
Research Article

Vision-Based Fall Detection with Convolutional
Neural Networks

Adrián Núñez-Marcos,1 Gorka Azkune,1 and Ignacio Arganda-Carreras2,3,4

1DeustoTech, University of Deusto, Avenida de las Universidades, No. 24, 48007 Bilbao, Spain
2Department of Computer Science and Arti�cial Intelligence, Basque Country University, P. Manuel Lardizabal 1,
20018 San Sebastian, Spain
3Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
4Donostia International Physics Center (DIPC), P. Manuel Lardizabal 4, 20018 San Sebastian, Spain

Correspondence should be addressed to Adrián Núñez-Marcos; adrian.nunez@deusto.es

Received 14 July 2017; Revised 26 September 2017; Accepted 9 November 2017; Published 6 December 2017

Academic Editor: Wiebren Zijlstra

Copyright © 2017 Adrián Núñez-Marcos et al. 	is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

One of the biggest challenges inmodern societies is the improvement of healthy aging and the support to older persons in their daily
activities. In particular, given its social and economic impact, the automatic detection of falls has attracted considerable attention in
the computer vision and pattern recognition communities. Although the approaches based on wearable sensors have provided high
detection rates, some of the potential users are reluctant to wear them and thus their use is not yet normalized. As a consequence,
alternative approaches such as vision-basedmethods have emerged.We
rmly believe that the irruption of the Smart Environments
and the Internet of	ings paradigms, together with the increasing number of cameras in our daily environment, forms an optimal
context for vision-based systems. Consequently, here we propose a vision-based solution using Convolutional Neural Networks to
decide if a sequence of frames contains a person falling. To model the video motion and make the system scenario independent,
we use optical �ow images as input to the networks followed by a novel three-step training phase. Furthermore, our method is
evaluated in three public datasets achieving the state-of-the-art results in all three of them.

1. Introduction

Due to the physical weakness associated with aging, the
elderly su�er high ratios of falls which frequently imply neg-
ative consequences for their health. According to Ambrose
et al. [1], falls are one of the major causes of mortality
in old adults. 	is can be explained in part by the high
incidence of falls in adults over the age of 65: one in three
adults falls at least once per year. In addition, the impact
of these falls is a major concern for health care systems.
It has to be noted that falls lead to moderate to severe
injuries, fear of falling, loss of independence, and death of
the third individual of the elderly who su�er these accidents.
Moreover, the costs associated with these health problems
are not negligible: two reference countries like the United
States and the United Kingdom, with very di�erent health
care systems, spent US$23.3 and US$1.6 billion, respectively,

in 2008 [2]. Taking into account the growth of aging popu-
lation, these expenditures are expected to approach US$55
billion by 2020.

	ese considerations have boosted the research on auto-
matic fall detection to enable fast and proper assistance to
the elderly (see Section 2 for a review of the state of the
art). 	e most common strategies consist in a combination
of sensing and computing technologies to collect relevant
data and develop algorithms that can detect falls based on
the collected data [3]. 	ese approaches have led to the
appearance of Smart Environments for elderly assistance,
which had been traditionally limited to home settings [4].
However, we believe that, with the irruption of the paradigm
of the Internet of 	ings (IoT) [5], the possibilities to extend
Smart Environments, and more speci
cally fall detection
approaches, grow considerably.

Hindawi
Wireless Communications and Mobile Computing
Volume 2017, Article ID 9474806, 16 pages
https://doi.org/10.1155/2017/9474806

https://doi.org/10.1155/2017/9474806

2 Wireless Communications and Mobile Computing

In this paper, we focus on vision-based approaches for fall
detection. Cameras provide very rich information about per-
sons and environments and their presence is becoming more
and more important in several everyday environments due
to surveillance necessities. Airports, train and bus stations,
malls, and even streets are already equipped with cameras.
More importantly, cameras are also installed in elderly care
centers.	erefore, reliable vision-based fall detection systems
may play a very important role in future health care and
assistance systems.

	e recent impact of deep learning has changed the
landscape of computer vision, improving the results obtained
in many relevant tasks, such as object recognition, segmen-
tation, and image captioning [6]. In this paper, we present
a novel approach in this domain which takes advantage of
Convolutional Neural Networks (CNN) for fall detection
(Section 3). More precisely, we introduce a CNN that learns
how to detect falls from optical �ow images. Given the small
size of typical fall datasets, we take advantage of the capacity
of CNNs to be sequentially trained on di�erent datasets.
First of all, we train our model on the Imagenet dataset
[7] to acquire the relevant features for image recognition.
A�erwards, following the approach of [8], we train the
CNN on the UCF101 action dataset [9]. For that purpose,
we calculate the optical �ow images of consecutive frames
and use them to teach the network how to detect di�erent
actions. Finally, we apply transfer learning by reusing the
network weights and
ne-tuning the classi
cation layers so
the network focuses on the binary problem of fall detection.

As a result of the research carried out, this paper presents
the following main contributions:

(i) To the best of our knowledge, this is the
rst time
that transfer learning is applied from the action
recognition domain to fall detection. In that sense, the
use of transfer learning is crucial to address the small
amount of samples in public fall detection datasets.

(ii) We use optical �ow images as input to the network
in order to have independence from environmental
features. 	ese images only represent the motion of
consecutive video frames and ignore any appearance-
related information such as color, brightness, or
contrast. 	us, we are presenting a generic CNN
approach to fall detection.

2. Related Work

	e literature of fall detection is divided between sensor-
based and vision-based approaches. 	e sensor-based detec-
tion has commonly relayed on the use of accelerometers,
which provide proper acceleration measures such as vertical
acceleration. In the case of falls, these measures are very
di�erent compared to daily activities or confounding events
(such as bending over or squatting), allowing us to discern
between them. Vallejo et al. [10] and Sengto and Leauhatong
[11] proposed feeding a Multilayer Perceptron (MLP), the
data of a 3-axis accelerometer (acceleration values in �-, �-,
and �-axis). Kwolek and Kepski [12] applied an Inertial
Measurement Unit (IMU) combined with the depth maps

obtained from a Kinect camera. 	ey also made use of a
Support Vector Machine (SVM) classi
er, feeding it the data
from the IMU and the Kinect. Approaches like the latter and
[13] combined sensors with vision techniques. However, they
used vision-based solutions only to ascertain the prediction
of the sensor-based approach.

	e purely vision-based approaches focus on the frames
of videos to detect falls. By means of computer vision tech-
niques, meaningful features such as silhouettes or bounding
boxes are extracted from the frames in order to facilitate
detection. Some solutions use those features as input for a
classi
er (e.g., Gaussian Mixture Model (GMM), SVM, and
MLP) to automatically detect if a fall has occurred. 	e
use of tracking systems is also very extended; for example,
Lee and Mihailidis [18] applied tracking techniques in a
close environment to detect falls. 	ey proposed using a
connected-components labeling to compute the silhouette
of a person and extracting features such as the spatial
orientation of the center of the silhouette or its geometric
orientation. Combining this information they are able to
detect positions and also falls. Rougier et al. [19] suggested
using silhouettes as well, which is a common strategy in the
literature. Applying a matching system along the video to
track the deformation of the silhouette, they analyzed the
shape of the body and
nally obtained a result with a GMM.
Mubashir et al. [3] tracked the person’s head to improve their
base results using amultiframeGaussian classi
er, which was
fed with the direction of the principal component and the
variance ratio of the silhouette. Another common technique
consists in computing the bounding boxes of the objects to
determine if they contain a person and then detect the fall by
means of features extracted from it (see, for instance, [20, 21]).
Following a similar strategy, Vishwakarma et al. [22] worked
with bounding boxes to compute the aspect ratio, horizontal
and vertical gradients of an object, and fall angle and fed
them into a GMM to obtain a
nal answer. Many solutions
are based on supervised learning, that is, extracting lots of
features from raw images and using a classi
er to learn a
decision from labeled data. 	is is the case, for example, of
Char
 et al. [17], who extracted 14 features, applied some
transformations to them (the
rst and second derivatives,
the Fourier transform, and the Wavelet transform), and used
a SVM to do the classi
cation step. Zerrouki et al. (2016)
[23] computed occupancy areas around the body’s gravity
center, extracted their angles, and fed them into various
classi
ers, being the SVM the one which obtained the best
results. In 2017, the same author extended his previous work
by adding Curvelet coe�cients as extra features and applying
a HiddenMarkovModel (HMM) tomodel the di�erent body
poses [14]. A less frequent technique was used by Harrou
et al. [24], who applied Multivariate Exponentially Weighted
Moving Average (MEWMA) charts. However, they could not
distinguish between falls and confounding events, which is
a major issue that is taken into account in our solution. In
fact, not being able to discriminate between such situations
produces a great amount of false alarms.

Another branch inside the vision-based fall detection
systems is the adoption of 3D vision to take advantage of
3D structures. 	is strategy requires the use of multiple

Wireless Communications and Mobile Computing 3

Optical flow
RGB images

Classifier

FC-NN

Fall/no fallOptical flow

images generator

images

Feature

extractor CNN

Figure 1: 	e system architecture or pipeline: the RGB images are converted to optical �ow images, then features are extracted with a CNN,
and a FC-NN decides whether there has been a fall or not.

cameras (passive systems) or active depth cameras such as
Microso� Kinect or time-of-�ight cameras that can extract
depth maps. 	e Kinect camera is very popular given its
low price and high performance. Auvinet et al. [25] used
a Kinect camera to build a 3D silhouette to then analyze
the volume distribution along the vertical axis. Gasparrini
et al. [26] also used such a camera to extract 3D features
and then applied a tracking system to detect the falls. Kinect
so�ware provides body joints, which were used by Planinc
and Kampel [27] to obtain the orientation of the major axis
on their position. Diraco et al. [28] made use of depth maps
to compute 3D features. Another simple and yet interesting
approachwas given byMastorakis andMakris [29], whowent
beyond the typical 2D bounding boxes strategy and applied
3D bounding boxes. All the aforementioned methods took
advantage of the 3D information provided by their camera
systems. 	e drawbacks of such approaches are related to
system deployment: they need either multiple synchronized
cameras focused on the same area or active depth cameras
which usually have narrow
elds of view and a limited depth.
	us, from the point of view of system deployment, 2D
passive systems are usually a better option, given their lower
cost. It is also important to highlight that cameras are already
installed in many public places, such as airports, shops, and
elderly care centers. 	ose reasons make 2D passive camera-
based fall detection a relevant application domain.

Nowadays, the use of deep neural networks is growing
in many problem domains, including vision-based fall detec-
tion.Wang et al. [15] proposed using a PCAnet [30] to extract
features from color images and then applied a SVM to detect
falls. 	is approach is similar to ours but instead of a PCAnet
we use a modi
ed VGG16 architecture [31] that allows us to
process various frames to take into account motion. Another
research work, led by Wang et al. [16], combined Histograms
of Oriented Gradients (HOG), Local Binary Pattern (LBP),
and features extracted from a Ca�e [32] neural network to
recognize a silhouette and then applied a SVM classi
er. In
contrast, we avoid feature engineering completely, relying on
the features learned by a CNN.

3. Materials and Methods

	edesign of our fall detection architecture was driven by the
following objectives:

(i) Tomake the system independent from environmental
features

(ii) To minimize the hand-engineered image processing
steps

(iii) To make the system generic, so it works in di�erent
scenarios

To tackle the
rst objective, the key was to design a system
that works on human motion, avoiding any dependence
on image appearance. In that sense, a fall in a video can
be expressed as a few contiguous frames stacked together.
However, this is a naive approach, as the correlation between
the frames is not taken into account by processing each image
separately. To address this problem, the optical �owalgorithm
[33] was used to describe the displacement vectors between
two frames. Optical �ow allowed us to represent human
motion e�ectively and avoid the in�uence of static image
features.

In order to minimize hand-engineered image processing
steps, we used CNNs, which have been shown to be very
versatile automatic feature extractors [6]. CNNs can learn
the set of features which better suit a given problem if
enough examples are provided during their training phase.
Furthermore, CNNs are also very convenient tools to achieve
generic features. For that purpose, network parameters and
training strategies need to be tuned.

Since timemanagement is a crucial issue in fall detection,
a way to copewith time andmotion had to be added toCNNs.
With that objective, we stacked a set of optical �ow images
and fed them into a CNN to extract an array of features

� ∈ R�×ℎ×�, where � and ℎ are the width and height of the
images and 	 is the size of the stack (number of stacked optical
�ow images). Optical �ow images represent the motion of
two consecutive frames, which is too short-timed to detect
a fall. However, stacking a set of them the network can also
learn longer time-related features. 	ese features were used
as input of a classi
er, a fully connected neural network (FC-
NN), which outputs a signal of “fall” or “no fall.” 	e full
pipeline can be seen in Figure 1.

Finally, we used a three-step training process for our
optical �ow stack-based CNN. 	is training methodology is
adopted due to the low number of fall examples found in
public datasets (Section 3.3). Furthermore, it also pursues
the generality of the learned features for di�erent falling
scenarios. 	e three training steps and their rationale are
explained in detail in Section 3.2.

3.1.
e Optical Flow Images Generator. 	e optical �ow [34]
algorithm represents the patterns of the motion of objects as
displacement vector
elds between two consecutive images,

which can be seen as a 1-channel image
 ∈ R�×ℎ×1, where �
and ℎ are thewidth and height of the image that represents the
correlation between the input pair. By stacking 2� optical �ow

4 Wireless Communications and Mobile Computing

Time

(a)

Time

(b)

Figure 2: Sample of sequential frames of a fall from the Multiple Cameras Fall Dataset (a) and their corresponding optical �ow horizontal
displacement images (b).

images (i.e., � pairs of horizontal and vertical components
of vector
elds, ��� and �

�
� , respectively), we can represent a

motion pattern across the stacked frames. 	is is useful to
model short events like falls. 	e use of optical �ow images is
also motivated by the fact that anything static (background)
is removed and only motion is taken into account.	erefore,
the input is invariant to the environment where the fall
would be occurring.However, optical �ow also presents some
problems, for example, with lighting changes, as they can
produce displacement vectors that are not desirable. New
algorithms try to alleviate those problems, although there
is no way of addressing them for all the cases. However, in
the available datasets the lighting conditions are stable so
the optical �ow algorithm seems to be the most appropriate
choice.

	e
rst part of our pipeline, the optical �ow images
generator, receives� consecutive images and applies theTVL-
1 optical �ow algorithm [35].We chose TVL-1 due to its better
performance with changing lighting conditions compared
to other optical �ow algorithms. We took separately the
horizontal and vertical components of the vector
eld (���
and ��� , resp.) and stack them together to create stacks ∈
R
224×224×2∗	, where = {��� , �

�
� , ���+1, �

�
�+1, . . . , ���+	, �

�
�+	}.

More precisely, we used the so�ware tool (https://
github.com/yjxiong/dense �ow/tree/opencv-3.1) provided by
Wang et al. in [36] to compute the optical �ow images
(see Figure 2 for an example of its output). We kept the
original optical �ow computation parameters ofWang et al. to
replicate their results in action recognition.	en we used the
exact same con
guration to compute the optical �ow images
of the fall detection datasets. As the CNN has learned
lters
according to the optical �ow images of the action recognition
datasets, using the same con
guration for the fall detection
images minimizes the loss of performance due to the transfer
learning.

3.2. Neural Network Architecture and Training Methodology.
	eCNN architecture was a pivotal decision for the design of
our fall detection system.	ere have beenmany architectural

designs for image recognition in recent years (AlexNet [37],
VGG-16 [31], and ResNet [38], among others) which have
been equally used in computer vision problems. In particular,
we chose a modi
ed version of a VGG-16 network following
the temporal net architecture of Wang et al. [8] for action
recognition. 	e use of such architecture was motivated by
the high accuracy obtained in other related domains.

More concretely, we replaced the input layer ofVGG-16 so

that it accepted a stack of optical �ow images ∈ R�×ℎ×2	,
where� and ℎ are the width and height of the image and 2� is
the size of the stack (� is a tunable parameter). We set � = 10,
the number of optical �ow images in a stack, following [39],
as a suitable time window to accurately capture short-timed
events such as falls. 	e whole architecture (see Figure 3)
was implemented using the Keras framework [40] and
is publicly available (https://github.com/AdrianNunez/Fall-
Detection-with-CNNs-and-Optical-Flow).

We followed a three-step training process to train the
network for fall detection with a double objective:

(i) To address the low number of fall samples in public
datasets: a deep CNN learns better features as more
labeled samples are used in the training phase. For
instance, the Imagenet dataset, which is widely used
for object recognition tasks in images, has 14 million
images [7]. Current fall datasets are very far from
those
gures; thus, it is not feasible to learn robust and
generic features for fall detection based only on those
datasets. In such cases, transfer learning has shown to
be a suitable solution [41].

(ii) To build a generic fall detector which can work on
several scenarios: this requires developing a generic
feature extractor, able to focus only on those motion
patterns that can discriminate fall events from other
corporal motions.

	e training steps for transfer learning, summarized in
Figure 4, are the following:

https://github.com/yjxiong/dense_flow/tree/opencv-3.1
https://github.com/yjxiong/dense_flow/tree/opencv-3.1
https://github.com/AdrianNunez/Fall-Detection-with-CNNs-and-Optical-Flow
https://github.com/AdrianNunez/Fall-Detection-with-CNNs-and-Optical-Flow

Wireless Communications and Mobile Computing 5

Input

RGB image)
Predictions

C
O

N
V

3-
64

C
O

N
V

3-
64

C
O

N
V

3-
12

8

C
O

N
V

3-
12

8

C
O

N
V

3-
25

6

C
O

N
V

3-
25

6

C
O

N
V

3-
25

6

C
O

N
V

3-
51

2

C
O

N
V

3-
51

2

C
O

N
V

3-
51

2

C
O

N
V

3-
51

2

C
O

N
V

3-
51

2

C
O

N
V

3-
51

2

M
A

X
 P

O
O

L

M
A

X
 P

O
O

L

M
A

X
 P

O
O

L

M
A

X
 P

O
O

L

M
A

X
 P

O
O

L

F
C

-4
09

6

F
C

-4
09

6

F
C

-1
00

0

SO
F

T
-M

A
X

(224 × 224

Figure 3: VGG-16 architecture: convolutional layers in green, max pooling layers in orange, and fully connected layers in purple.We followed
the same notation of the original paper.

CNN

(1) Training in Imagenet

Classifier 1,000
classes

CNN

(2) Fine-tuning in UCF101

Classifier 101
classes

First layer changed to use optical flow

(3) Fine-tuning for fall detection

Classifier
2 classes:

fall/no fall

CNN

Frozen

Figure 4:	e transfer learning process applied to the neural network. (1) Full training with Imagenet to learn a generic feature extractor. (2)
Training in UCF101 to learn to model motion. (3) Fine-tuning to build a fall detector.

(1) We trained the original VGG-16 net in the Imagenet
dataset [7], which has over 14 million images and
1,000 classes. 	is is a standard practice in the deep
learning literature [42], as the network learns generic
features for image recognition; for example, it can dis-
tinguish corners, textures, basic geometric elements,
and so on. Even though the target is to process optical
�ow images rather than RGB images, Wang et al. [8]
argue that the generic appearance features learned
from Imagenet provide a solid initialization for the
network in order to learn more optical �ow oriented
features. 	is is due to the generic features learned in
the
rst layers of the network, as they are useful for
any domain.	en, only the top part must be tuned to
adapt to a new dataset or domain.

(2) Based on the CNN trained on Imagenet, we modi
ed

the input layer to accept inputs ∈ R
224×224×20,

where 224 × 224 is the size of the input images of
the VGG-16 architecture and 20 is the stack size, as
described in [8]. Next, we retrained the network with
the optical �ow stacks of the UCF101 dataset [9]. 	is
dataset contains 13,320 videos and has 101 human
actions in them.	is second step allowed the network
to learn features to represent human motion, which
could later be used to recognize falls.

(3) In the
nal step, we froze the convolutional layers’
weights so that they remained unaltered during train-
ing. To speed up the process, we saved the features
extracted from the convolutional layers up to the
rst
fully connected layer, hence having arrays of features
� ∈ R of size 4,096 for each input stack. Basically, the
third step consists in
ne-tuning the remaining two

Sliding window of length 10

First optical flow stack

Second optical flow stack

�ird optical flow stack

Figure 5: Sliding window method to obtain stacks of consecutive
frames.

fully connected layers, using dropout regularization
[43] with 0.9 and 0.8 dropping probabilities.

For the
ne-tuning with a fall dataset, we extracted �
frames from fall and “no fall” sequences (extracted from the
original videos) using a sliding window with a step of 1 (see
Figure 5). 	is way, we obtained� − � + 1 blocks of frames,
assuming � is the number of frames in a given video and �
the size of the block, instead of �/� from a nonoverlapping
sliding window. We did not apply other data augmentation
techniques. To deal with imbalanced datasets we resampled
(without replacement) the data labeled as “no fall” to match
the size of the data labeled as fall.

Even a�er balancing the datasets, the learning of the
fall class seemed to be di�cult. As we could see from the
results of Section 4, the network did not perform as good
as with the “no fall” class. 	us, we needed alternative ways
of increasing the importance of the fall class in the learning
process such as modifying the loss function. 	is function of
a neural network expresses how far our predictions are from
the ground truth, being the guide for weight updates during

6 Wireless Communications and Mobile Computing

Table 1: Number of frames of each dataset, distribution of frames per class (fall and “no fall”), and number of fall/“no fall” samples (sequences
of frames corresponding to a fall or a “no fall” event).

Dataset Total frames Fall frames No fall frames Falls # No falls #

URFD 11,936 900 11,036 30 973

Multicam 261,137 7,880 253,257 184 376

FDD 108,476 3,825 104,651 127 221

training. In particular, we chose the binary cross-entropy loss
function, de
ned in

loss (�, �) = − (� ⋅ log (�) + (1 − �) ⋅ log (1 − �)) , (1)

where � is the prediction of the network and � is the ground
truth. Away of increasing the importance of a class consists in
adding a scaling factor or “class weight” to the loss function.
	erefore, the loss function is
nally given by

loss (�, �)

= − (�1 ⋅ � ⋅ log (�) + �0 ⋅ (1 − �) ⋅ log (1 − �)) ,
(2)

where �0 and �1 are, respectively, the weights for the “fall
class” and “no fall class,” � is the prediction of the network,
and � is the ground truth. A class weight of 1.0 means no
change in the weighting of that class. 	e use of a higher
class weight for the class 0, that is, �0, penalizes the loss
function for every mistake made on that class more than
the mistakes on class 1. A neural network always tries to
minimize the loss by adapting its weights; this is the base
of the backpropagation algorithm [44]. 	erefore, by using
this modi
ed loss function, we are encouraging the network
to prioritize the learning of one of the classes. However, this
might come at the price of worsening the learning of the other
class. For that reason, in Section 4 we present the metrics that
show the performance of each class separately.

Although the use of a �0 greater than 1.0 biases the
learning towards falls (in case of �1 = 1), we argue that this
bias is convenient in fall detection because of the importance
of detecting a fall even at the price of having some false
alarms. A missed detection would be critical in the health of
the elderly and is, therefore, something to avoid.

3.3. Datasets. Weselected three datasets that are o�en used in
the literature, which makes them suitable for benchmarking
purposes: the UR Fall Dataset (URFD) (http://fenix.univ
.rzeszow.pl/∼mkepski/ds/uf.html), theMultiple Cameras Fall
Dataset (Multicam) (http://www.iro.umontreal.ca/∼labimage/
Dataset/), and the Fall Detection Dataset (FDD) (http://le2i
.cnrs.fr/Fall-detection-Dataset?lang=fr):

(i) URFD contains 30 videos of falls and 40 videos of
Activities of Daily Living (ADL), which we label as no
falls.

(ii) Multicam contains 24 performances (22 with at least
one fall and the remaining twowith only confounding
events). Each performance has been recorded from 8
di�erent perspectives. 	e same stage is used for all
the videos, with some furniture reallocation.

(iii) FDD contains 4 di�erent stages (in contrast to the
previous ones) with multiple actors.

	e available datasets are recorded in controlled environ-
ments with various restrictions:

(i) 	ere is only one actor in a video.

(ii) Images are recorded under suitable and stable lighting
conditions, avoiding dark situations or abrupt lighting
changes.

	e falls appear in di�erent positions of the scenario, far
and near of the camera. Specially in the Multicam dataset,
where there are eight cameras available, the distance to the
camera varies signi
cantly. In the FDD dataset, some falls are
also far from the camera, although this is not a general case
like in Multicam.

All videos have been segmented in frames and divided
between falls and no falls, following the provided annota-
tions. Table 1 summarizes the most relevant
gures of each
dataset.

In Section 4, we compare our results with the state of
the art on all three datasets. Furthermore, we believe that
the combination of the three datasets provides also a good
indicator of the generality of our approach.

4. Results and Discussion

To validate our fall detector system we set up several experi-
ments using the datasets of Section 3.3. In particular, we con-
ducted four types of experiments, namely, (i) experiments for
network con
guration analysis, with the aim of
nding the
most suitable con
guration for the problem; (ii) experiments
to compare our method with the state-of-the-art approaches
for fall detection; (iii) experiments to test the system in
di�erent lighting conditions; and (iv) an experiment to prove
the generality of the system by combining all datasets.

4.1. Evaluation Methodology. From the point of view of
supervised learning, fall detection can be seen as a binary
classi
cation problem on which a classi
er must decide
whether speci
c sequences of video frames represent a fall
or not. 	e most common metrics to assess the performance
of such a classi
er are sensitivity, also known as recall or
true positive rate, and speci�city or true negative rate. 	ese
metrics are not biased by imbalanced class distributions,
which make them more suitable for fall detection datasets
where the number of fall samples is usually much lower than
the number of nonfall samples. For fall detection, the sensi-
tivity is a measure of how good our system is in predicting

http://fenix.univ.rzeszow.pl/~mkepski/ds/uf.html
http://fenix.univ.rzeszow.pl/~mkepski/ds/uf.html
http://www.iro.umontreal.ca/~labimage/Dataset/
http://www.iro.umontreal.ca/~labimage/Dataset/
http://le2i.cnrs.fr/Fall-detection-Dataset?lang=fr
http://le2i.cnrs.fr/Fall-detection-Dataset?lang=fr

Wireless Communications and Mobile Computing 7

Table 2: Results of our system on the three datasets (URFD, FDD, andMulticam) using di�erent setups. In the minibatch size column, “full”
means batch training and �0 is the value of the weight given to the fall class. Notice that the ReLU activation function is always preceded by
batch normalization. Sens. refers to sensitivity, whereas Spec. is used for speci
city.

Dataset Learning rate Minibatch size �0 Activation function Sens. Spec.

URFD 10−5 64 1 ReLU 100.0% 94.86%

Multicam 10−3 Full 1 ReLU 98.07% 96.20%

FDD 10−4 1,024 2 ELU 93.47% 97.23%

falls, whereas speci
city measures the performance for “no
falls.” Nevertheless, for the sake of comparison with other
existing approaches, we also computed the accuracy in the
case where no othermetric was given in their original papers.
	erefore, the three evaluationmetrics we used are de
ned as
follows:

Sensitivity/Recall = TP

TP + FN ,

Speci
city = TN

TN + FP ,

Accuracy = TP + TN
TP + TN + FP + FN ,

(3)

where TP refers to true positives, TN to true negatives, FP
to false positives, and FN to false negatives. Given a video,
we evaluated the performance of the system for each optical
�ow stack; that is, we checked the prediction for a stack with
respect to its real label. We used a block size of 10 consecutive
frames to create the stack.	is numberwas empirically found
by [39]. Consequently, we de
ne the values mentioned above
as follows:

(i) TP: an optical �ow stack labeled as fall and predicted
as fall

(ii) FP: an optical �ow stack labeled as “no fall” and
predicted as fall

(iii) TN: an optical �ow stack labeled as “no fall” and
predicted as “no fall”

(iv) FN: an optical �ow stack labeled as fall and predicted
as “no fall”

4.2. Experimental Setup. We conducted four main experi-
ments:

(1) Search for the best con
guration: we evaluated dif-
ferent network con
gurations in terms of sensitivity
and speci
city to analyze their impact on each dataset.
More speci
cally, we investigated the role of the
learning rate, minibatch size, class weight (explained
in Section 3.2), and the use of the Exponential Linear
Unit (ELU) [45] activation function compared with
the Recti
ed Linear Unit (ReLU) preceded by Batch
Normalization [46] (as discussed by Mishkin et al.
in [47]). Regarding the minibatch size, for some
experiments we used batch training (whole data is
seen in each update) instead of minibatch training
(di�erent data chunks per update).

(2) Comparison with the state of the art: using the
best con
guration found in the
rst experiment, we
compared our results with those of the literature.
Again, the evaluation was performed in terms of
sensitivity and speci
city and, in some speci
c cases,
accuracy was also used.

(3) Test with di�erent lighting conditions: in order to
provide an understanding of how the system would
cope with di�erent lighting conditions (not seen in
the datasets of Section 3.3), we conduct two experi-
ments: onewith the images darkened and another one
with a dynamic light. 	e evaluation was performed
using the sensitivity and speci
city in all the cases.

(4) Generality test: to know to which extent our solution
is generic, we made an experiment combining all
three datasets. 	e evaluation was again performed
using the sensitivity and speci
city values.

Regarding the optimization of the network parameters,
we used Adam (all parameters apart from the learning rate
are set as mentioned in [48]) for 3,000 to 6,000 epochs,
depending on the experiment’s computational burden. For
slow training in the
rst experiment (search for the best
con
guration), we applied early stopping with a patience of
100 epochs, that is, if the loss is not improving for 100 epochs
the training stops. 	is is a suboptimal greedy strategy to get
the best model that avoids full training when it may not be
necessary. We always used a value of 1 for the class weight
�1 in the loss function (see (2)), as we were not interested in
increasing the importance of the “no fall” class.

4.3. Best Con�guration Results. In the search of the best
network con
guration, we split each dataset into training and
test set with an 80 : 20 ratio and a balanced distribution of
labels (0 or 1, fall, or “no fall”).

	e search in the space of con
gurations included multi-
ple experiments using di�erent learning rates. We also varied
the values of the minibatch size (with the option of batch
training) applying a base �0 class weight of 2 at
rst and
then modifying it in the directions that seemed promising.
	e ReLU with Batch Normalization and ELU options were
used equally, although we chose the most encouraging one if
the results were favorable to it.	e results are summarized in
Table 2.

	e results of the di�erent con
gurations are essentially
dependent on the number of samples we had to train the
network.However, we observed that some con
gurations and

8 Wireless Communications and Mobile Computing

a range of values for hyperparameters performed well in all
the datasets:

(i) Learning rate: the network performed the best with

learning rate values around 10−3 and 10−5. In fact,

the best models for the three datasets use 10−3, 10−4,
and 10−5 as learning rate. However, a higher or
lower value creates some problems that are re�ected
in the sensitivity and speci
city. More concretely,
we o�en see that the falls are learned better. 	is
behavior could be explained by the analysis given in
Section 4.3.1. In other cases, extreme values for the
learning rate harm the performance in “no fall” class
(speci
city). 	is is natural as in both cases (very
high and low learning rate), it is harder to make the
network converge: when the learning rate is high the
network takes too big steps to be able to get to the
minimum of the loss function and when it is low it
stays far from the minimum, possibly due to a saddle
point where it gets stuck.

(ii) Minibatch size: we usedminibatch sizes ranging from
64 to 1,024 using powers of 2, as it is commonly
seen in the literature, and batch training, where all
the samples of a dataset are used to update the
weights in each epoch (notice that this is possible
due to the low amount of data of these datasets). In
the case of URFD, we employed smaller batch sizes
because the amount of samples is not high enough.
We obtained the best results using batch training or
a minibatch size of 1,024, so we deduce that a large
amount of samples in each batch is highly bene
cial,
as more data allow the network to learn a better
gradient. Otherwise, if a class is underrepresented in a
minibatch, applying di�erent class weights may cause
problems in the gradient calculations, thus making
more di�cult the convergence of the learning process.
	e other values (64, 128, and 256) seem not to
a�ect signi
cantly the results. For some cases a small
value of 64 performs better than 256, whereas the
opposite case also exists depending on the dataset.
	erefore, the results obtained by small minibatch
sizesmay be explained by the randomness of the batch
construction.

(iii) Class weight: the class weight �0 is important to
increment the importance of the fall class at training
time, as the “no fall” class was empirically found to
be learned better than the fall class. 	is is re�ected
in the results with high values of the speci
city
(“no fall” class performance) in contrast to the lower
values of sensitivity (fall class performance). When
this happens, a value of �0 higher than 1.0 helps
achieving higher sensitivity.	e base value was set 2.0
and incremented or decremented when we observed
promising results.

	e results show that a value for �0 of 2.0 is adequate
in general, although we see a value of 1.0 for the
best results in URFD and Multicam. However, in the
case of URFD, we got very similar results for the

value of 2.0 (having in both cases perfect sensitivity).
	erefore, if we had to pick a standard value for all the
datasets, a value of 2.0would have been adequate too,
even though it did not produce the highest result in
all the datasets.

(iv) ELU versus ReLU with BN: motivated by the work
of Mishkin et al. [47] on di�erent con
gurations for
CNN architectures, we tested ELU and ReLU with
Batch Normalization in our experiments to know
which one could be more bene
cial. In general, ReLU
produces rather stable metrics, even improving the
results when the batch size is higher, while ELU
destabilizes when we do batch training; that is, we
can obtain a 100% of sensitivity and 0% of speci
city
for some values. However, it is not the general case,
as there are some exceptions; for example, the best
result for FDD was obtained while using ELU. In any
case, we can assume that ELU is not as reliable as
the combination of ReLU and Batch Normalization
which, following our experiments, shows a more
stable behavior.

4.3.1. Analysis of False Alarms and Missed Detection. To
further analyze the system and the performance of the
best con
guration, in this part we will discuss the false
positives (false alarms) and false negatives (missed detection)
produced by the network for the FDD dataset. We selected
this dataset for its greater variety of falls with respect toURFD
andMulticam, that is, di�erent ways of falling with rare cases
included. We sampled 72 sequences for the analysis from
all the sequences with errors; half of the samples were fall
sequences and the other half were “no fall” sequences.

False Positives or False Alarms. A false alarm is given when
the system predicts as a fall a stack of optical �ow that was
labeled as “no fall.” In the set of samples used for the analysis,
we detected some common sources of errors for the majority
of the cases, while others were uncommon cases. 	e errors
were found stack-wise, that is, each 10 frames. As we are using
a sliding window approach, the errors may be overlapping.
We computed the amount of stacks per error source and we
ordered the errors taken into account that number of stacks
for each source divided by the total amount of stacks of all the
sources.

(i) In 51.41% of the stacks, we observed that the system
was learning that the frames before and a�er the fall
were also considered part of the fall. More accurately,
the frames containing the actor destabilizing (previ-
ous to the fall) and the frames where the actor was
already in the �oor (a�er the fall) were predicted as a
fall.

(ii) With a lower occurrence rate, yet appearing in various
events, we have the following cases:

(a) 14.06%: the actor slowly bends down and then
lies down on the �oor.

(b) 9.64%: the actor enters the FOV of the camera
walking.

Wireless Communications and Mobile Computing 9

(c) 6.43%: from a seated position in a chair, the
actor bends down to grab an object in the �oor.

(d) 5.62%: the actor exits the FOV of the camera
walking.

(iii) Finally, the remaining cases have a small occurrence
rate, appearing in a few stacks and in a unique
sequence. For example, (i) when the actor is lying
down on the �oor; (ii) when a small part of the
actor goes out of the FOV of the camera; and (iii)
when the actor grabs something from the �oor while
maintaining his legs sti�.

False Negatives orMissedDetection. When optical �ow stacks
labeled as fall are fed into the network and the predicted
output is “no fall,” a missed detection is given. We observed
the following source of errors for the analyzed optical �ow
stacks of the set of 36 sequences (ordered in the same way as
the false positives):

(i) 42.82% of the cases do not contain anything special
during the fall; thus, we hypothesize that the network
may not be learning a speci
c feature correctly.

(ii) Two other events compose the 14.65% and 10.70%
of the cases: (i) the actor walks swinging, trying not
to fall, for almost 2 seconds (48 frames) and (ii) the
actor falls while grabbing a ball in his hands and all
the movement occurs in the axis perpendicular to the
�oor.

(iii) Even with lower occurrence rates (7.04% and 5.92%),
we have two events: (i) the lying-on-the-�oor position
is not detected as fall and (ii) the trunk starts the fall,
while the legs stay sti�.

(iv) Finally, there are more minor events than in the case
of the false positives, for example: (i) the actor starts
the fall while being on his knees; (ii) the actor does
not entirely fall to the �oor, ending in a quadruped
position; and (iii) the actor is seen almost from above
and the fall is not appreciated.

We observed that all those errors could be classi
ed into
two groups depending on the source of the error:

(1) Events that do not appear many times in the datasets
are di�cult to learn, as the network does not have
enough samples: for example, falling while on the
knees or detecting falls from a top view of the person,
which are among the analyzed samples. 	is may
also be the case of almost the majority of the false
negatives, where there is no explanation for the error
apart from the incapability of the network to learn
correctly speci
c features.

Our hypothesis is that the system can learn those
rare cases with the proper amount of data. Judging
from the results obtained in later Sections 4.5 and 4.6,
we believe the generalization capability of the system
is higher and we are only limited by the available
datasets (see Section 3.3 for their limitations). 	us,
this source of error could be addressed by our system.

Table 3: Comparison between our approach and others from the
vision-based fall detection literature for URFD.

Proposal Sensitivity/Recall Speci
city Accuracy

Zerrouki and
Houacine
(2017) [14]

- - 96.88%

Ours 100.0% 92.00% 95.00%

Table 4: Comparison between our approach and others from the
literature of vision-based fall detection for Multicam.

Proposal Sensitivity/Recall Speci
city

Wang et al. [15] 89.20% 90.30%

Wang et al. [16] 93.70% 92.00%

Ours 99.00% 96.00%

Table 5: Comparison between our approach and others from the
vision-based fall detection literature for FDD.

Proposal Sensitivity/Recall Speci
city Accuracy

Char
 et al.
(2012) [17]

98.00% 99.60% -

Zerrouki and
Houacine
(2017) [14]

- - 97.02%

Ours 99.00% 97.00% 97.00%

(2) 	e second source of error comes from the limitations
of the cameras and the optical �ow algorithm. 	e
quality of the images is given by the cameras and,
therefore, it is an intrinsic feature of the datasets. 	e
optical �ow algorithm has also its own limitations
(discussed in Section 3.1); for example, in the case of
a long distance between the actor and the camera,
the optical �ow algorithm is not able to capture the
movement of the person and the output result is a
blank image. 	is is a limitation of our system that
must be studied case by case and included in the
future work (Section 5).

4.4. Results and Comparison with the State of the Art. To
compare the best models found in the previous section with
the state of the art, we used a 5-fold cross-validation forURFD
and FDD and a leave-one-out cross-validation for Multicam
following Rougier et al. [19], in order to compare on equal
conditions. In this last case, we split the dataset into 8 parts of
the same size, each one containing all the videos recorded by
a speci
c camera. We trained with 7 of those parts and tested
with the remaining one; the
nal result is an average of the
metrics given by each test.Nevertheless, for the three datasets,
we balanced each fold in order to have the same amount of
falls and “no falls.” Notice that we retrain all the networks
so that no information is brought from the experiments in
Section 4.3.

Tables 3, 4, and 5 show the results obtained by our
approach on each dataset compared to others. For the sake
of a fair comparison, we selected the papers of the state of

10 Wireless Communications and Mobile Computing

the art which meet two requirements: (1) they work only on
RGB data (no depthmaps or accelerometer data) and (2) they
provide results using publicly available datasets.

Due to the di�erent performance metrics used by other
researchers and the comparison criteria established for this
paper in Section 4.1, it is not possible to make a general claim
in terms of performance. Hence, we will discuss the results
obtained for each dataset:

URFD

(i) Harrou et al. [24] and Zerrouki et al. (2016) [23] used
bothURFDandFDDbut donot specifywhich dataset
was used to obtain their results or how they combined
the performance on both datasets. For these reasons,
theseworks are not included in the comparison tables.
Harrou et al. [24] reported results by means of the
False Alarm Rate (FAR, or False Positive Rate) and
MissedDetection Rate (MDR, or False Negative Rate)
metrics, obtaining a FAR of 7.54% and a MDR of
2.00%. Using our systems, we obtained a FAR of
9.00% and a MDR of 0.00%. Zerrouki et al. (2016)
[23] reported a sensitivity of 98.00% and speci
city
of 89.40%, while we obtained 100.0% and 92.00%,
respectively. Again, our values correspond to training
and testing only in URFD.

(ii) In a di�erent work, Zerrouki and Houacine (2017)
[14] reported an accuracy of 96.88% in this dataset,
while we obtained 95%. Since the dataset is very
imbalanced (see Table 1), it su�ers the problemknown
as the accuracy paradox, where a higher accuracy
does not imply a higher predictive power. In fact,
a system predicting “no fall” for all samples in the
dataset would obtain a 91.53% of accuracy without
detecting any of the existing falls. For that reason, as
explained in Section 4.1, we chose to show sensitivity
and speci
city values instead.

Multicam

(i) BothWang et al. [15] andWang et al. [16] evaluated the
performance of their systems over stacks of 30 frames.
Our system instead outperforms their results by using
only stacks of 10 frames. More precisely, our system
achieves a sensitivity of 99% and a speci
city of 96%,
while Wang et al. [15] obtained 89.20% and 90.30%
and Wang et al. [16] 93.70% and 92.00% for the same
metrics, respectively.

(ii) Regarding the work by Auvinet et al. [25] and
Rougier et al. [19], they are not included in the
comparison tables due to their evaluation methodol-
ogy (http://www.iro.umontreal.ca/∼labimage/Dataset/
technicalReport.pdf). 	ey used a criterion that sets
a variable called �fall, representing the frame where
the fall starts, therefore dividing each video into two
parts. If a fall is detected a�er �fall, it is considered
a TP; otherwise, it is a FN. Before �fall, if a fall is
predicted all the “no fall” period is considered a
FP; otherwise, it is a TN. We believe the evaluation

methodology is not useful to compare our solution
with other authors; thus, we discard its use.

Furthermore, Auvinet et al. [25] used ad hoc thresh-
old values to detect a lying-on-the-�oor position,
not the fall sequence itself. With this method,
they reported sensitivity and speci
city values up
to 99.70%, while we obtained 99.00% and 96.00%,
respectively. Rougier et al. [19], with an accuracy value
of 99.70% compared to our 97.00%, performed fall
detection in a video-level, not by stacks of frames.
Hence, their system needs a speci
c data framing,
using videos as input instead of a continuous stream
of images, which is not ideal for real world deploy-
ments.

Moreover, Auvinet et al. [25] used a 3D vision system,
which provides them with more information about
the entire scenario than in our approach, although we
are only three points behind in speci
city from their
results, showing that our system performs compara-
bly even with less information.

	e use of 3D vision systems stirs up an interesting
discussion about the strengths and weaknesses of
both 3D and 2D systems. Regarding detection per-
formance, based on the available experiments and
results, the di�erences between both approaches are
minimal. 3D vision systems show higher sensitivity
and speci
city, but the di�erence is low (around 3
points for Multicam). However, there are some other
aspects to be considered to decide which approach
is the most suitable for a given application. For
instance, 3D vision systems are o�en based on active
sensors, such as structured light (e.g., Kinect) or
time-of-�ight cameras, which may be used even in
dark conditions. 	at is not the case of passive RGB
cameras. Even though we show promising results
in simulated scenarios with poor light conditions
(Section 4.5.1), those cameras cannot work without
external light.

On the other hand, as far as system deployment is
concerned, 3D vision systems usually present higher
costs. First of all, reliable 3D cameras are expensive
compared to passive 2D cameras. 	e Kinect is an
exception, but it has several limitations: it does not
work in sunny environments and its range is limited
to 4-5 meters. Second, 2D passive cameras are already
common in public spaces. So it seems natural to try to
take advantage of the existing installations.

In conclusion, we can claim that each system has its
own advantages and drawbacks; hence, they should
be selected depending on the speci
c application
domain. 	is fact stresses even more the need of
working on fall detection systems for di�erent sensor
deployments.

FDD

(i) As in the case of URFD, Harrou et al. [24] and
Zerrouki et al. (2016) [23] mentioned the combined

http://www.iro.umontreal.ca/~labimage/Dataset/technicalReport.pdf
http://www.iro.umontreal.ca/~labimage/Dataset/technicalReport.pdf

Wireless Communications and Mobile Computing 11

(a)

(b)

Figure 6: Original images of the FDD dataset (a) and the same images a�er arti
cial darkening (b).

use of FDD but only provided a single result, thus
making the comparison with them unclear. Harrou
et al. reported a FAR of 7.54% and a MDR of
3.00%, while we get 3.00% and 1.00%. Zerrouki et
al. provided a sensitivity of 98.00% and speci
city
of 89.40%, while we obtained 99.00% and 97.00%,
respectively (again, only in FDD).

(ii) Similar to the URFD case, Zerrouki and Houacine
(2017) [14] presented a 97.02% of accuracy for the
FDD dataset, while we obtained 97.00%. As in the
previous case with Zerrouki and Houacine in URFD,
the evaluation using pure accuracy is misleading, as
a system predicting always “no fall” would obtain a
96.47% of accuracy with null predictive power.

(iii) Char
 et al. [17] used ad hoc hand-tuned thresholds
in their system to detect a fall (11 consecutive fall pre-
dictions), indeed obtaining very high results: 98.00%
of sensitivity and 99.60% of speci
city. It is not clear
how this system would perform in other datasets, as
the thresholds were hand-tuned for FDDwithout any
other proof of generalization.

4.5. Experiments with Lighting Conditions. As discussed in
Section 3.3, the public benchmark datasets used for this
research present stable lighting conditions, providing suitable
lighting for arti
cial vision tasks. However, in real world
scenarios events like sunlight coming through the windows,
a lamp switching on and o� and so forth is quite frequent.
	erefore, we decided to test how our system would behave
under those circumstances. To that end, we modi
ed the
original images of the FDD dataset, thus creating di�erent

arti
cial lighting conditions, and observed how the fall
detection system performs. We divided the experiments into
two parts:

(1) Static lighting experiments, where we changed the
lighting conditions to simulate night-like scenarios.

(2) Dynamic lighting experiments, where we added a
dynamic arti
cial lighting that smoothly increases its
intensity from frame to frame until reaching a speci
c
value. A�erwards, the intensity decreases again to
achieve the initial lighting conditions.

4.5.1. Static Lighting. In this
rst part, for every frame in a
video, we subtract a constant value of 100 to each pixel of each
channel (three channels in RGB) so that they get darkened as
if it was night (see Figure 6). With these new images, we will
do the following two experiments.

Training on Original Images Only. We divided the dataset of
80 : 20 ratio into two sets, train and validation, and balanced
the class distribution of the train set. We selected darkened
images for the train set and the original ones (unchanged)
for the validation set. 	en, we trained the model for 3,000
epochs with a learning rate of 0.001, batch training, a�0 of 2,
and ELU (the best con
guration for the FDD dataset found
in Section 4.3). We obtained a sensitivity of 45.85% and a
speci
city of 98.67%.

	e result is coherent with the fact that falls are di�cult
to detect when the actor approaches the �oor. It is the darkest
area in the image; thus, the actor is not distinguishable, as
it gets fused with the darkness. 	erefore, any lying-on-the-
�oor position is very di�cult to detect.

12 Wireless Communications and Mobile Computing

(a)

(b)

(c)

(d)

Figure 7: Original images of the FDD dataset in (a); the same images with simulated dynamic lighting in (b); optical �ow images without
the lighting change in (c); and optical �ow images with the lighting change in (d). 	e 12 frames correspond to half a second of the original
video (recorded at 25 FPS).

Train and Test with Darkened Images. We used exactly the
same con
guration and train/test partition of the previous
experiment, but this time the images from the training set
were also darkened. A�er training, the sensitivity went up
to 87.12%, while the speci
city decreased a bit (94.92%). 	e
best result obtained with this con
guration for the original
dataset was 93.47% of sensitivity and 97.23% of speci
city.We
believed the di�erence is not that large taking into account the
level of darkening applied and the fact that we did not explore
the best con
guration for the new images.

4.5.2. Dynamic Lighting. In real world scenarios, lighting
conditions are not as stable as in a lab environment. For
example, a lamp may be switched on/o� in the background,
generating displacement vectors in the optical �ow algo-
rithm. To simulate this type of scenarios in the FDD dataset,
we added a progressive change of lighting that takes 32 frames
to light up and fade. As the video was recorded at 25 frames
per second (FPS), the lighting lasts for about 1.3 seconds.

To produce this dynamic light change, for each frame,
channel, and pixel we multiplied the original value by a
sinusoidal function so that the transition between frames
emulates real light conditions. 	is modi
cation was done
once per video at its
rst 32 frames (see Figure 7). In order
to achieve more realistic illumination conditions, a single
lighting change was applied on each video. 	is part again
is divided into two experiments.

Train with the Original Images and Test with the New Ones.
To test how the system reacts to dynamic lighting conditions,
we trained themodel with the original images and tested with
the new ones (as explained in the
rst paragraph). Again, we

divided the dataset into an 80 : 20 ratio (keeping the same data
in each partition as in Section 4.5.1). We trained the model
for 3,000 epochs with a learning rate of 0.001, batch training,
a �0 of 2, and ELU.	e result is a 28.04% of sensitivity and a
96.35% of speci
city.

	e result is coherent with the data, as the dynamic
lighting generates lots of displacement vectors in the image.
	is confuses the network that has been trained to see only
the displacement vectors of the moving person.

Train and Test with the New Images. Finally, we check how
the system is able to adapt to this lighting change if the
classi
er is properly trained. To this end, we used the new
images in the train set and the validation set (the same
partition of sets as in the
rst part of this experiment). 	e
con
guration of the training and the network is also the same
as in the previous part.	is time the system obtains a 90.82%
of sensitivity and a 98.40% speci
city.

Like in the previous experiment with darkness, both
metrics increase signi
cantlywhen trainedwith the newdata.
In particular, this change is big in the case of the sensitivity,
which goes from 28.04% to 90.82% a�er being trained with
the modi
ed samples. 	is is a proof of the capability of the
network to adapt to new circumstances (darkness or lighting
changes in this case) if the appropriate data is used in training
time.

4.6. Generality Test. One of the main drivers of our system
design was the generality (Section 3), that is, to develop a
fall detector able to perform in di�erent scenarios. While
previous experiments in this paper considered each dataset
individually, here we tried to avoid any singular feature

Wireless Communications and Mobile Computing 13

Table 6: Experiment with the system trained with the three datasets
combined (URFD, Multicam, and FDD). Results are shown on the
combination and the individual sets.

Test set Sensitivity/Recall Speci
city

URFD + Multicam + FDD 94.00% 94.00%

URFD 100.0% 99.00%

Multicam 85.00% 84.00%

FDD 97.00% 98.00%

associated with a speci
c dataset. For that purpose, we
generated a new dataset as the combination of the three
previously used as follows:

(1) In order to give equal weight to all three datasets, we
resampled the two largest sets to match the size and
class distribution of the smallest one (URFD). With
this change, the three datasets had the same relevance
(amount of samples) and both classes (fall and “no
fall”)were balanced.More concretely, each dataset has
960 samples, 480 fall and 480 “no fall” samples.

(2) In order to apply a 5-fold cross-validation, we divided
each dataset into 5 groups, each group containing the
same amount of fall/“no fall” samples.

	e results of the experiment with the performance on the
combined set but also on the samples of each set individually
are shown in Table 6. 	e network con
guration was the

following: a learning rate of 10−3, a batch size of 1,024, and a
�0 of 2.0, and we used ReLU with Batch Normalization. 	e
results correspond to the 5-fold cross-validation, with each
fold trained for 1,000 epochs.

We believe that these results support our claim of having
a generic fall detector system, mainly based on two reasons:

(1) Our system has been tested in three di�erent public
datasets, obtaining the state-of-the-art results on all
three of them. To the best of our knowledge, our
system is the
rst one achieving such results on those
three reference datasets. Notice that all three datasets
present di�erent characteristics. For example, the fall
annotating criterion of FDD di�ers from the other
two datasets. While FDD considers that a fall starts
when a person is inclined around 45 degrees with
respect to the �oor, Multicam and URFD label a
fall when instability is perceived. Also, FDD contains
totally di�erent scenarios in contrast to the other two
datasets. Another major di�erence is that Multicam
records the same falls from di�erent point of views or
perspectives, since eight cameras are used in the same
stage. Even though there are signi
cant di�erences
among the datasets, our system achieves a perfor-
mance equal to the best state-of-the-art algorithms on
those datasets. We think this is a solid proof of the
generality of our fall detector.

(2) As the experiments performed for each dataset
implied training a FC-NN classi
er for each of them,
it can be argued that the fall detector is properly
trained in each case for the given dataset. 	e

experiment shown in Table 6 tries to refute that
reasoning. We combined the three datasets both for
training and testing, with all their di�erences. As
can be seen, when we tested the system using the
videos from all the datasets, we obtained very high
detection rates (sensitivity and speci
city of 94%).
When observing the results obtained on each indi-
vidual dataset, our results still remain high, except for
Multicam (sensitivity of 85% and speci
city of 84%).
	is can be explained becauseMulticamuses di�erent
perspectives to record the same events. When we
generated the combined dataset, we discarded many
frames from Multicam to keep the in�uence of each
dataset equal. In that process, we lost many frames
whichmay have been helpful for our network to learn
the di�erent perspectives. 	us, we can conclude
that to tackle the perspective issue, more images are
needed in the training process. However, the results
back up our generality claim, since the system was
able to learn generic features from di�erent datasets
and showed high detection rates. Undermore realistic
conditions (real world environment), the system may
get poor results unless trained in real world data too.
	erefore, the key to obtain generic features and being
able to generalize well is training the system with a
huge amount of inhomogeneous data.

	e generalization capabilities of our system camemainly
from two design decisions: (i) the use of optical �ow images,
which only model the motion information contained in con-
secutive frames and avoid any dependence with appearance
features, and (ii) the three-step training phase, where the
network learns generic motion-related features for action
recognition.

5. Conclusions

In this paper, we presented a successful application of transfer
learning from action recognition to fall detection to create a
vision-based fall detector systemwhich obtained the state-of-
the-art results in three public fall detection datasets, namely,
URFD, Multicam, and FDD. To the best of our knowledge,
this is the
rst fall detector system to achieve that, showing the
generality of the approach.We further tested the generality of
our system with various experiments with di�erent lighting
conditions and an extra experiment where we combined all
three datasets. We
rmly believe that the results obtained
constitute a solid base for our generality claim.

	e key ideas presented throughout themanuscript are as
follows:

(i) 	e use of optical �ow as input to the network: in con-
trast to other approaches, by computing optical �ow
images and stacking them we (i) take into account
the correlation among consecutive frames (compared
to those who use each frame separately) and (ii)
achieve environmental independence avoiding any
appearance-based features, thus making the system
applicable to di�erent scenarios. 	is algorithm also

14 Wireless Communications and Mobile Computing

has its drawbacks, as stated in Section 3.1. Neverthe-
less, with the appropriate training we canmake up for
it and obtain very good results, as demonstrated in
Section 4.5.

(ii) 	e use of CNN retrained in di�erent datasets and
for di�erent problems: apart from creating a powerful
feature extractor, this allows us to not depend on
hand-engineered features, which are usually very
hard to design and are prone to be too speci
c to
a given setup. In contrast, our CNN learned generic
features relative to the problem domain.

(iii) Transfer learning: to overcome the problems posed
by the low number of samples in fall datasets and
learn generic features, we adopted transfer learning
techniques. More concretely, we presented a three-
step training process which has been successfully
performed for fall detection.

We believe that the presented vision-based fall detector is
a solid step towards safer Smart Environments. Our system
has been shown to be generic and works only on camera
images, using few image samples (10) to determine the occur-
rence of a fall. 	ose features make the system an excellent
candidate to be deployed in Smart Environments, which are
not only limited to home scenarios. Based on emerging IoT
architectures, the concept of Smart Environments can be
extended to many other everyday environments, providing
the means to assist the elderly in several contexts.

However, there is still ground for improvement. In order
to bring vision-based fall detection to real world deploy-
ments, we envisage three potential research directions:

(1) Further research on transfer learning with fall detec-
tion datasets is warranted in order to improve our
generic feature extractor. Currently, our third training
step is limited to
ne-tuning (Section 3), where the
convolutional layers have their weights frozen and
only the classi
er layer is really trained. We would
like to consider alternative ways; going deeper in
the way convolutional layers can be adapted to fall
datasets. However, those experimentsmust be carried
out carefully to avoid too speci
c feature extractors,
which may perform better in a certain dataset but at
the expense of losing generality.

(2) Using optical �ow images provides a great represen-
tational power formotion, but also involves the heavy
computational burden of preprocessing consecutive
frames and drawbacks concerning lighting changes.
Following the philosophy of end-to-end learning, we
would like to avoid any image preprocessing step and
work only on raw images in the future. 	erefore,
more complex network architectures will have to be
designed to learn complete and hierarchical motion
representations from raw images.

(3) As the public datasets have only one actor per video
we believe that the next step in the
eld of fall detec-
tion would be the multiperson fall detection. For this
task, we think that region-based CNNs (R-CNN) [49]

could be a promising research direction, with the aim
of automatically detecting di�erent persons in images
and analyze those regions with our fall detection
system.

Conflicts of Interest

	e authors declare that there are no con�icts of interest
regarding the publication of this article.

Acknowledgments

	eauthors gratefully acknowledge the support of the Basque
Government’s Department of Education for the predoctoral
funding and NVIDIA Corporation for the donation of the
Titan X used for this research. 	ey also thank Wang et al.
[8] for making their work publicly available.

References

[1] A. F. Ambrose, G. Paul, and J. M. Hausdor�, “Risk factors for
falls among older adults: A review of the literature,” Maturitas,
vol. 75, no. 1, pp. 51–61, 2013.

[2] J. C. Davis, M. C. Robertson, M. C. Ashe, T. Liu-Ambrose, K.
M. Khan, and C. A. Marra, “International comparison of cost
of falls in older adults living in the community: A systematic
review,” Osteoporosis International, vol. 21, no. 8, pp. 1295–1306,
2010.

[3] M. Mubashir, L. Shao, and L. Seed, “A survey on fall detection:
principles and approaches,” Neurocomputing, vol. 100, pp. 144–
152, 2013.

[4] L. Chen, J. Hoey, C. D. Nugent, D. J. Cook, and Z. Yu, “Sensor-
based activity recognition,” IEEE Transactions on Systems, Man,
and Cybernetics, Part C: Applications and Reviews, vol. 42, no. 6,
pp. 790–808, 2012.

[5] A. Caragliu, C. Del Bo, and P. Nijkamp, “Smart cities in Europe,”
Journal of Urban Technology, vol. 18, no. 2, pp. 65–82, 2011.

[6] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[7] J. Deng, W. Dong, and R. Socher, “ImageNet: a large-scale hier-
archical image database,” in Proceedings of the 2009 IEEE Con-
ference onComputer Vision and Pattern Recognition (CVPR), pp.
248–255, Miami, Fla, USA, June 2009.

[8] L. Wang and et al., Towards good practices for very deep two-
stream convnets, 2015.

[9] S. Khurram, A. R. Zamir, andM. Shah,Amir Roshan Zamir, and
Mubarak Shah., UCF101: A dataset of 101 human actions classes
from videos in the wild, 2012.

[10] M. Vallejo, C. V. Isaza, and J. D. Lopez, “Arti
cial Neural Net-
works as an alternative to traditional fall detection methods,”
in Proceedings of the 2013 35th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society, EMBC
2013, pp. 1648–1651, Japan, July 2013.

[11] A. Sengto and T. Leauhatong, “Human falling detection algo-
rithm using back propagation neural network,” in Proceedings
of the 5th 2012 Biomedical Engineering International Conference,
BMEiCON 2012, 	ailand, December 2012.

[12] B. Kwolek and M. Kepski, “Human fall detection on embedded
platform using depth maps and wireless accelerometer,” Com-
puter Methods and Programs in Biomedicine, vol. 117, no. 3, pp.
489–501, 2014.

Wireless Communications and Mobile Computing 15

[13] F. Harrou, N. Zerrouki, Y. Sun, and A. Houacine, “Statistical
control chart and neural network classi
cation for improving
human fall detection,” in Proceedings of the 8th International
Conference on Modelling, Identi�cation and Control, ICMIC
2016, pp. 1060–1064, Algeria, November 2016.

[14] N. Zerrouki andA. Houacine, “Combined curvelets and hidden
Markovmodels for human fall detection,”Multimedia Tools and
Applications, pp. 1–20, 2017.

[15] S. Wang, L. Chen, Z. Zhou, X. Sun, and J. Dong, “Human fall
detection in surveillance video based on PCANet,”Multimedia
Tools and Applications, vol. 75, no. 19, pp. 11603–11613, 2015.

[16] K. Wang, G. Cao, D. Meng, W. Chen, and W. Cao, “Automatic
fall detection of human in video using combination of features,”
in Proceedings of the 2016 IEEE International Conference on
Bioinformatics and Biomedicine, BIBM 2016, pp. 1228–1233,
China, December 2016.

[17] I. Char
, J. Miteran, J. Dubois, M. Atri, and R. Tourki, “Def-
inition and performance evaluation of a robust SVM based
fall detection solution,” in Proceedings of the 8th International
Conference on Signal Image Technology and Internet Based
Systems, SITIS 2012, pp. 218–224, Italy, November 2012.

[18] T. Lee and A. Mihailidis, “An intelligent emergency response
system: Preliminary development and testing of automated fall
detection,” Journal of Telemedicine and Telecare, vol. 11, no. 4, pp.
194–198, 2005.

[19] C. Rougier, J. Meunier, A. St-Arnaud, and J. Rousseau, “Robust
video surveillance for fall detection based on human shape
deformation,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 21, no. 5, pp. 611–622, 2011.

[20] S.-G. Miaou, P.-H. Sung, and C.-Y. Huang, “A customized
human fall detection system using omni-camera images and
personal information,” in Proceedings of the 1st Transdisciplinary
Conference on Distributed Diagnosis and Home Healthcare,
D2H2 2006, pp. 39–42, USA, April 2006.

[21] C.-L. Liu, C.-H. Lee, and P.-M. Lin, “A fall detection system
using k-nearest neighbor classi
er,” Expert Systems with Appli-
cations, vol. 37, no. 10, pp. 7174–7181, 2010.

[22] V. Vishwakarma, C.Mandal, and S. Sural, in Pattern Recognition
and Machine Intelligence, Automatic detection of human fall in
video, Ed., pp. 616–623, 2007.

[23] N. Zerrouki, F. Harrou, A. Houacine, and Y. Sun, “Fall detection
using supervised machine learning algorithms: A comparative
study,” in Proceedings of the 8th International Conference on
Modelling, Identi�cation and Control, ICMIC 2016, pp. 665–670,
Algeria, November 2016.

[24] F. Harrou, N. Zerrouki, Y. Sun, and A. Houacine, “A simple
strategy for fall events detection,” in Proceedings of the 14th IEEE
International Conference on Industrial Informatics, INDIN 2016,
pp. 332–336, France, July 2016.

[25] E. Auvinet, F. Multon, A. Saint-Arnaud, J. Rousseau, and J.
Meunier, “Fall detection with multiple cameras: An occlusion-
resistant method based on 3-D silhouette vertical distribution,”
IEEE Transactions on Information Technology in Biomedicine,
vol. 15, no. 2, pp. 290–300, 2011.

[26] S. Gasparrini, E. Cippitelli, S. Spinsante, and E. Gambi, “A
depth-based fall detection system using a Kinect� sensor,”
Sensors, vol. 14, no. 2, pp. 2756–2775, 2014.

[27] R. Planinc and M. Kampel, “Introducing the use of depth data
for fall detection,” Personal and Ubiquitous Computing, vol. 17,
no. 6, pp. 1063–1072, 2013.

[28] G. Diraco, A. Leone, and P. Siciliano, “An active vision system
for fall detection and posture recognition in elderly healthcare,”

in Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition, DATE 2010, pp. 1536–1541, deu,
March 2010.

[29] G. Mastorakis and D. Makris, “Fall detection system using
Kinect’s infrared sensor,” Journal of Real-Time Image Processing,
vol. 9, no. 4, pp. 635–646, 2012.

[30] T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma, “PCANet:
a simple deep learning baseline for image classi
cation?” IEEE
Transactions on Image Processing, vol. 24, no. 12, pp. 5017–5032,
2015.

[31] K. Simonyan and A. Zisserman, Very deep convolutional net-
works for large-scale image recognition, 2014.

[32] Y. Jia, E. Shelhamer, J. Donahue et al., “Ca�e: convolutional
architecture for fast feature embedding,” in Proceedings of the
ACM International Conference on Multimedia, pp. 675–678,
ACM, Orlando, Fla, USA, November 2014.

[33] S. S. Beauchemin and J. L. Barron, “	eComputation of Optical
Flow,”ACMComputing Surveys, vol. 27, no. 3, pp. 433–466, 1995.

[34] J. J. Gibson, “	e Perception of Visual Surfaces,”
e American
Journal of Psychology, vol. 63, no. 3, p. 367, 1950.

[35] F. A. Hamprecht, C. Schnörr, and B. Jähne, ““A duality based
approach for realtime TV-L 1 optical �ow,” in Pattern Recogni-
tion, pp. 214–223, 2007.

[36] L.Wang, Y. Xiong, Z.Wang et al., “Temporal segment networks:
Towards good practices for deep action recognition,” Lecture
Notes in Computer Science (including subseries Lecture Notes
in Arti�cial Intelligence and Lecture Notes in Bioinformatics):
Preface, vol. 9912, pp. 20–36, 2016.

[37] A. Krizhevsky, I. Sutskever, andG. E.Hinton, “Imagenet classi
-
cation with deep convolutional neural networks,” in Proceedings
of the 26th Annual Conference on Neural Information Processing
Systems (NIPS ’12), pp. 1097–1105, Lake Tahoe, Nev, USA,
December 2012.

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2016, pp.
770–778, July 2016.

[39] K. Simonyan and A. Zisserman, “Two-stream convolutional
networks for action recognition in videos,” in Proceedings of the
28th Annual Conference on Neural Information Processing Sys-
tems 2014, NIPS 2014, pp. 568–576, can, December 2014.

[40] C. François and etal., “Keras,” 2015, https://github.com/fchollet/
keras.

[41] M.Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and trans-
ferring mid-level image representations using convolutional
neural networks,” in Proceedings of the 27th IEEE Conference on
Computer Vision and Pattern Recognition (CVPR ’14), pp. 1717–
1724, IEEE, Columbus, Ohio, USA, June 2014.

[42] S. Herath, M. Harandi, and F. Porikli, “Going deeper into action
recognition: A survey,” Image andVision Computing, vol. 60, pp.
4–21, 2017.

[43] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, “Dropout: a simple way to prevent neural net-
works from over
tting,” Journal of Machine Learning Research,
vol. 15, no. 1, pp. 1929–1958, 2014.

[44] R. Hecht-Nielsen, “	eory of the backpropagation neural net-
work,” Neural Networks, vol. 1, no. 1, p. 445, 1988.

[45] D. Clevert, T. Unterthiner, G. Povysil, and S. Hochreiter,
“Recti
ed factor networks for biclustering of omics data,”
Bioinformatics, vol. 33, no. 14, pp. i59–i66, 2017.

https://github.com/fchollet/keras
https://github.com/fchollet/keras

16 Wireless Communications and Mobile Computing

[46] S. Io�e and C. Szegedy, Batch normalization: Accelerating deep
network training by reducing internal covariate shi�, 2015.

[47] D. Mishkin, N. Sergievskiy, and J. Matas, Systematic evaluation
of CNN advances on the ImageNet, 2016.

[48] D. Kingma and J. Ba, Adam: A method for stochastic optimiza-
tion, 2014.

[49] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Region-
based convolutional networks for accurate object detection
and segmentation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 38, no. 1, pp. 142–158, 2016.

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal of

Volume 201

Submit your manuscripts at

https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

