
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Lab Papers (GRASP) General Robotics, Automation, Sensing and 
Perception Laboratory 

8-2009 

Vision-Based, Distributed Control Laws for Motion Coordination of Vision-Based, Distributed Control Laws for Motion Coordination of 

Nonholonomic Robots Nonholonomic Robots 

Nima Moshtagh 
University of Pennsylvania, nima@grasp.upenn.edu 

Nathan D. Michael 
University of Pennsylvania, nmichael@seas.upenn.edu 

Ali Jadbabaie 
University of Pennsylvania, jadbabai@seas.upenn.edu 

Kostas Daniilidis 
University of Pennsylvania, kostas@cis.upenn.edu 

Follow this and additional works at: https://repository.upenn.edu/grasp_papers 

Recommended Citation Recommended Citation 
Nima Moshtagh, Nathan D. Michael, Ali Jadbabaie, and Kostas Daniilidis, "Vision-Based, Distributed 
Control Laws for Motion Coordination of Nonholonomic Robots", . August 2009. 

Copyright 2009 IEEE. Reprinted from: 
Moshtagh, N.; Michael, N.; Jadbabaie, A.; Daniilidis, K., "Vision-Based, Distributed Control Laws for Motion 
Coordination of Nonholonomic Robots," Robotics, IEEE Transactions on , vol.25, no.4, pp.851-860, Aug. 2009 
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5071250&isnumber=5191252 

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply 
IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this 
material is permitted. However, permission to reprint/republish this material for advertising or promotional 
purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing 
to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws 
protecting it. 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/grasp_papers/12 
For more information, please contact repository@pobox.upenn.edu. 

https://repository.upenn.edu/
https://repository.upenn.edu/grasp_papers
https://repository.upenn.edu/grasp
https://repository.upenn.edu/grasp
https://repository.upenn.edu/grasp_papers?utm_source=repository.upenn.edu%2Fgrasp_papers%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/grasp_papers/12
mailto:repository@pobox.upenn.edu


Vision-Based, Distributed Control Laws for Motion Coordination of Nonholonomic Vision-Based, Distributed Control Laws for Motion Coordination of Nonholonomic 
Robots Robots 

Abstract Abstract 
In this paper, we study the problem of distributed motion coordination among a group of nonholonomic 
ground robots. We develop vision-based control laws for parallel and balanced circular formations using a 
consensus approach. The proposed control laws are distributed in the sense that they require information 
only from neighboring robots. Furthermore, the control laws are coordinate-free and do not rely on 
measurement or communication of heading information among neighbors but instead require 
measurements of bearing, optical flow, and time to collision, all of which can be measured using visual 
sensors. Collision-avoidance capabilities are added to the team members, and the effectiveness of the 
control laws are demonstrated on a group of mobile robots. 

Keywords Keywords 
distributed control, mobile robots, motion compensation, multi-robot systems, robot vision, distributed 
control laws, mobile robots, motion coordination, nonholonomic ground robots, vision-based control laws, 
Cooperative control, distributed coordination, vision-based control 

Comments Comments 
Copyright 2009 IEEE. Reprinted from: 
Moshtagh, N.; Michael, N.; Jadbabaie, A.; Daniilidis, K., "Vision-Based, Distributed Control Laws for Motion 
Coordination of Nonholonomic Robots," Robotics, IEEE Transactions on , vol.25, no.4, pp.851-860, Aug. 
2009 
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5071250&isnumber=5191252 

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way 
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or 
personal use of this material is permitted. However, permission to reprint/republish this material for 
advertising or promotional purposes or for creating new collective works for resale or redistribution must 
be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, 
you agree to all provisions of the copyright laws protecting it. 

This journal article is available at ScholarlyCommons: https://repository.upenn.edu/grasp_papers/12 

https://repository.upenn.edu/grasp_papers/12


IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 4, AUGUST 2009 851

Vision-Based, Distributed Control Laws for Motion
Coordination of Nonholonomic Robots

Nima Moshtagh, Member, IEEE, Nathan Michael, Member, IEEE, Ali Jadbabaie, Senior Member, IEEE,
and Kostas Daniilidis, Senior Member, IEEE

Abstract—In this paper, we study the problem of distributed mo-
tion coordination among a group of nonholonomic ground robots.
We develop vision-based control laws for parallel and balanced cir-
cular formations using a consensus approach. The proposed con-
trol laws are distributed in the sense that they require information
only from neighboring robots. Furthermore, the control laws are
coordinate-free and do not rely on measurement or communica-
tion of heading information among neighbors but instead require
measurements of bearing, optical flow, and time to collision, all of
which can be measured using visual sensors. Collision-avoidance
capabilities are added to the team members, and the effectiveness
of the control laws are demonstrated on a group of mobile robots.

Index Terms—Cooperative control, distributed coordination,
vision-based control.

I. INTRODUCTION

COOPERATIVE control of multiple autonomous agents
has become a vibrant part of robotics and control theory

research. The main underlying theme of this line of research
is to analyze and/or synthesize spatially distributed control ar-
chitectures that can be used for motion coordination of large
groups of autonomous vehicles. Some of this research focusses
on flocking and formation control [9], [14], [16], [22], [31], and
synchronization [2], [39], while others focus on rendezvous,
distributed coverage, and deployment [1], [5]. A key assump-
tion implied in all of the previous references is that each vehicle
or robot (hereafter called an agent) communicates its position
and/or velocity information to its neighbors.

Inspired by the social aggregation phenomena in birds and
fish [6], [30], researchers in robotics and control theory have
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developed tools, methods, and algorithms for distributed mo-
tion coordination of multivehicle systems. Two main collective
motions that are observed in nature are parallel motion and
circular motion [21]. One can interpret stabilizing the circular
formation as an example of activity consensus, i.e., individuals
are “moving around” together. Stabilizing the parallel forma-
tion is another form of activity consensus in which individuals
“move off” together [33]. Circular formations are observed in
fish schooling, which is a well-studied topic in ecology and
evolutionary biology [6].

In this paper, we present a set of control laws for coordinated
motions, such as parallel and circular formations, for a group of
planar agents using purely local interactions. The control laws
are in terms of shape variables, such as the relative distances
and relative headings among the agents. However, these param-
eters are not readily measurable using simple and basic sensing
capabilities. This motivates the rewriting of the derived control
laws in terms of biologically measurable parameters. Each agent
is assumed to have only monocular vision and is also capable of
measuring basic visual quantities, such as bearing angle, opti-
cal flow (bearing derivative), and time to collision. Rewriting the
control inputs in terms of quantities that are locally measurable
is equivalent to expressing the inputs in the local body frame.
Such a change of coordinate system from a global frame to a
local frame provides us with a better intuition on how similar
behaviors are carried out in nature.

Verification of the theory through multirobot experiments
demonstrated the effectiveness of the vision-based control laws
to achieve the desired formations. Of course, in reality, any
formation control requires collision avoidance, and indeed,
collision avoidance cannot be done without range. In order
to improve the experimental results, we provided interagent-
collision-avoidance properties to the team members. In this
paper, we show that the two tasks of formation keeping and
collision avoidance can be done with decoupled additive terms
in the control law, where the terms for keeping parallel and
circular formations depend only on visual parameters.

This paper is organized as follows. In Section II, we review
a number of important related works. Some background infor-
mation on graph theory and other mathematical tools used in
this paper are provided in Section III. The problem statement
is given in Section IV. In Sections V and VI, we present the
controllers that stabilize a group of mobile agents into parallel
and balanced circular formations, respectively. In Section VII,
we derive the vision-based controllers that are in terms of the
visual measurements of the neighboring agents. In Section VIII,
collision-avoidance capabilities are added to the control laws,
and their effectiveness is tested on real robots.

1552-3098/$26.00 © 2009 IEEE
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II. RELATED WORK AND CONTRIBUTIONS

The primary contribution of this paper is the presentation of
simple control laws to achieve parallel and circular formations
that require only visual sensing, i.e., the inputs are in terms
of quantities that do not require communication among nearest
neighbors. In contrast with the work of Justh and Krishnaprasad
[17], Moshtagh and Jadbabaie [27], Paley et al. [32], [33], and
Sepulchre et al. [35], where it is assumed that each agent has
access to the values of its neighbors’ positions and velocities,
we design distributed control laws that use only visual clues
from nearest neighbors to achieve motion coordination.

Our approach on deriving the vision-based control laws can
be classified as an image-based visual seroving [41]. In image-
based visual servoing, features are extracted from images, and
then the control input is computed as a function of the image
features. In [8], [12], and [38], authors use omnidirectional cam-
eras as the only sensor for robots. In [8] and [38], input–output
feedback linearization is used to design control laws for leader-
following and obstacle avoidance. However, they assume that
a specific vertical pose of an omnidirectional camera allows
the computation of both bearing and distance. In the work of
Prattichizzo et al. [12], the distance measurement is not used;
however, the leader uses extended Kalman filtering to localize
its followers, and computes the control inputs and guides the
formation in a centralized fashion. In our paper, the control ar-
chitecture is distributed, and we design the formation controllers
based on the local interaction among the agents similar to that
of [14] and [22]. Furthermore, for our vision-based controllers,
no distance measurement is required.

In [25] and [34], circular formations of a multivehicle sys-
tem under cyclic pursuit is studied. Their proposed strategy is
distributed and simple because each agent needs to measure
the relative information from only one other agent. It is also
shown that the formation equilibria of the multiagent system
are generalized polygons. In contrast to [25], our control law is
a nonlinear function of the bearing angles, and as a result, our
system converges to a different set of stable equilibria.

III. BACKGROUND

In this section, we briefly review a number of important con-
cepts regarding graph theory and regular polygons that we use
throughout this paper.

A. Graph Theory

An (undirected) graph G consists of a vertex setV and an edge
set E , where an edge is an unordered pair of distinct vertices inG.
If x, y ∈ V and (x, y) ∈ E , then x and y are said to be adjacent,
or neighbors, and we denote this by writing x ∼ y. The number
of neighbors of each vertex is its degree. A path of length r from
vertex x to vertex y is a sequence of r + 1 distinct vertices that
start with x and end with y such that consecutive vertices are
adjacent. If there is a path between any two vertices of a graph
G, then G is said to be connected.

The adjacency matrix A(G) = [aij ] of an (undirected) graph
G is a symmetric matrix with rows and columns indexed by

the vertices of G, such that aij = 1 if vertex i and vertex j are
neighbors, and aij = 0 otherwise. We also assume that aii = 0
for all i. The degree matrix D(G) of a graph G is a diagonal
matrix with rows and columns indexed by V , in which the (i, i)-
entry is the degree of vertex i.

The symmetric singular matrix defined as

L(G) = D(G) − A(G)

is called the Laplacian of G. The Laplacian matrix captures
many topological properties of the graph. The Laplacian L is
a positive-semidefinite matrix, and the algebraic multiplicity of
its zero eigenvalue (i.e., the dimension of its kernel) is equal
to the number of connected components in the graph. The n-
dimensional eigenvector associated with the zero eigenvalue is
the vector of ones, 1n = [1, . . . , 1]T . For more information on
graph theory, see [13].

B. Regular Polygons

Let d < n be a positive integer, and define p = n/d. Let y1
be a point on the unit circle. Let Rα be clockwise rotation by
the angle α = 2π/p. The generalized regular polygon {p} is
given by the points yi+1 = Rαyi and edges between points i
and i + 1.

When d = 1, the polygon {p} is called an ordinary regular
polygon, and its edges do not intersect. If d > 1 and n and d are
coprime, then the edges intersect, and the polygon is a star. If n
and d have a common factor l > 1, then the polygon consists of l
traversals of the same polygon with {n/l} vertices and edges. If
d = n, the polygon {n/n} corresponds to all points at the same
location. If d = n/2 (with n even), then the polygon consists of
two endpoints and a line between them, with points having an
even index on one end and points having an odd index on the
other. For more information on regular graphs, see [7].

IV. PROBLEM STATEMENT

Consider a group of n unit-speed planar agents. Each agent is
capable of sensing information from its neighbors. The neigh-
borhood set of agent i, that is, Ni , is the set of agents that can
be “seen” by agent i. The precise meaning of “seeing” will be
clarified later. The size of the neighborhood depends on the char-
acteristics of the sensors. The neighboring relationship between
agents can be conveniently described by a connectivity graph
G = (V, E ,W).

Definition 1 (Connectivity graph): The connectivity graph
G = (V, E ,W) is a graph consisting of

1) a set of vertices V indexed by the set of mobile agents;
2) a set of edges E = {(i, j)|i, j ∈ V, and i ∼ j};
3) a set of positive edge weights for each edge (i, j).
The neighborhood of agent i is defined by

Ni
.= {j|i ∼ j} ⊆ V\{i}.

Let ri represent the position of agent i, and let vi be its
velocity vector. The kinematics of each unit-speed agent is

Authorized licensed use limited to: University of Pennsylvania. Downloaded on September 23, 2009 at 11:34 from IEEE Xplore.  Restrictions apply. 



MOSHTAGH et al.: VISION-BASED, DISTRIBUTED CONTROL LAWS FOR MOTION COORDINATION OF NONHOLONOMIC ROBOTS 853

Fig. 1. Trajectory of each agent is represented by a planar Frenet frame.

given by

ṙi = vi

v̇i = ωiv⊥
i

v̇⊥
i = −ωivi (1)

where v⊥
i is the unit vector perpendicular to the velocity vector

vi (see Fig. 1). The orthogonal pair {vi ,v⊥
i } forms a body frame

for agent i. We represent the stack vector of all the velocities by
v = [vT

1 , . . . ,vT
n ]T ∈ R

2n×1 .
The control input for each agent is the angular velocity ωi .

Since it is assumed that the agents move with constant unit
speed, the force applied to each agent must be perpendicular to
its velocity vector, i.e., the force on each agent is a gyroscopic
force, and it does not change its speed (and hence, its kinetic
energy). Thus, ωi serves as a steering control [16] for each agent.

Let us formally define the formations that we are going to
consider.

Definition 2 (Parallel formation): The configuration in which
the headings of all agents are the same and velocity vectors are
aligned is called the parallel formation.

Note that in this definition, we do not consider the value of
the agreed upon velocity but just the fact that the agreement has
been reached. At the equilibrium, the relative distances of the
agents determine the shape of the formation. Another interesting
family of formations is the balanced circular formation.

Definition 3 (Balanced circular formation): The configuration
where the agents are moving on the same circular trajectory
and the geometric center of the agents is fixed is called the
balanced circular formation. The shape of such a formation can
be represented by an appropriate regular polygon.

In the following sections, we study each formation and design
its corresponding distributed control law.

V. PARALLEL FORMATIONS

Our goal in this section is to design a control law for each
agent so that the headings of the mobile agents reach an agree-
ment, i.e., their velocity vectors are aligned, thus resulting in a
swarm-like pattern. For an arbitrary connectivity graph G, con-
sider the Laplacian matrix L. We, therefore, define a measure
of misalignment as follows [27], [35]:

w(v) =
1
2

∑
i∼j

|vi − vj |2 =
1
2
〈v, L̄v〉 (2)

where the summation is over all the pairs (i, j) ∈ E , and L̄ =
L ⊗ I2 ∈ R

2n×2n , with I2 being the 2 × 2 identity matrix. The
time derivative of w(v) is given by

ẇ(v) =
n∑

i=1

〈v̇i , (L̄v)i〉 =
n∑

i=1

ωi〈v⊥
i , (L̄v)i〉

where (L̄v)i ∈ R
2 is the subvector of L̄v associated with the

ith agent. Thus, the following gradient control law guarantees
that the potential w(v) decreases monotonically:

ωi = κ〈v⊥
i , (L̄v)i〉 = −κ

∑
j∈Ni

〈v⊥
i ,vij 〉 (3)

where κ < 0 is the gain, and vij = vj − vi .
Remark 1: Let θi represent the heading of agent i as measured

in a fixed world frame (see Fig. 1). The unit velocity vector vi

and its orthogonal vector v⊥
i are given by vi = [cos θi sin θi ]T

and v⊥
i = [− sin θi cos θi ]T . Thus, the control input (3) becomes

ωi = κ
∑
j∈Ni

sin(θi − θj ), κ < 0. (4)

It is worth noting that the proposed controller is the one used in
the synchronization of the Kuramoto model of coupled nonlinear
oscillators, which has been extensively studied in mathematical
physics as well as control communities [15], [19], [36]. The
same model has also been used for phase regulation of cyclic
robotic systems [18].

We have the following theorem [27] that provides a sufficient
condition to obtain a parallel formation.

Theorem 1: Consider a system of n unit-speed agents with
dynamics (1). If the underlying connectivity graph remains
fixed and connected, then by applying control input (4), the
system converges to the equilibria of ω = [ω1 · · ·ωn ]T = 0.
Furthermore, the velocity consensus set is locally attractive if
θi ∈ (−π/2, π/2).

Proof 1: See [27] for the proof. �
The velocity consensus set is the set of states where all the

agents have the same velocity vectors, and it corresponds to
the parallel formation, which is defined in Definition 2. Note
that θi ∈ (−π/2, π/2)∀i = {1, . . . , n} is the sufficient condi-
tion that restricts the initial headings to a half-circle. The results
can be extended to graphs with switching topology, as shown
in [27].

VI. BALANCED CIRCULAR FORMATIONS

The circular formation is a circular relative equilibrium in
which all the agents travel around the same circle. We are in-
terested in balanced circular formations, which are defined in
Definition 3. At the equilibrium, the relative headings and the
relative distances of the agents determine the shape of the for-
mation, which can be easily described by a regular polygon.

Let ci represent the position of the center of the ith circle
with radius 1/ωo , as shown in Fig. 2; thus

ci = ri +
(

1
ωo

)
v⊥

i .
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Fig. 2. Center of the circular trajectory is defined as ci = ri + (1/ω0 )v⊥
i .

Fig. 3. By a change of coordinate zi = ωo (ri − ci ) = −v⊥
i , the problem of

generating circular motion in the plane reduces to the problem of balancing the
agents on a circle.

The shape controls for driving agents to a circular formation
depend on the shape variables vij = vj − vi and rij = rj − ri .
The relative equilibria of the balanced formation are character-
ized by

∑n
i=1 vi = 0 and ci = co ∈ R

2 for all i ∈ {1, . . . , n},
where co is the fixed geometric center of the agents.

The control input for each agent has two components, which
are given by

ωi = ωo + ui.

The constant angular velocity ωo takes the agents into a cir-
cular motion, and ui sets the agents into a balanced state. In
order to design ui , we express the system in a rotating frame,
which greatly simplifies the analysis. By the change of variable

zi = ωo(ri − ci) = −v⊥
i

the problem reduces to balancing the agents on a unit circle, as
shown in Fig. 3. The new coordinate system rotates with angular
velocity ωo . The dynamics in the rotating frame are given by

żi = viui

v̇i = −ziui , i = 1, . . . , n. (5)

Unit vector zi is normal to the velocity vector. However, in
the rotating frame, zi represents the position of agent i on the
unit circle, which is moving with speed ui (see Fig. 3).

Let us define zij = zj − zi and qij = zij /|zij | as the unit
vector along the new relative position vector zij . At the bal-
anced state, the velocity of each agent is perpendicular to
q̄i =

∑
j∈Ni

qij , which is a vector along the average of the
relative position vectors incident to agent i. Thus, the quantity
〈vi , q̄i〉 vanishes at the balanced state. Hence, we propose the

following control law for the balanced circular formation:

ui = −κ〈vi , q̄i〉 = −κ
∑
j∈Ni

〈vi ,qij 〉, κ > 0. (6)

The following two theorems [28] present the results when
balanced circular formations are attained for a group of unit-
speed agents with fixed connectivity graphs. Theorem 2 is for
the case when G is a complete graph, and Theorem 3 is for the
ring graph.

Theorem 2: Consider a system of n agents with kinematics
(5). Given a complete connectivity graph G and applying control
law (6), the n-agent system (almost) globally asymptotically
converges to a balanced circular formation, which is defined in
Definition 3.

Proof: See [28] for the proof. �
The reason for “almost global” stability of the set of bal-

anced states is that there is a measure-zero set of states where
the equilibrium is unstable. This set is characterized by those
configurations that m agents are at antipodal position from the
other n − m agents, where 1 ≤ m < n/2. Next, we consider the
situation that the connectivity graph has a ring topology Gring .

Theorem 3: Consider a system of n agents with kinematics
(5). Suppose the connectivity graph has the ring topology Gring

and that each agent applies the balancing control law (6). Then,
the relative headings will converge to the same angle φo . If
φo ∈ (π/2, 3π/2), the balanced state is locally exponentially
stable.

Proof: See [28] for the proof. �
At the equilibrium, the final configuration for Gring is a reg-

ular polygon {n/d} in which the relative angle between two
connected nodes is φo = 2πd/n. From Theorem 3, if this an-
gle satisfies φo ∈ (π/2, 3π/2), then the balanced state is stable.
Thus, the stable configuration corresponds to a polygon with
d ∈ (n/4, 3n/4).

For example, for n = 5, the stable formations are polygons
{5/3} and {5/4}, which are the same polygons as obtained with
reverse ordering of the nodes. For n = 4, the stable formation is
{4/2}. Actually, simulations suggest that the largest region of
attraction for n even belongs to a polygon {n/d}, with d = n/2,
and for n odd, it is a star polygon {n/d}, with d = (n ± 1)/2.

VII. VISION-BASED CONTROL LAWS

Note that the control inputs (4) and (6) for parallel and cir-
cular formations depend on the shape variables, i.e., relative
headings and positions, which are not directly measurable using
visual sensors, such as a single camera on a robot, because es-
timation of the relative position and motion requires binocular
vision. This motivates us to rewrite inputs (4) and (6) in terms
of parameters that are entirely measurable using a simple visual
sensor. Next, we define the visual parameters that we will use
to derive the vision-based control laws.

Bearing angle—Let ri = [xi yi ]T be the location of agent i in
a fixed world frame, and let vi = [ẋi ẏi ]T be its velocity vector.
The heading or orientation of agent i is then given by

θi = atan2(ẏi , ẋi). (7)

Authorized licensed use limited to: University of Pennsylvania. Downloaded on September 23, 2009 at 11:34 from IEEE Xplore.  Restrictions apply. 
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Fig. 4. Bearing angle βij is measured as the angle between the velocity vector
(along body x-axis) and vector rij , which connects the two neighboring agents.

Fig. 5. Optical flow β̇ij and loom 1/τij can be written in terms of the scaled
relative velocity.

As per the earlier definitions and knowing that agents have
unit speed, dynamic model (1) becomes the unicycle model:

ẋi = cos θi

ẏi = sin θi

θ̇i = ωi (8)

where ωi is the angular velocity of agent i. The bearing angle βij ,
which is defined as the relative angle between qij = rij /|rij |
and vi , is given by (see Fig. 4)

βij
.= atan2(yi − yj , xi − xj ) − θi. (9)

Optical flow is the rate of change of the bearing βij , which
corresponds to the relative motion of agents i and j, as seen
by agent i. One can see from Fig. 5 that β̇ij is equal to the
projection of the scaled relative velocity vector ṙij /lij , which is
perpendicular to the unit bearing vector qij = [cos βij sin βij ]T .
More precisely

β̇ij =
〈

ṙij

lij
,q⊥

ij

〉
(10)

where lij = |rij |. Note that only one optical flow measurement
per agent is taken, thus making it impossible to rely on structure
from motion algorithms. Regarding optical flow, see [3].

Time to collision τij can be estimated from the ratio of area
change to area or from the divergence of the optical flow [4].

Incidentally, experimental evidence suggests that several animal
species, including pigeons and flies, are capable of estimating
time to collision [10], [20], [40], or the inverse of time to colli-
sion, known as loom [23]. Actually “loom” is the parameter that
we need, which is given by

1
τij

=
ȧij

aij
=

l̇ij
lij

=
〈

ṙij

lij
,qij

〉
(11)

where the last equality can be deduced from Fig. 5. Note that the
measurement of time to collision τij (or loom) is not equivalent
to the measurement of the relative distance between the agents
as is usually the case in visual motion problems. This is due to
the fact that time to collision can only recover the distance up
to an unknown factor, which, in our case, is different for every
neighboring agent.

Thus, to formally define sensing, we assume that each agent
i can measure

1) βij as the bearing angle;
2) β̇ij as the optical flow;
3) τij as time to collision;

for any agent j in the set of neighbors Ni . In the following, we
show how to write the control inputs (4) and (6) in terms of the
measurable quantities defined before.

A. Parallel Formation

In this section, we derive a vision-based control law for gener-
ating parallel formations within a group of nonholonomic agents
that does not require the direct communication of the heading
information [unlike input (4)]. In order to derive such a vision-
based control law, we normalized each term in (4) by the relative
distance lij , because the normalized relative velocity vector can
be written in terms of the measurable quantities of optical flow
and time to collision, as shown in Fig. 5. Consider the following
modified version of the control law (4) with κ < 0:

ωi =
∑
j∈Ni

−κ

|rij |
〈v⊥

i ,vij 〉 =
∑
j∈Ni

κ

lij
sin(θi − θj ). (12)

Now, we derive the vision-based control law for the parallel
formation that is equivalent to (12). The equation that describes
the relative motion of agents i and j is given by

ṙij = −ωi × rij + vij (13)

where ωi is the body angular velocity vector of agent i, and all
vectors in this equation are expressed in the body frame of agent
i. We normalize the optical flow equation (13) by dividing it by
lij to get

ṙij

lij
= −ωi × qij +

vij

lij
∀j ∈ Ni . (14)

Equation (14) holds for all the agents that are in Ni . Thus, we
sum (14) over all j ∈ Ni to get

∑
j∈Ni

ṙij

lij
= −

∑
j∈Ni

ωi × qij +
∑
j∈Ni

vij

lij
. (15)
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Note that all the parameters in (15) are expressed in the body
frame of agent i. The goal is to solve (15) for input ωi so that it
is only a function of the measurable quantities defined earlier.

Let us use the following notation:

mi =
∑
j∈Ni

ṙij

lij
, qi =

∑
j∈Ni

qij .

It is easy to show that mi is a measurable vector. To see this,
we differentiate rij = lijqij , and we get ṙij = l̇ijqij + lij q̇ij .
Therefore,

mi =
∑
j∈Ni

ṙij

lij
=

∑
j∈Ni

(
qij

τij
+ q̇ij

)
. (16)

The bearing vector qij and the optical flow vector q̇ij in the
body frame of agent i are given by

qij =
[

cos βij

sin βij

]
, q̇ij = β̇ij

[
− sin βij

cos βij

]
= β̇ijq⊥

ij .

Therefore, mi is measurable (see Fig. 5).
Given that the velocity of agent i is along the x-axis of its

body frame, then vectors vi and vj can be expressed in the ith
body frame as

vi =
[

1
0

]
, vj =

[
cos(θj − θi)
sin(θj − θi)

]
=

[
cos(θi − θj )
− sin(θi − θj )

]
.

By substituting for ωi and vij in (15), we get

mi = −
[

0 −ωi

ωi 0

]
qi +

∑
j∈Ni

1
lij

[
cos(θi − θj ) − 1
− sin(θi − θj )

]
.

This relation gives us two sets of linear equations. The second
equation is

(mi)y = −ωi(qi)x −
∑
j∈Ni

1
lij

sin(θi − θj ) (17)

where (·)x and (·)y are the x and y components of a vector. We
can see that the last term on the right-hand side is actually the
input given by (12) that is scaled by factor 1/κ. Hence, (17)
becomes

(mi)y = −ωi(qi)x +
1
κ

ωi

which can be solved for ωi . After substituting for (mi)y and
(qi)x , we get

ωi =
−κ

∑
j∈Ni

(
(1/τij ) sin βij + β̇ij cos βij

)
1 + κ

∑
j∈Ni

cos βij
, κ < 0.

(18)
This is the vision-based control law that is equivalent to (4)

and takes a group of kinematic agents to a parallel formation.
See Section VIII for the experimental verification of the results.

B. Balanced Circular Formation

As we will see shortly, the only visual parameter that is re-
quired to generate a balanced circular formation is the bearing
angle βij . It is remarkable that we can generate interesting global
patterns using only a single measurement of the bearing angle.

Fig. 6. Scarab is a small robot with a differential drive axle. LED markers are
placed on top of each Scarab for pose estimation.

Fig. 7. Artificial potential function fij = (d0 /|rij |) + log |rij |, where d0
is the desired distance between the neighboring agents. The variable µij is the
norm of its gradient.

Note that the inner product of two vectors is independent of
the coordinate system in which they are expressed. Thus, given
vi = [10]T and qij = [cos βij sin βij ]T in the body frame of
agent i, the control input for balanced circular formation can be
written as (κ > 0)

ωi = ωo − κ
∑
j∈Ni

〈vi ,qij 〉 = ωo − κ
∑
j∈Ni

cos βij . (19)

Input (19) is the desired vision-based control input that drives
a group of nonholonomic planar agents into a balanced circular
formation.

VIII. EXPERIMENTS

In this section, we show the results of experimental tests
for balanced circular and parallel formations, but first, let us
describe the experimental test bed.

Robots: We use a series of small form-factor robots called
Scarab [26]. The Scarab is a 20 × 13.5 × 22.2 cm3 indoor
ground platform, with a mass of 8 kg. Each Scarab is equipped
with a differential drive axle placed at the center of the length
of the robot with a 21-cm wheel base (see Fig. 6). Each Scarab
is equipped with an onboard computer, a power-management
system, and wireless communication. Each robot is actuated by
stepper motors, which allows us to model it as a point robot
with unicycle kinematics (8) for its velocity range. The linear
velocity of each robot is bounded at 0.2 m/s. Each robot is able
to rotate about its center of mass at speeds below 1.5 rad/s. Typi-
cal angular velocities resulting from the control law were below
0.5 rad/s.
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Fig. 8. Five Scarabs form a circular formation starting with a complete-graph topology. (a) At time t = 0, robots start at random positions and orientations. (b)
t = 2 s. (c) t = 11 s. (d) At t = 25 s, the robots reach a stable balanced configuration around a circle with radius of 1 m. (e)–(h) Actual trajectories of the robots
and their connectivity graph at the times specified before. (h) Final configuration is a regular polygon.

Software: Every robot is running identical modularized soft-
ware with well-defined interfaces connecting modules via the
Player robot architecture system [11], which consists of libraries
that provide access to communication and interface functional-
ity. The Player also provides a close collaboration with the 3-D
physics-based simulation environment Gazebo, which provides
the powerful ability to transition transparently from code run-
ning on simulated hardware to real hardware.

Infrastructure: In the experiments, visibility of the robot’s set
of neighbors is the main issue. Using omnidirectional cameras
seems to be a natural solution. However, using onboard sensors
would make the implementation quite challenging. Since the
focus of this paper was not the vision or estimation problem,
we have chosen to use an overhead tracking system to solve
the occlusion problem and obtain more accurate bearing and
time-to-collision information.

The tracking system consists of LED markers on the robots
and eight overhead cameras. This ground-truth-verification sys-
tem can locate and track the robots with position error of ap-
proximately 2 cm and an orientation error of 5◦. The overhead
tracking system allows control algorithms to assume that pose
is known in a global reference frame. The process and mea-
surement models fuse local odometry information and tracking
information from the camera system.

Each robot locally estimates its pose based on the globally
available tracking system data and local motion, using an ex-
tended Kalman filter. We process global overhead tracking in-
formation but hide the global state of the system from each
robot, thus providing only the current state of the robot and the
positions of each robot’s set of neighbors. In this way, we use the
tracking system in lieu of an interrobot sensor implementation.

In all the experiments, the neighborhood relations, i.e., the
connectivity graphs, are fixed and undirected. Each robot com-
putes the visual measurements with respect to its neighbors

from (9) and (11). The conclusions for each set of experiments
are drawn from significant number of successful trials that sup-
ported the effectiveness of the designed controllers. The results
of the experiments are provided in the following sections.

A. Implementation With Collision Avoidance

In reality, any formation control requires collision avoidance,
and indeed, collision avoidance cannot be done without range.
Here, we show that the two tasks can be done with decoupled
additive terms in the control law, where the terms for parallel
and circular formations depend only on visual information.

An interagent potential function [29], [37] is defined to ensure
collision avoidance and cohesion of the formation during the ex-
periments. The control law from this artificial potential function
results in simple steering behaviors known as separation and
cohesion. The potential function fij (|rij |) is a symmetric func-
tion of the distance |rij | between agents i and j and is defined
as follows [37].

Definition 4 (Potential function): Potential fij is a differen-
tiable, nonnegative function of the distance |rij | between agents
i and j such that the following hold.

1) fij → ∞ as |rij | → 0.
2) fij attains its unique minimum when agents i and j are

located at a desired distance.
The requirements for fij , which are given in Definition 4,

support a large class of functions. A common potential function
is shown in Fig. 7. The total potential function of agent i is then
given by

fi =
∑
j∈Ni

fij (|rij |). (20)

The collision-avoidance term in the control input must insert
a gyroscopic force that is perpendicular to the velocity vector
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Fig. 9. Five Scarabs form a circular formation starting with a complete-graph topology while avoiding collisions. (a) t = 0 s. (b) t = 8 s. (c) t = 20 s. (d) At
t = 36 s, the robots reach a stable balanced configuration around a circle with radius of 1 m. (a)–(d) Actual trajectories of the robots and their connectivity graph
at the times specified before.

vi (along v⊥
i ), and it must also be proportional to the negative

gradient of the total potential function fi of agent i. Thus, as a
result, the collision-avoidance controller takes the form

αi = −κp〈v⊥
i ,∇ri

fi〉, κp > 0. (21)

The total control inputs for parallel and balanced circular
formations include the additional component αi :

ωi = ωformation
i + αi (22)

where ωformation
i is the vision-based control input given by (18)

for parallel formation or (19) for the circular formation, and αi

steers the agents to avoid collisions or pull them together if they
are too far apart.

B. Balanced Circular Formations

The result of the experiments for the complete-graph topology
and the ring topology are summarized in the following sections.

1) Complete-Graph Topology: First, we applied the bearing-
only control law (19) to a group of n = 5 robots without consid-
ering collision avoidance among the agents. In Fig. 8(a) through
(d), snapshots from the actual experiment are shown, and in
Fig. 8(e) through (h), the corresponding trajectories, which
are generated from overhead tracking information, are demon-
strated. Note that for the complete-graph topology, the ordering
of the robots in the final configuration is not unique; it depends
on the initial positions.

Since no collision avoidance was implemented in the exper-
iments of Fig. 8, the robots could become undesirably close to
one another, as can be seen in Fig. 8(b). However, by applying
control input (22), it can be seen that no collisions occur among
the robots as they reach the equilibrium. The actual trajectories
of n = 5 robots for this scenario are shown in Fig. 9. The com-
parison of the potential energies of the system with and without
αi term [see (21)] are presented in Fig. 10. The potential energy
of the system is computed from f =

∑n
i=1 fi , where fi is given

by (20). The peak in Fig. 10(a) corresponds to the configuration
observed in Fig. 8(b), where robots become too close to each
other. By using the control input (22), the potential energy of
the five-agent system monotonically decreases [see Fig. 10(b)],
and the system stabilizes to a state where the potential energy
of the entire system is minimized.

2) Ring Topology: If each robot can “sense” only two other
robots in the group, the topology of the connectivity graph will

Fig. 10. Comparison of the values of the five-agent system’s potential energy
while robots are applying (a) control input (19) and (b) control input (22) with
collision avoidance.

be a ring topology. Since the connectivity graph is assumed
fixed, the agents need to be numbered during the experiments.

For n even, the balancing term in the control input drives
the agents into a balanced circular formation, which is given by
polygon {n/d}, with d = n/2. This requires that robots with
even indices stay on one side of a line segment and robots
with odd indices stay at the other side (not physically possible).
However, the collision-avoidance term keeps the agents at the
desired separation.

For n odd, the largest region of attraction of the balancing
input is the star polygon {n/d}, with d = (n ± 1)/2; therefore,
only two orderings of the robots are possible in the final circular
formation. Fig. 11 shows that in our experiment, the robots are
stabilized to the star polygon {5/3}.

Remark 2: When the communication graph is a fixed, directed
graph with a ring topology, where agent i could see only agent
(i + 1)/mod(n), then the n-agent system would behave like a
team of robots in cyclic pursuit [25].

C. Parallel Formation With Fixed Topology

The space limitations imposed by the ground-truth-
verification system prohibited us from testing the vision-based
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Fig. 11. Five Scarabs form a circular formation starting with a ring topology while avoiding collisions. (a) t = 0 s. (b) t = 16 s. (c) t = 40 s. (d) At t = 80 s,
the robots reach a stable balanced configuration, which is the star polygon {5/3} around a circle with radius of 1 m. (a)–(d) Actual trajectories of the robots and
their connectivity graph at the times specified before.

Fig. 12. Five Scarabs, starting with different initial orientations, apply the vision-based control input (18) to achieve a parallel formation. The simulation is done
in the simulator Gazebo. (a) t = 0 s. (b) t = 1 s. (c) t = 3 s. (d) t = 7 s.

control law for parallel motion directly on Scarabs. However,
simulations were made in Gazebo, which is a physics-based
simulator. Gazebo simulations accurately reflect the robot dy-
namics and sensing capabilities, while permitting evaluation of
the same code used during hardware experimentation. Fig. 12
shows snapshots of the Gazebo simulation for a group of five
Scarabs, with each applying (22): the vision-based control input
plus the collision-avoidance input.

IX. CONCLUSION AND FUTURE WORK

The central contribution of this paper is to provide simple
vision-based control laws to achieve parallel and balanced cir-
cular formations. Of course, in reality, any formation control
requires collision avoidance, and indeed, collision avoidance
cannot be done without range. We have shown here that the two
tasks can be done with decoupled additive terms in the control
law, where the term for formation control depends only on visual
information.

The vision-based control laws were functions of quantities
such as bearing, optical flow, and time to collision, all of
which could be measured from images. Only bearing measure-
ments were needed for achieving a balanced circular formation,
whereas for a parallel formation, additional measurements of
optical flow and time to collision were required. We verified the
effectiveness of the theory though multirobot experiments.

Note that when we work with robots that have limited
field of view, directed connectivity graphs [24] come into
play. The study of motion coordination in the presence of
directed communication graphs is the subject of ongoing
work.
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