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Abstract

Stair-cases are useful environmental landmarks for
navigation in mobility aids for the partially sight-
ed. In this paper, a texture detection method
using Gabor Filters is proposed to detect dis-
tant stair-cases. When close enough, stair-cases
are then detected by looking for groups of con-
current lines, where convex and concave edges
are partitioned using intensity variation informa-
tion. Stair-case pose is estimated by a homogra-
phy search approach. Using an a priori stair-case
model, search criteria and constraints are estab-
lished to find its vertical rotation and slope. These
algorithms have been applied to both synthetic
and real images with promising results.

1 Introduction

The problem we discuss here arose originally as
part of the navigation function of a Technological
Aid aimed at helping Partially Sighted (TAPS)
which aims to provide a full mobility and naviga-
tion capability for partially sighted people. Ob-
stacle detection [22, 16] and elevation changes de-
tection such as kerbs [21] and steps are two of the
most basic requirements of any TAPS. This paper
concerns the visual detection of steps.

Stair-cases are useful environmental features
that the partially sighted needs to be made aware
of. A stair-case may be a location by which to ori-
ent themselves (for example you are passing the
steps of St Paul’s) or an important way point a-
long the route that they wish to travel.

In this paper, we aim to detect the presence of
a stair-case and to estimate its orientation within
a bm range. The gradient, i.e. how steep the stair-
case is, is not essential but useful information for
the user since it can forewarn the partially sighted
person that the stairs are steep or is normal.

2 Texture Detection

Figure 1 shows an image sequence as a user ap-
proaches a stair-case from far away. All edge de-
tectors to a greater or less extent, more or less
explicitly, smooth the input data, for example, So-
bel performed weighed averaging of the signal in
the direction orthogonal to the direction that the

Figure 1: An image sequence as a person ap-
proaches a stair-case from far away.

gradient is sought. We have chosen to use Canny
which uses Gaussian smoothing, as do a lot of oth-
er edge detectors, this serves to make the general
point.

During Canny edge detection, the image is s-
moothed first and this smoothing process blurs
the edges. When the stair-case is far away, it may
be just a few pixels wide for its tread and its riser,
any smoothing will make them indistinguishable.
Figure 2 shows the edge detection output for the
image sequence, where edges in some cases cannot
be resolved. Therefore, we will treat the stair-case
pattern as a type of texture for detection.

2.1 Gabor Filter

Texture segmentation requires simultaneous mea-
surements in both the spatial and the frequency
domains. Filters with small bandwidth in the fre-
quency domain allow us to make finer distinction
among different textures. Meanwhile, accurate
localisation of texture boundaries requires filter-
s that are localised in spatial domain. However,
the width of a filter in the spatial domain and its
bandwidth in the frequency domain are inversely
related.

Therefore, Gabor filters [8] are widely used in
texture classification and segmentation as they
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Figure 2: Edge detection results for the image se-
quence. It can be seen that the edges cannot be
resolved in some cases as the stair-case is too far
away.

have joint optimum resolution in both the spatial
and the frequency domains [6]. They have also
been shown to be good fits to the receptive fields
of simple cells in the striate cortex [5] and hence
their relationship to models for the early vision of
mammals.

The multi-channel filtering approach uses a set
of spatial filters with frequency- and orientation-
selective properties. These Gabor filters of differ-
ent frequencies and orientation are convolved with
a textured image and there will be good response
when the Gabor filter of the right frequency and
orientation is used. In general, if there are differ-
ent types of texture on the image, using this set of
Gabor filters, and then combining with some pat-
tern classifier, one can segment the different types
of texture.

Jain and Farrokhnia [11] presented one such
technique for texture segmentation using a bank
of even-symmetric Gabor filters, with justification
from psychophysical grounds [14]. The filtering
operations using the filter set can be interpreted
as computing the wavelet transform of the input
image at selected frequencies. Computational sav-
ings can be realised by using subsampled filters
and this only results in a modest degradation in
segmentation accuracy [19].

There is also the filter-design approach which
focuses on designing one or a few filters for a par-
ticular application. Instead of employing ad hoc
banks of fixed parameters Gabor filters, Weldon
and Higgins [26] tuned the parameters for specif-
ic texture segmentation problems. This is a su-
pervised method as representative texture samples
need to be given.

Rician statistics of filtered textures at two d-
ifferent Gabor-filter envelope scales are used to
generate probability density estimates for each fil-
tered texture over various filter parameters [27].
The filter design is then established by selecting
the filter associated with the minimum predicted
error.

For our current work, we use the multi-channel

filtering approach with a set of predetermined fil-
ter parameters. In the experiments considered
here, all the stair-case edges are horizontal, there-
fore, there will be maximum energy in the vertical
direction and minimum energy in the horizontal
direction. Since we do not know the right fre-
quency, we convolve the images with a series of
Gabor filters of different frequencies horizontally
and vertically.

The goal is therefore, to determine the frequen-
cy when there is good response vertically, but poor
response horizontally. Once this is identified, we
can locate the stair-case too.

2.1.1 Algorithm

The stages of the algorithm are as follows:

For each frequency (between some lower and up-
per bound) and each orientation (discretised into
a few directions),

e create a Gabor filter of the required frequency
e rotate the filter to the required orientation

e convolve the image with this filter

e do thresholding to discard poor responses

e discard edges of length less than L to avoid
noise

e thinnering the edges

e keep regions with at least k edges to find stair-
case of at least k steps

e compute the area of each such region and keep
regions of at least area A

Subsequently, we choose the frequency and ori-
entation that gives the maximum area, when a re-
gion exists. Also, we need to verify that the filter
with the same frequency but at the orthogonal di-
rection gives poor response. Hence, we obtain the
frequency and orientation of the stair-case region
(if any) in the image, as well as its approximate
position.

There is a potential problem: if f is the right
frequency satisfying the above criteria, multiples
of f will give good response too.

2.1.2 Results

Figure 3 shows the Gabor filters for the different
frequencies that we use in our experiments, rang-
ing from 8 to 36. For our case, since the stair-cases
are horizontal, we will just show results of convo-
lution with filters horizontally and vertically.

For a sequence of images as a user approaches a
stair-case, we know in advance that the frequency
will be decreasing as one gets closer. Therefore, we
can use the frequency obtained from the previous
step as an upper bound for the current step, this
will help to avoid choosing the multiples of the
right frequency.

Considering the image sequence in Figure 1, we
apply this algorithm with a discretisation of 4 first
and then refine with a discretisation of 2. We ob-
tain Figures 4 to 7 where the original image is
shown on the left and the best frequency has been
selected. The middle one shows the vertical filter
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Figure 3: Gabor filters at different frequencies.
From 8 to 36 at increment of 4.

Figure 4: Image 1 from the sequence, frequency
found is 26 (see text for details).

result and the one on the right shows the hori-
zontal filter result at the selected frequency. The
stair-case has been localised and the frequencies
for the sequence are found to be (26, 22, 18, 14)
respectively.

Stair-case pose is not important at this stage as
the stair-case is still a long way away. When it is
close enough for its edges to be resolvable, it will
switch to the following approach which can then
estimate its orientation and slope.

3 Stair-case Detection

Stair-cases can be characterised as a sequence of
steps, which can be regarded as a group of con-
secutive kerb edges. Following the kerb detection
approach [21], we start with Canny edge detection
and Hough Transform line-fitting on the image.
Stair-case edges are parallel to each other in 3D
space, we are not interested in spiral ones here.
Therefore, when they are projected onto the im-
age, these edges will intersect at a vanishing point
(provided that they are not fronto-parallel to the
image plane). Usually when a stair-case is seen

Figure 5: Image 2 from the sequence, frequency
found is 22.

Figure 6: Image 3 from the sequence, frequency
found is 18.

Figure 7: Image 4 from the sequence, frequency
found is 14.

from a distance, the lines will be quite parallel
to each other, and the vanishing point will be far
from the image. It is therefore logical to search
for concurrent lines when looking for a structure
that originally consists of parallel lines.

3.1 Searching for Vanishing Point

There are two ways to find concurrent lines. One
approach is to search for vanishing points using
the Hough Transform [1, 18, 24, 13, 3]. After ob-
taining straight lines using the Hough Transform,
we can apply another Hough Transform to find the
intersection of these straight lines. The vanish-
ing points are characterised as those points where
most of the supporting line segment primitives in-
tersect, so we can accumulate evidence provided
by these line segments.

However, Collins and Weiss [4] considered van-
ishing point computation as a statistical estima-
tion problem and observed that it is not reliable
when not many lines are passing through that
point. The accuracy level stays roughly the same
as the number of lines drops from 100 down to
20, but degrades notably from 20 down to 5. In
fact, any convergent group consisting of relatively
small number of lines will be left undetected with
this approach.

3.2 The Detection Algorithm

A different approach is proposed here where po-
tential groups of candidate lines are generated and
then tested for coincidence. This approach was
employed by Utcke [25] for grouping and recognis-
ing zebra-crossing in cluttered images. Line clus-
tering was also used in [15] to classify groups which
share common vanishing points followed by van-
ishing point estimation.

Based on the projective property of structures
with parallel lines, our algorithm [17] picks out
groups of nearly parallel lines and checks for con-
currency (hence finding the vanishing point) as
hypotheses for stair-cases. Then it seeks further
support from the other lines for these hypotheses,
to determine the best hypothesis.



Figure 8: Image sequence overlaid with the con-
cave and conver edges found on the stair-case.
Convex edges are marked in white while concave
ones are marked in black.

Moreover, since stair-case edges are usually long
and close together, the algorithm discards short
edges and edges that are far away from the rest
which are likely to arise from features other than
a stair-case. RANSAC [7] is employed to eliminate
outliers and a least-squares procedure is then used
to find the intersection of multiple lines [20].

3.3 Partition Stair-case Edges

There are various types of stair-cases, but we are
most interested in the typical regular ones that
have uniform tread and riser, i.e. constant slope.
Using the technique described above, we obtain a
hypothesis for some structure containing parallel
lines. We would like to add further constraints
to verify that the structure actually consists of
two sets of equally-spaced parallel lines: the con-
vex and the concave step edges. This is now a
much stronger constraint for a regular stair-case
compared to merely searching for structures with
parallel lines.

Intensity variation of the stair-case is consid-
ered here as a cue on which to base the partition.
The main idea is to detect concave and convex
edges whenever there is a change of intensity from
dark to light or from light to dark. Geometric
constraints such as cross-ratios can be applied to
refine the sets proposed by this method.

We show in Figure 8 an image sequence in which
a user walks towards a stair-case. Edges are de-
tected using Canny edge detector and the result-
ing lines are fitted with the Hough Transform.
Stair-case edges are then identified using the van-
ishing point constraint. Afterwards, they are par-
titioned using the intensity variation approach de-
scribed above. Concave and convex edges are over-
laid on the images with convex edges marked in
white and concave ones marked in black. It can
be seen that the partition obtained using inten-
sity variation is stable, with most edges correctly
classified.

4 Pose Estimation by Ho-
mography Search

We consider the recovery of vertical rotation and
slope of stair-cases since these are important in-
formation for a partially sighted person, first in
order to navigate themselves to arrive at the foot
of the stairs and then to gauge the degree of cau-
tion necessary to mount the stairs.

We use a search approach which is similar to
Witkin’s search for tilt and slant from texture [28].
However, in the general shape from texture liter-
ature [10, 28, 12, 2, 9], isotropy of texture is as-
sumed. In Witkin’s case, a maximum likelihood
estimator is derived to compute the tilt and slant
which will give the best isotropy texture on back-
projection.

For normal stair-cases (not for spiral ones), the
orientation of each step is assumed to be the same,
the texture is anisotropic and therefore an a priori
model is required. The model we adopt here is
a group of non-skewed parallel horizontal lines on
the image when the stair-case is facing the camera.

The textured plane due to stair-case edges is
a more constrained problem than a general tex-
tured surface, as there are only two rotational pose
components: one around the vertical axis (vertical
rotation 6); the other around the horizontal axis
(slope ¢).

Once we have obtained the vertical rotation 6
and slope ¢, we can compute the tilt 7 and slant
o parameters, which are often used in the shape
from texture literature, by the following equations:

1
7 =tan }(—————
tan ¢ sin 0

o = cos *(sin ¢ cos 0)

Our aim is to transform the image to another
view by a homography [20] so that the camera in
the new view will be facing the stair-case head-on.
We employ criteria based on our stair-case model
while we search in a discretised space of (6, ¢).

4.1 Search Criteria

There are two components of our model-based
search criteria: one for the vertical rotation and
the other for the slope.

We know that if the prediction of vertical ro-
tation is right, after the homography transforma-
tion, the camera will be facing the stair-case edges
head-on and so horizontal edges are expected.
Therefore, the criterion for the correct vertical ro-
tation is based on how horizontal the transformed
texture lines are, quantified by their slopes.

The criterion for the correct slope is based on
how skewed the transformed textures lines are.
The correct one will correspond to the case when
the midpoints of all the texture lines lie on a verti-
cal line. We can quantify this measure by comput-
ing the standard deviation for the u-coordinates of
all the midpoints of the image lines. The slope of
a stair-case cannot be down to 0° nor up to 90°,
therefore, there exists a lower and an upper bound
for ¢.

For each discretised 6 between —90° and 90°
and ¢ between ¢rower and Pupper, We transform



Figure 9: The relationship between the stair-case
slope, the camera tilt and the rotation angle re-
quired to achieve fronto-parallel status.

the texture lines into a new view by homogra-
phy and compute the product between the sum
of absolute values of the slopes and the standard
deviation of the u-coordinates of the midpoints,
then we search for the lowest product over the
two-dimensional space and hence obtain the cor-
responding 6 and ¢. To reduce the complexity of
the search algorithm, we can employ a coarse-to-
fine search strategy [20].

4.2 Equal Spacing Constraint

In most real images, we notice that it is usually not
possible to see the full extent of the stair-case from
one side to the other, either because the stair-case
is so close that part of the stair-case is outside of
the view, or it is partially occluded by some other
objects, not least the stair rail.

Since the criterion of the search algorithm to de-
termine the slope is by looking at how skewed the
stair-case textured plane is, therefore occlusion of
one side or both sides of the stair-case will prevent
the algorithm from estimating the correct slope.

We have partitioned the stair-case edges into
two groups: convex and concave, i.e. we have got
two groups of equally-spaced lines in 3D.

After estimating the vertical rotation of the
stair-case, we apply a plane-to-plane homography
to the image to remove the vertical rotation ef-
fect, so that we are now facing the stair-case, but
there is still the projective effect which makes each
group of stair-case edges non-equally-spaced in the
image. However, if we do a rotation transforma-
tion of an appropriate angle v around the X-axis,
we can obtain a fronto-parallel situation, where
each group of stair-case edges are equally-spaced
in the image as well.

Hence, we can use how well each group of stair-
case edges are equally-spaced to determine the
right rotation angle v. At the specified discretisa-
tion, the algorithm searches for « to rotate around
the X-axis to get the best equally-spaced lines in
the image.

From Figure 9, we can then estimate the slope
¢ of the stair-case with

¢=90°—a—vy (1)

where « is the tilt of the camera.

However, we need the slope value to define the
homography to remove the vertical rotation effect.
We have been using an arbitrary slope value for
the vertical rotation homography search, as the
slope does not affect how horizontal the texture

lines are. But here the actual slope value is need-
ed, otherwise the transformed texture lines will
be distorted and the rotation + found will be in-
correct. But the goal of searching for the right
rotation angle v is to obtain the slope.

Therefore, we propose an iterative scheme using
a starting value for the slope, say 45°. We apply
the algorithm and obtain a value for ~, with E-
quation 1, we can then use a better slope for the
next iteration and so on. This process is iterated
three times.

5 Results

As a real application, it is crucial to know how
reliable the estimation is, therefore error analysis
are carried out. Details can be found in [20]. Now,
we use the image sequence in Figure 8 where the
measured slope is around 30° and the actual ver-
tical rotation is around 45°. Firstly, the vertical
rotation 6* is estimated. Applying the iterative
process, setting slope ¢y = 45° in the beginning:

¢0) 0 — At

¢1a 0* — 2

¢2a 0 — 73
The iterative ~; obtained at each stage is used to
compute the slope ¢; (using Equation 1) for the
next iteration, we obtain ¢3 at the end for the
slope after three iterations.

Both the vertical rotation 6 and the pitch angle

v are estimated at 0.1° discretisation, and then
error analysis is carried out to compute their s-
tandard deviation. Standard deviation of 1 pix-
el is assumed for the original image points. The
results are tabulated in Table 1. Since the stair-
case is quite far away in step (a), the edges are
close together and quite equally-spaced already,
the estimation is therefore not good. Reasonably
acceptable results are obtained for the others.

Step (&) [ (b) [ (o) [ (d)
9 30.3 [ 41.9 [ 49.2 [ 45.1
) 0.54 | 0.34 | 0.27 | 0.27

y 2.8 [ 442543536
1%t | o, | 1513 | 3.28 | 2.18 | 0.96
slope | 72.2 | 30.8 | 20.7 | 21.4
7y 92 [ 421|505 | 505
2nd | g, | 2,60 | 3.41 | 1.97 | 3.05
slope | 65.8 | 32.9 | 24.5 | 24.5
v 77 [ 424|513 [ 511
3rd | o, | 352 | 3.60 | 2.27 | 2.44
slope | 67.3 | 32.6 | 23.7 | 23.9

Table 1: 6 and ~ estimated at various steps for
the image sequence in Figure 8 at 0.1° discreti-
sation, with the corresponding standard deviation
and the estimated slope.

6 Conclusion

In this paper, we apply a texture detection method
using Gabor Filters to recognise distant stair-



cases. When they are close enough and their edges
are resolvable, we look into stair-case detection by
grouping lines and checking for concurrency, as
the vanishing point is a projective property for
structures with parallel lines. Intensity variation
is used to partition the convex and concave edges
afterwards. To recover the vertical rotation and
the slope of the stair-case found, we employed ho-
mography with some search criteria as well as the
equal-spacing constraint of the convex and con-
cave groups.

Although the algorithms have been developed
for TAPS, they are by no means limited to such
applications. Stair-cases are important landmarks
for outdoor mobile robots, for example in map-
building applications or for navigation purposes.

These algorithms are working in theory, howev-
er in terms of speed, they are slow and far from
real-time. Therefore, we will need to optimise
them greatly before they can be used in prac-
tice. Moreover, further trials with different scenes
are required to evaluate their robustness and per-
formance, for instance using Receiver Operating
Characteristic (ROC) curves [23]. Future work
will also include planning a trajectory to approach
the stair-cases found.
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