing et al., 2006) which 
is related to target pattern (texture contrast) (Busca et al., 2013) 
and illumination condition. �e target region in the recorded 
video �le keeps in high-contrast pattern and experiences no sharp 
lighting change.

�e transformation metric from the image plane to the struc-
ture system is dependent on camera internal features as well as 
camera-to-structure position and orientation. Since the camera 
is �xed in a stable location, the transformation metric is usually 
determined according to the initial condition without updating 
as time varies. Figure 8 gives a demonstration of estimation error 
in measured displacement induced by one-directional camera 
translation in a simpli�ed camera-to-target con�guration (when 
the target is initially in the principal axis). If the camera center 
has a translational movement due to environment or human 
intervention, the projection of a �xed target (Os) is moved from  
OI to PI in image. �e predicted target location in structure 
according to the pre-determined transformation metric will be 
shi�ed to PS, leading to displacement estimate error |OsPs|.
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FIGURE 8 | Measured displacement error induced by 1D camera translation.

FIGURE 9 | Measurement of Tamar Bridge vertical displacement by GPS and DMS: (A) GPS measurement and DMS raw measurement and (B) GPS 

measurement and DMS corrected measurement.
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�e camera was mounted at the top of a very sti� steel tower, 
although a ladder had to be used for setup adjustment. �e cam-
era had consistent motion together with the steel tower, leading 
to error in the DMS measurement when the ladder was used. As a 
result, the raw measurement using the DMS could not be trusted 
and it was necessary to use correction techniques to compensate 
for the error induced by the camera motion.

A feasible approach for camera motion correction is through 
tracking a reference region that is physically �xed; in this case 
the far (Saltash) bridge tower. �e towers were constructed from 
reinforced concrete and sit on caisson foundations founded on 
rock (Koo et al., 2013) so are extremely sti� and experience only 
minute vertical deformations induced by extreme tra�c loads 

(Westgate et  al., 2013) and temperature variation (Koo et  al., 
2013). Hence, the true tower deformation would be dominated by 
low-frequency components small in amplitude compared with the 
mid-span displacement. �e natural feature target in bridge tower 
was a rectangular region of a sign (“Welcome to CORNWALL”) 
on the tower surface shown as a red box in Figure 7D and tracked 
simultaneously with the mid-span target. �e estimated displace-
ment of the bridge tower shown as a dashed line in Figure 9A is 
not constant but includes the same high-frequency “vibrations” 
(e.g., from 11:22 to 11:24) and sharp peaks (e.g., 11.26) observed 
in the target displacement obtained using the DMS. �is proved 
the assumption that the main DMS error was due to the camera 
motion. �e correction to the directly tracked target location 
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FIGURE 10 | Captured frames from video �le (UTC time): (A) video frame at 19:10; (B) video frame at 19:12; (C) video frame at 19:20; and (D) video 

frame at 19:29.
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in the image plane is deduced using the tower “motion” in the 
image plane and then transformed to structural displacement via 
a transformation metric (planar homography matrix here).

�e corrected result of structural displacement is shown as 
the lower line in Figure 9B together with the GPS measurement. 
�e two signals resemble each other, and the cross correlation 
coe�cient of two signals is calculated to be 95%. Di�erent GPS 
units were used at Humber Bridge and Tamar Bridge and it seems 
that the temporary system used at Tamar Bridge provided a more 
reliable reference than the (older) system used at Humber Bridge.

Change of Target Pattern due to Shadow 

and Illumination
Change of Target Pattern due to Shadow: Humber 

Bridge Test
Sometimes the target pattern changes due to the shadow of 
adjacent structures, leading to tracking failure. In the Humber 
Bridge test, about half an hour before sunset (which in July is 
around 8 p.m. UTC, 9 p.m. British Summer Time), the target 
panel on the east side was in the shadow of the bridge railings 
shown in Figure  10. Due to the low sun elevation, the video 
frame �ickered when tall vehicles passed brie�y between the 
sun and the target and obstructed the sunlight. �is �ickering 
was observed by eye and was unrelated to camera setting. �ere 
is no similar e�ect on the natural feature target because it was 
only illuminated by the sun in the very early morning before the 
measurements started.

As described previously, an arti�cial target at mid-span and 
another feature pattern located at the deck so�t shown in the 
red box in Figure 10A and the measurement results are shown 
in Figure 11 for the period 19:10 to 19:30 UTC. Data are miss-
ing between 19:15 and 19:20 when the system failed to track the 

pattern of the arti�cial target, while the natural feature target in 
the so�t was not a�ected. Hence, the natural target in this case 
provided a second advantage in addition to not needing to access 
the structure.

Change of Target Brightness due to Lighting 

Conditions

Initial Testing and Results
�e testing set up used in an early system trial in Exeter similar 
to that shown in Figure 1, but cameras positioned on the North 
and South sides of the 36 m span road bridge and using 85 and 
180 mm lenses, respectively. As the bridge uses a painted (gray) 
steel girder there is very little natural texture in the image, so 
blurred concentric roundel arti�cial targets were stuck to North 
and South faces having dimension 150 mm square.

Dimension lines physically marked on the target were used 
as references to calibrate the planar homography matrix in the 
video-processing package.

�e mid-span vertical displacement returned by the system 
for the South side of the bridge are shown in Figure 12 in the 
form of raw data and an overlaid “average” plot (using a mov-
ing average �lter). �e average plot shows displacement starting  
from 0, increasing to approximately 1 mm a�er 250 s and then 
falling back toward 0. In this time, only a few occasional light 
vehicles (cars) crossed the bridge providing no credible loading 
pattern that could have caused such vertical de�ection.

Previous modal testing of the bridge identi�ed �rst bending 
and �rst torsion mode frequencies at 3.1 and 4.9 Hz, respectively. 
�e high-frequency movement in the �gure does not resemble 
dynamic bridge movements has no characteristic frequency 
content and the FFT shows no clear peaks at 3.1 or 4.9 Hz. So, 
as with the horizontal displacement, the vertical data obtained 
in this video gauge deployment are not usable. Discussion with 
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FIGURE 11 | Humber Bridge vertical displacement signals using the DMS.

FIGURE 12 | Vertical displacement (millimeters) using the DMS in the �rst 400 s of the test on the South side of bridge.
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Imetrum revealed that the noise/dri� observed was very likely 
due to varying lighting conditions.

�e target tracking algorithm used in the DMS is correlation-
based template matching which uses the similarity level of image 
intensities between two subset frames as the matching metric. 
�is method is widely used in structural monitoring (Stephen 
et al., 1993; Feng et al., 2015) due to the advantages, e.g., it is easy 
to use with little user intervention and has less requirement about 
saliency of target patterns compared to other methods. However, 
it is more sensitive to brightness changes compared with other 
tracking methods, e.g., phase-based optical �ow estimation 
(Chen et al., 2015a) and descriptor-based feature matching (Khuc 
and Necati Catbas, 2016).

Modi�cations and Improved Results
Following the site work described in Section “Initial Testing 
and Results,” a so�ware update with autoexposure feature was 

released. To check if the autoexposure feature improved results, 
the test described was repeated, providing much improved results. 
In the revised test setup, both cameras pointed at the same target 
on one side of the bridge. Figure 13 shows the mid-span vertical 
displacement measured during the test in which it is evident, by 
comparison to Figure 12, that autoexposure reduces the amount 
of noise and dri� signi�cantly. In this test, the displacement stays 
around 0 mm, except at 50, 60, 100, and 110 s where single or mul-
tiple cars or light trucks crossed the bridge resulting in credible 
displacements in the region of 0.2 mm. Such a value is consistent 
with deformation values estimated using structural properties 
of the bridge (material, section, and span) and the approximate 
weight of a cars and trucks.

Test at Night
No active illumination was provided for the targets in the two 
long san bridge tests. For Humber Bridge, as night fell, the steady 
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FIGURE 13 | Repeat test con�guration and results from test using autoexposure feature of the software.
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exposure was reached at the expense of gradually declining 
sampling rate. �e recording was stopped as darkness fell when 
displacement measurement sampling at less than 2 Hz was not 
able to provide a trackable sequence of images.

For monitoring campaigns in daytime especially on sunny 
days, the autoexposure setting in camera ensures tracking per-
formance more robust to environmental illumination variation. 
For testing at night, additional illumination is suggested (Stephen 
et al., 1993; Macdonald et al., 1997).

NON-PROPRIETARY (OPEN SOURCE) 

OPTICAL DEFORMATION MONITORING

Discussion about DMS
�e Imetrum DMS is validated to be a mature, accurate, and sta-
ble optical system for bridge deformation measurement over long 
ranges and over several hours within a day, but it is a proprietary 
solution and there remain open various research routes to wider 
applications and lower costs in non-contact sensing. �is section 
considers these routes in terms of concept, procedures, and the 
potential for improvement.

In the �eld applications at Humber Bridge and Tamar Bridge, 
one single GigE camera with 300 mm lens was used for recording. 
During the video processing, correlation-based template match-
ing (Potter and Setchell, 2014) was used for target tracking and 
planar homography method was used for camera calibration to 
determine the transform relation between the image plane and 
the structural system. �e �nal output was the two-dimensional 
structural displacement along the vertical and transverse direc-
tions at bridge mid-span.

Regarding hardware component of an optical system:

 1. Professional high-resolution cameras equipped with long 
focal length lens used in the DMS are necessary for long-range 
monitoring. For short-distance monitoring, consumer-grade 

cameras or smartphones could be alternatives reducing 
system cost. Consumer-grade cameras have been validated as 
feasible for displacement measurement and system identi�ca-
tion in laboratory testing (Yoon et al., 2016), but reports of 
�eld implementations are hard to �nd.

 2. Custom-made arti�cial targets were used in the study reported 
here, requiring direct access to the bridge for installation. �e 
role of arti�cial targets here includes (i) providing dimen-
sional information for calibrating transformation metric in 
camera calibration step and (ii) providing salient features to 
improve tracking accuracy. �e target tracking algorithm used 
in the DMS is e�ective to track the feature target as validated 
by Figure 4 thus the second function could be ignored. �e 
remaining obstacle of avoiding the need for a cumbersome 
arti�cial target is involved in camera calibration step.

Regarding the video-processing methodologies:

 (1) Camera calibration is aimed at determining the transforma-
tion metric between the image natural units (pixels) and the 
real world units (e.g., millimeter). �e scaling factor method 
using the camera-to-target distance (Khuc and Necati 
Catbas, 2016; Yoon et al., 2016) or merging optical system 
with a total station (Charalampous et al., 2015; Ehrhart and 
Lienhart, 2015) has no requirement about known geometric 
information. However, these applications are based on the 
prerequisite that the camera principal axis is perpendicular 
to the target surface plane and are thus not suggested. �e 
general form of transformation metric (i.e., planar homog-
raphy matrix or full projection matrix) is related to camera 
internal features (i.e., focal length, principal point locations, 
etc.) as well as the camera-to-target geometric relation (i.e., 
position and orientation of camera in structural coordinate 
system). Parameters describing camera internal features (i.e., 
camera intrinsic matrix) can be determined in the laboratory 
ahead of a �eld test, i.e., using the camera to observe a planar 
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FIGURE 14 | Captured frame from Gopro video: (A) raw image and (B) image after distortion correction.
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calibration object in a few di�erent views (Zhang, 2000). 
However, determination of camera position and orienta-
tion (i.e., camera extrinsic matrix) requires some geometric 
information from the structure (at least four coplanar point 
locations). �e points with known locations are usually 
provided by attached arti�cial targets, e.g., planar chessboard 
target (Chang and Ji, 2007), planar T-shape wand with active 
markers attached (Park et al., 2015), or 3D calibration object 
with four non-planar active targets (Martins et  al., 2015). 
To achieve complete contactless sensing, e�orts should be 
spent on alternative means to obtain dimension information 
in structure, e.g., through surveying or structural design 
drawings.

 (2) Correlation-based template matching is used for target 
tracking in the DMS and is validated to provide good per-
formance in either short-range or long-range monitoring 
campaigns. Correlation-based template matching is based on 
matching two subset images by similarity level. It assumes 
that each pixel within the selected rectangular region (tar-
get projection) in an image has identical image motion in 
two-dimensional translation. �us, template matching is not 
the best choice to track slender structural components, e.g., 
cables in a cable-supported structure. �is is because the 
target region bounded by a rectangle window might include 
some background pixels, e.g., clouds and tree branches. �e 
background pixels with motion inconsistent with the true 
structural motion will contaminate the template matching 
results. In this case, the preferred choices of target tracking 
algorithms are optical �ow estimation (Yoon et  al., 2016) 
and feature point matching (Khuc and Necati Catbas, 2016) 
which are based on tracking sparse points within the target 
region and are supportive to remove outlier among point 
correspondences.

Preliminary Work with “Open Source” 

Vision System
Based on optical system concepts, structural motion monitoring 
is possible with a single consumer-grade camera and a custom-
developed video-processing package. �is section shows a simple 
�eld implementation of a non-proprietary optical system for cable 

vibration monitoring to Miller’s Crossing cable-stayed footbridge 
in Exeter, UK (Figure 14).

One of the shorter footbridge cables is known to vibrate due 
to pedestrian tra�c, so pedestrian excitation (jumping at the 
2.4 Hz vertical natural frequency) was used to obtain the dynamic 
parameters of the cable.

Contacting sensors for cable vibration measurement, e.g., 
accelerometers and strain gauges require troublesome direct 
access to the cable at height whereas a non-contact optical system 
o�ers the possibility of quick, easy, and economic measurement. 
In this application, a consumer-grade camera was used to record 
the video that was post-processed using video-processing code 
custom-developed in MATLAB. A Gopro Hero4 Session video 
camera was mounted on a tripod 30  m away from the bridge 
for recording; a sample frame is shown in Figure 14A. Since the 
monitoring purpose is only for system identi�cation, speci�cally 
estimating modal parameters of cable vibration, and exact vibra-
tion values are not required (Kim and Kim, 2013; Chen et  al., 
2015b), the video-processing package includes only the target 
tracking step to extract the cable motion projected in image. �e 
image includes salient distortion due to the wide angle lens, thus 
the distortion was removed ahead of target tracking using o�ine 
camera calibration (Chang and Ji, 2007) and the corrected image 
is shown in Figure 14B.

�e target tracking algorithm is based on edge detection using 
the Sobel–Zernike moment operator (Ghosal and Mehrotra, 1993; 
Ying-Dong et al., 2005) with a region of interest including a small 
cable segment selected for tracking. An arbitrary direction, e.g., 
normal to an identi�ed edge was assumed as the cable motion 
direction and the distance between identi�ed edges within two 
frames corresponded to the cable motion projected in the image 
which inherently has subpixel resolution. Even if motion direc-
tion is not transverse to line of sight there is no in�uence on the 
identi�cation of cable natural frequencies.

Figures  15A,B show time histories of cable motion, with 
the maximum motion in the image estimated to be 0.583 pixel. 
�e corresponding power spectrum density is presented in 
Figure 15C identifying peak frequencies at 2.53, 5.03, and 7.6 Hz. 
�ese values could be used with known length and mass proper-
ties to estimate cable tension.
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�is example of a simple non-contact optical system for cable 
vibration monitoring shows the potential for vibration measure-
ment of other slender line-shape structural components, e.g., 
transmission towers using consumer-grade cameras.

CONCLUSION

�e paper presents experiences using proprietary as well as “open 
source” optical systems for bridge deformation monitoring. �e 
value of this technology is that it frees the user from the di�cult 
and expensive task of attaching sensors to structural locations 
that are di�cult to access and where use of signal cables presents 
additional problems.

�ere are di�culties in using optical systems, such as basic 
practical issues of rigid camera �xing and variable lighting 
conditions. Long-term applications require the type of safety and 
security taken for granted in CCTV systems, and fusion with 
other fast sampled data streams, e.g., accelerometers needs to be 
addressed. With these steps there can be signi�cant capability 
enhancement in long-term monitoring.

DMS is a mature and stable system that provides necessary 
accuracy for measurements at long range using long-focus lens, 
but there are several lower cost open-source options which might 
be a better choice for less demanding applications.

�ese options can include consumer-grade camera (such 
as the currently popular GoPro) and are most e�ective where 

FIGURE 15 | Tracking results of cable motion: (A) cable motion in time history, (B) zoom-in view of cable motion, and (C) power spectral density of 

cable motion.
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precise spatial measurements are not necessary, such as for sys-
tem identi�cation, e.g., of natural frequencies.

Where precise tracking is needed, a particular di�culty is 
provision of scaling for an accurate transformation from image 
to structure coordinates. Arti�cial targets can be used to provide 
dimensional information for direct calibration of the complete 
system and also enhance tracking but they lose the advantage of 
not needing to access the structure. Alternative approaches, e.g., 
using survey instruments or reading dimensional information 
from structural design drawings are promising.

As for target tracking, correlation-based template matching 
algorithms such as used in the DMS are not appropriate for cer-
tain types of structure, e.g., cables, particular since pixels within a 
selected template (a rectangular subset from a video frame) might 
cover structural components as well as some background (e.g., 
clouds and tree branches) and have inconsistent motions.

Tracking natural targets could reach similar accuracy as for 
arti�cial targets. Targets preferred in �eld are those with high 
contrast and having stable patterns over time.

�e experience so far is encouraging and is leading to “full 
�eld” application that could potentially replace conventional 
wired sensor arrays and �nd greater application in commercial 
monitoring applications.
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