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Abstract: This study presents efficient vision-based finger detection, tracking, and event 

identification techniques and a low-cost hardware framework for multi-touch sensing and 

display applications. The proposed approach uses a fast bright-blob segmentation process 

based on automatic multilevel histogram thresholding to extract the pixels of touch blobs 

obtained from scattered infrared lights captured by a video camera. The advantage of this 

automatic multilevel thresholding approach is its robustness and adaptability when dealing 

with various ambient lighting conditions and spurious infrared noises. To extract the 

connected components of these touch blobs, a connected-component analysis procedure is 

applied to the bright pixels acquired by the previous stage. After extracting the touch blobs 

from each of the captured image frames, a blob tracking and event recognition process 

analyzes the spatial and temporal information of these touch blobs from consecutive frames 

to determine the possible touch events and actions performed by users. This process also 

refines the detection results and corrects for errors and occlusions caused by noise and 

OPEN ACCESS 



Sensors 2011, 11                    

 

 

6869 

errors during the blob extraction process. The proposed blob tracking and touch event 

recognition process includes two phases. First, the phase of blob tracking associates the 

motion correspondence of blobs in succeeding frames by analyzing their spatial and 

temporal features. The touch event recognition process can identify meaningful touch 

events based on the motion information of touch blobs, such as finger moving, rotating, 

pressing, hovering, and clicking actions. Experimental results demonstrate that the 

proposed vision-based finger detection, tracking, and event identification system is feasible 

and effective for multi-touch sensing applications in various operational environments  

and conditions. 

Keywords: multi-touch sensing; computer vision; finger detection; finger tracking;  

multi-touch event identification 

 

1. Introduction 

Multi-touch sensing systems have attracted a lot of attention in current human-computer interaction 

applications [1]. The first prototype multi-touch sensing system was developed at the University of 

Toronto at 1982 [2]. Bell Labs then designed a touch sensing and display system for graphical  

user interface applications [3] in 1984. Many well-known commercial products with multi-touch 

technologies have recently become in everyday life, such as the Apple iPhone [4], Apple Macbook  

Air [5], and Microsoft Surface Computer [6]. A multi-touch interface provides much more flexibility 

and convenience than traditional interfaces such as keyboards and mouses by allowing user to directly 

and intuitively interact with digital content and media through hand and finger actions on the  

display surfaces. 

Some consumer systems, such as the touch screens on electronic check-out machines, use resistive 

surfaces for touch sensing. These resistance-based systems are cheap to implement, but cannot provide 

sufficient sensing accuracy and clarity to support more sophisticated user operations and commands. 

Systems based on capacitive technologies can provide more accurate sensing results using multiple 

touch contacts on the screen [7-9]. However, systems based on capacitive sensing require some 

specific facilities, such as specified receivers for detecting the signals emitted from the transmitter 

under the display surface. This significantly limits the possible movements and operations of many 

user applications. Infrared LED based systems [10-12] use sets of pairing transmitters and receivers of 

infrared LEDs to construct a two dimensional sensing array on the back of a screen. This type of 

system can sense touch contact through blocked infrared lights when a user’s finger touches a given 

cross point of a horizontal path and a vertical path of infrared lights in the sensing array. Nevertheless, 

the touch sensing accuracy of infrared LED based systems relies heavily on the number and density of 

transmitters and receivers, and the structural arrangement of the sensing array. Thus, their applicability 

and flexibility are limited when large display screens must accommodate more users and more 

simultaneous touch operations. 

Due to the falling costs and growing power of computers, technologies based on computer vision 

are becoming popular solutions for many object detection, tracking, and analysis applications in  
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real-life environments, such as the detection and recognition of people, vehicles, lanes, animals, 

obstacles, etc… [13-20]. For multi-touch sensing applications, hands and fingers are the salient objects 

captured from the cameras in the computer vision problems. Thus, camera-based techniques have 

attracted a lot of attention in multi-touch sensing applications [21-30]. Several camera-based systems 

apply computer vision techniques to detect and track finger locations via overhead-mounted  

cameras [21-24]. Letessier and Berard [21] presented a single overhead camera system to capture 

finger positions on a display surface. The single overhead camera approach has obvious difficulties in 

accurately detecting finger contacts on the display surface. Systems based on paired overhead  

cameras [22,23] use stereo vision and depth features to provide more precise detected finger contacts 

with the display surface. However, these systems still suffer significant self-occlusion problems when 

multiple fingers are simultaneously pressed on the surface. These multiple camera systems also require 

additional costs in camera calibration before use. The PlayAnywhere system in [24] adopts an infrared 

camera and uses the shape of a finger shadow to refine the touch detection results. However, when 

multiple finger contacts are pressed on the surface and the pointing directions of these fingers are not 

perpendicular to the direction of the infrared light source, the shadow shape features become unreliable 

due to occlusions and lighting effects. Chung et al.’s MirrorTrack system [25,26] uses three cameras 

side-mounted parallel to the glossy display surface to capture finger contacts on the surface in three 

different orientations. This system provides more accurate detection results for finger contact points. 

However, due to the restricted capturing fields of the side-mounted cameras, more cameras are 

required to capture sufficient image features of the hands of the users in the surface area. Thus, the 

costs of multiple cameras and the complexity of calibrating multiple cameras limit the applicability 

and convenience of side-mounted camera based systems. 

Researchers have recently develop rear-mounted camera based systems for consumer multi-touch 

sensing applications [6,27,28]. The Diffused Illumination (DI) technique adopted in Microsoft’s 

Surface computer [6] product uses one infrared emitter, four infrared cameras, and a projector  

(Figure 1). This system emits infrared lights onto a screen, and once the user touches the screen, the 

four cameras capture the reflected infrared lights and produce bright blobs. These bright blobs are the 

small spots of reflected lights formed by the users’ touch contacts, and can be detected and processed 
via some image processing techniques. The HoloWall system [27] uses a glass wall combined with a 

rear-projection sheet to capture the scattered infrared lights caused by finger touches. This technique is 

more inexpensive and easy to implement. However, when finger touches occur, the infrared lights may 

be scattered wide, making it difficult for the camera to capture sufficient lights to identify the touch 

blobs of interest. Moreover, this technique is sensitive to ambient lighting effects. Han [28] proposed a 

Frustrated Total Internal Reflection (FTIR) technique, which is inexpensive and easy to implement. 

The FTIR technique uses a specialized acrid panel as the display surface, an infrared emitter, a 

projector, and a video camera. The FTIR technique uses infrared LEDs to emit infrared lights into the 

acrid display panel from one side to another side. The infrared lights are totally reflected within the 

acrid panel until finger touches scatter the lights. These scattered lights can then be captured by a video 

camera mounted under or behind the acrid display panel and imaged as bright blobs. These bright 

blobs can also be detected and recognized as finger touches via some image processing techniques to 

obtain possible interactive actions of the users. 
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Figure 1. (a) A Microsoft Surface Computer. (b) The structure of Microsoft Surface (1 is 

the transparent panel, 2 is the infrared source, 3 is a infrared camera, 4 is the projector). 

 
 

(a) (b) 

The FTIR technique offers great flexibility in simultaneously detecting a large number of multiple 

touch contacts with high spatial and temporal frequencies. Other camera-based systems, such as 

overhead-camera-based systems, are unable to detect and process multiple nearby touches or provide 

some advanced interacting operations. However, because each touch contact detected by the FTIR 

appears as an independent event, post-processing is necessary to determine whether a set of touch 

contacts detected at different time belong to the same user’s touch trajectory. As the number of user 

grows and their corresponding touch actions increase, the determination of user operations from a large 

number of individual touch detections becomes increasingly difficult. The touch detection accuracy of 

the FTIR technique may be affected by spurious infrared noises under poor lighting conditions. 

To overcome the above-mentioned problems of the FTIR technique, this study presents efficient 

vision-based touch finger detection, tracking, and event identification techniques and a low-cost 

hardware framework for multi-touch sensing and display applications. First, a fast bright-blob 

segmentation process based on automatic multilevel histogram thresholding extracts the pixels of 

touch blobs formed by scattered infrared lights in the image sequences captured by a video camera. 

The advantage of this automatic multilevel thresholding approach is its robustness and adaptability 

when dealing with various ambient lighting conditions and spurious infrared noises. A connected-

component analysis procedure is then applied to the bright pixels obtained by the previous stage to 

extract the connected-components of these touch blobs. Given the touch blobs extracted from each of 

the captured frames, a blob tracking and event recognition process analyzes the spatial and temporal 

information of these touch blobs from consecutive frames to determine possible touch events. This 

process also refines the detection results and corrects for errors and occlusions caused by noise and 

errors during the blob extraction processes. The proposed blob tracking and touch event recognition 

process includes two phases. The blob tracking phase first associates the motion correspondence of 

blobs in succeeding frames by analyzing their spatial and temporal features. The touch event 

recognition phase then identifies meaningful touch events and gestures from the motion information of 

touch blobs (such as finger moving, clicking, and zooming actions). The resulting touch event and 

gestures represent various interactive commands for controlling and manipulating objects on the 

display interface. Experimental results demonstrate that the proposed vision-based finger detection, 
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tracking, and event identification system is feasible and effective for multi-touch sensing applications 

in various operational environments and illumination conditions. 

2. Hardware Structure Design 

Frustrated total internal refection (FTIR) [28] is based on the phenomenon of the total internal 

reflection of infrared lights within an acrylic board (Figure 2). Figure 3 illustrates the structure of the 

proposed multi-touch sensing interface, showing that the infrared lights are emitted into the inner layer 

of a transparent acrylic board with a proper angle via the side-mounted infrared LEDs. Without 

exterior interference, the lights pass through the inner layer of the board due to total reflection 

phenomenon. When the top side of the surface is pressed by an object with a relatively high 

refractive rate, such as a finger, some of the infrared light at the contact point is reflected and 

diffused to the bottom of the board. The diffused infrared lights can be captured by a video camera 

mounted below the acrylic board and detected as bright blobs. These bright blobs can then be 

processed using image segmentation and recognition techniques to locate and analyze their 

appearance and motion features, and generate interactive commands for various applications. 

Figure 2. Total internal reflection in an acrylic board. 

 

Figure 3. The structure of the proposed multi-touch sensing interface. 

 

This study presents a low-cost solution for multi-touch sensing and display based on the FTIR 

concept. Figure 4 depicts the design framework of the proposed multi-touch sensing and display 

device. A conventional LCD displayer serves as the display interface. Multi-touch sensing modules are 

placed in front of the LCD displayer for sensing and obtaining the user finger touching blobs at the 

input interface. As Figure 4 illustrates, the LCD displayer is split into the following parts and installed 
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in the device case: the main circuit board module (Figure 4:1), the AD/DA (analog to digital/digital to 

analog) module (Figure 4:2), the backlight circuit module (Figure 4:3), and backlights (Figure 4:4). 

The LCD panel (Figure 4:7) is installed on top of the case (Figure 4:11). To capture the reflected lights 

of the touch fingers, a low-cost web-camera (Figure 4:5) serves as the image capturing interface. To 

capture the reflected infrared lights efficiently, the IR-block filter (infrared filter) of the camera is 

removed and replaced by a band-pass filter so that only infrared lights can be passed and captured. To 

smooth the backlight in the case, aluminum foil (Figure 4:6) is attached to the inner surface of the 

device case, and some cellophane paper (Figure 4:8) is placed under the acrylic board to improve the 

smoothness of the backlights. Finally, an acrylic board (Figure 4:9) and infrared LEDs are installed 

above the LCD panel (Figure 4:7) to capture multi-touch inputs. The remaining components, i.e., the 

speakers associated with the original LCD displayer, are also installed in the case (Figure 4:10). As a 

result, the total cost of the prototype system of the proposed multi-touch sensing and display device is 

estimated to be less than USD$ 300. 

Figure 4. The device design and components of the proposed multi-touch sensing and 

display system. 1: main circuit board module; 2: AD/DA module; 3: backlight circuit 

module; 4: backlights; 5: low-cost web-camera; 6: aluminum foil; 7: LCD panel; 

8: cellophane paper; 9: acrylic board; 10: speakers; 11: device case. 

 

3. Vision-Based Multi-Touch Sensing Technique 

Using the finger touching blobs obtained by the proposed multi-touch sensing interface, image 

segmentation, object extraction and tracking, and event identification techniques must locate and 

analyze their appearance and motion features to determine possible interactive computer commands. 

This section presents efficient vision-based finger detection, tracking, and event identification 

techniques to identify the desired user commands effectively. 

3.1. Touching Blob Extraction 

The first step in detecting and extracting the touched fingers captured from the camera of the  

multi-touch sensing system is to segment the salient features of moving blobs from captured image 
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sequences. Figure 5 shows a sample of the captured image from the proposed sensing interface. 

Performing blob detection and recognition for multi-touch display applications requires an effective 

approach for correctly and rapidly locating and extracting the salient features of blobs under various 

illumination conditions on the sensing interface. This way enables the efficient extraction and 

segmentation of the object regions of touching fingers. Therefore, this section presents a fast bright-object 

segmentation process based on automatic multilevel histogram thresholding. The proposed method 

extracts the object pixels of finger touching blobs from captured image sequences. 

Figure 5. Example of the captured image from the proposed sensing interface. 

 

The first task of the image-processing module in the proposed multi-touch sensing system is to 

extract the object pixels of finger touching blobs from the captured sensing image sequences to 

facilitate further rule-based analysis of the touch events and user-activated commands. To reduce the 

computation cost of extracting finger touching blobs, the gray intensity image, i.e., the Y-channel, of 

the image is first extracted by performing a RGB to Y transformation. To extract finger blob objects 

from a given transformed gray-intensity image, finger blob pixels must be separated from other 

uninteresting object pixels of different illumination features. The proposed approach uses the 

discriminant criterion to measure separability among the decomposed images with dissimilar objects. 

Otsu [31] was the first to use the discriminant criterion for the bi-level image thresholding. Otsu 

determined the optimal threshold by maximizing the between-class variance between dark and bright 

regions of the image. This method is ranked as the most effective bi-level thresholding method for 

image segmentation [32]. Extensive research studies based on this optimal thresholding methodology 

have also been efficiently applied to various object segmentation and analysis applications, such as  

text extraction for document image analysis [33,34], biofilm image segmentation [35,36], and vehicle 

detection applications [20]. However, as the number of desired thresholds of different objects 

increases, the computational cost needed to obtain the optimal threshold values increases significantly, 

and the search to achieve the optimal value of the criterion function becomes particularly exhaustive. 

An effective multilevel thresholding technique is needed to automatically determine the appropriate 

number of thresholds to extract touch blob regions from multi-touch sensing image sequences. Using 

the properties of discriminant analysis, our previous research presents an effective automatic multilevel 

thresholding technique for image segmentation [37]. This technique extends and adopts the properties 

of discriminant analysis to multilevel thresholding. By evaluating the separability using the 

discriminant criterion the number of objects, into which the image frame should be segmented, can be 

automatically determined to accordingly extract salient objects of interest. As a result, the pixel regions 
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of touch blobs can be appropriately extracted from other uninteresting objects contained in the multi-

touch sensing images. 
The proposed touch blob segmentation process is briefly described as follows. Let fi denote the 

observed occurrence frequencies (histogram) of all pixels in a given captured image I, with a given 

grayscale intensity i, and let N denote the total number of pixels in the image I, and can be given by 

0 1 1...
L

N f f f     , where L is the number of grayscale intensities in the histogram, and represents 

the brightest grayscale value, i.e., 255 in our vision system. Hence, the normalized probability 
i

P  of 

one pixel having a given grayscale intensity i can be denoted as: 

i i
P f N , where 0

i
P  , 

1

0

1
L

i

i

P




  (1)  

If the image I consists of multiple objects, it is possible to extract pixels of bright object regions 

(i.e., touch blobs in the sensing images) from those of other homogeneous object regions by 

partitioning pixels into a suitable number of classes, each of which consists of one respective 

homogenous object region. Thus, a multiple threshold set T comprised of k  thresholds, i.e.,  

T =  1,..., ,...,n kt t t  can be determined to segment pixels of the image I into k+1 homogenous pixel 

classes. These segmented pixel classes are represented by 0C  =  10,1,..., t ,…,  

n
C =  11, 2,...,

n n n
t t t   , …, 

k
C  =  1, 2,..., 1

k k
t t L   . Here, the class 

k
C  consists of pixels of 

bright blob objects of interest, that is, the finger touch blobs in the sensing images. 

This study uses several statistical measures for performing this multilevel thresholding process. The 

between-class variance, denoted by 
BC

v , an effective criterion for evaluating the results of 

segmentation, is utilized to measure the separability among all pixel classes. This criterion is expressed as: 

2

0

( ) ( )
k

BC n n T

n

v w  


 T  (2)  

where 
n

w  is the cumulative probability mass function of class 
n

C , and 
n

  denotes the mean of pixels 

in class 
n

C . The within-class variance, denoted by 
WC

v , of all segmented classes of pixels is: 

2

0

( )
k

WC n n

n

v w 


T  (3)  

The total variance 
T

v  and the overall mean 
T
  of pixels in the image I are: 

1
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1
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

  (4)  

where k  is the number of selected thresholds to segment pixels into 1k   classes, and 
n

  represents 

the standard deviation of pixels in class 
n

C . The statistical terms 
n

w , 
n

 , and 
n

  of pixels in class 
n

C  

are computed respectively as: 
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 (5)  

where a dummy threshold 0 0t   is used to simplify the expression of equation terms. 
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The aforementioned statistical measures can be used as a measure of separability, among all 

existing pixel classes, decomposed from the original image I. This study uses this concept as a criterion 

of automatic image segmentation, denoted by the ―separability factor‖ — SF , which is defined as: 

( ) 1 ( )  
BC T WC T

v v v vSF T T  (6)  

where 
T

v  is the total variance of the grayscale values of the image I and serves as the normalization 

factor in this equation. The SF  value reflects the separability among all existing classes, and the SF  

value lies within the range  0,1 . The segmentation results of homogeneous objects can be optimized 

by maximizing the SF  value. Observation of the terms comprising ( )
WC

v T  indicate that if the pixels in 

each class are broadly spread, i.e., the contribution of the class variance 2 n  is large, then the 

corresponding SF  measure becomes small. Hence, when SF  approaches 1.0, all classes of grayscale 

values decomposed from the original image I are ideally and completely separated. Previous research 

presents a detailed derivation of this property [37]. 

Using the above-mentioned statistical discriminant measure, the bright object segmentation process 

can be implemented by recursively segmenting homogeneous objects from the multi-touch sensing 

image I until the brightest objects of interest are clearly obtained, regardless of the number of existing 

objects and various illuminated conditions. This segmentation process is conducted by recursively 

thresholding the grayscale values of the image I until the SF  measure is large enough (i.e., SF  

approaches 1.0) to indicate that the appropriate discrepancy among the resulting classes of grayscale 

intensities is achieved. Thus, the bright objects of touch blobs are clearly segmented into a separate 

thresholded sensing image. Through the above mentioned properties, this objective can be reached by 

minimizing the total within-class variance ( )
WC

v T . This can be achieved by a recursive partition 

strategy that selects the pixel class with the maximal within-class variance contribution ( 2n nw ), 

denoted by pC . The bi-class partition procedure, as described in [37], is performed on each determined 

pC  into two more classes in each recursion. This partition process is recursively performed until the 

separability among all pixel classes becomes satisfactory, i.e., the SF  measure approximates a 

sufficiently large value: 


S

ThSF  (7)  

This study sets the value of the separability measure threshold 
S

Th  as 0.92 based on the 

experimental analysis in [37] to yield satisfactory object segmentation results under different 

illumination conditions. The resulting thresholded bright objects of interest, i.e., the obtained brightest 

pixel class Ck, extracted by this recursive thresholding strategy are ensured to achieve maximum 

separation. This approach achieves satisfactory segmentation results for these objects using the fewest 

recursions. Previous research provides detailed descriptions of this multilevel thresholding 

technique [37]. 

To obtain blobs of potential touching fingers from the extracted bright object plane, a  

connected-component extraction process [38] is performed on the bright object plane to label and 

locate the connected-components of the bright blobs. Extracting the connected-components reveals the 

meaningful features of the location, size, and pixel distribution associated with each touching blob. 

Figure 6(a) shows that, after performing the touching blob extraction process, the pixels of bright blobs 

are efficiently segmented into thresholded object planes from the captured sensing image in Figure 5. 
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Figure 6(b) shows the connected-components of the bright blobs obtained from Figure 6(a). The 

proposed blob tracking and touch event recognition approach analyzes and processes the blobs of 

potential touching fingers acquired in each image of video sequences captured from the vision system 

to identify possible touch events, as described in the following subsections. 

Figure 6. Results of performing the touching blob extraction process on the captured image 

in Figure 5. (a) Bright blobs extracted from Figure 5. (b) The connected-components of the 

bright blobs obtained from Figure 6(a). 

  
(a) (b) 

3.2. Blob Tracking and Touch Event Identification 

The proposed touching blob extraction method effectively obtains the blobs of the touching fingers 

in each image frame captured from the proposed sensing interface. In multi-touch applications, users 

perform various gestures by moving their fingers to issue their desired control commands. These 

gestures are mostly formed by the movements and actions of one, two, or more blobs of touching 

fingers. Since the complete features of touching gestures may not be immediately identified from 

single image frames, a tracking procedure for the blobs of touching fingers must be applied to analyze 

the information of moving blobs to recognize touching gestures from consecutive image frames. 

During the tracking process, the spatial-temporal information of moving blobs can be used to refine the 

detection results and correct the errors due to occlusions caused by noise and interference during  

the blob object segmentation process. The tracking information of blobs can be utilized to determine 

and recognize meaningful touch events, such as finger moving, rotating, pressing, hovering, and 

clicking actions. The proposed blob tracking and touch event recognition process includes two phases. 

The blob tracking phase first associates the motion of blobs in succeeding frames by analyzing their 

spatial and temporal features. The touch event recognition phase then identifies possible touch events 

based on the tracked motion information of blobs. 

3.2.1. Blob Tracking Process 

The spatial-temporal features of the blob regions of touching fingers make it possible to 

progressively refine and correct the detection results of the moving blobs by associating them in 

sequential frames. Therefore, this study presents a tracking process for analyzing the motion features 

of the detected touch blobs to address the above-mentioned problems. Moreover, the tracking 
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information of the moving blobs can be applied to the following touch event recognition process to 

determine possible touch events from the tracked motion information of the blobs. 

When the vision system initially detects the blob of a given finger, it creates a tracker to associate this 

blob with those from the same finger in subsequent frames based on their contiguous spatial-temporal 

features. The features used in the tracking process are described and defined as follows: 

(1) t

iP  denotes the ith detected touch blob appearing in tth frame captured by the sensing system 

(2) The position of the blob t

iP  employed in the tracking process is represented by its centroid, and 

can be simply computed by: 

( ) ( ) ( ) ( )
,

2 2

t t t t
t i i i i

i

l P r P t P b P
P

  
  
 

 (8)  

where ( )t

i
l P , ( )t

ir P , ( )t

i
t P , and ( )t

i
b P  denote the left, right, top, and bottom coordinates of the blob 

t

iP , respectively 

(3) The tracker t

iTP  represents the trajectory of the blob t

iP  that has been tracked in a set of 

sequential frames 1 to t, and is defined as: 

1 2, ,...,t t

i i i i
TP P P P  (9)  

(4) Let t

i
d  represent the path deviation feature of a given blob t

i
P  at the tth frame captured by the 

vision system, which is: 

2 1 2 1 1( , , ) ( , )t t t t t t t t

i i i i i i i id P P P P P P P        (10)  

where the function   is the path coherence function of t

i
P , and the vector 1t t

i iP P  reveals the 

position deviation of t

i
P  from the t − 1th frame to the tth frame. 

(5) The path coherence function   can then be determined by computing the deviation formula of 

the motion vectors 2 1t t

i iP P
   and 1t t

i iP P
  in two succeeding frames. The path coherence function   

consists of two deviation terms. The first term reveals the directional deviation formed by 2 1t t

i iP P
   

and 1t t

i iP P
 , while the second term represents the corresponding velocity deviation between them. 

This tracking process assumes that the trajectories of moving fingers are mostly smooth and plain, 

and thus their corresponding path coherences should reflect smooth motion in both directional and 

velocity deviations. The path coherence function can thus be derived and computed as: 

2 1

2 1 1

1 2 2 1 1

2 1 1

1 22 1 1

( , , )

( , ) ( , )
(1 cos ) 1 2

( , ) ( , )

1 1 2
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(11)  

(6) Hence, the path deviation of a given blob i
P  corresponding to its tracker t

iTP , denoted as 

( )t

i i
D TP , can be computed and obtained by: 
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 
1

2

n
t t

i i i

t

D TP d




   (12)  

(7) Accordingly, when m blobs are detected within a time slot of image frames, the overall tracker 

deviation function D  of the tracker sets of these m blobs can be obtained by: 

1


m

i

i

DD  (13)  

Based on the above-mentioned definitions utilized in the tracking process, the trackers formed by 

the detected touch blobs in the sequential images can be determined by minimizing the overall tracker 

deviation function D  associated with these detected blobs. Accordingly, in each recursion of the 

tracking process for a incoming frame t, the newly detected touch blobs appearing in this incoming 

frame, denoted by  1,...,t t

i
P i k P , will be analyzed and associated with the tracker sets of touch 

blobs that have already been tracked in the previous frames t − 1 and t − 2, denoted by 

 1 1 1,...,t t

j
TP j k

  TP  and  2 2 1,...,t t

j
TP j k

 
   TP , respectively. Thus, the current tracker set 

of the finger blobs tTP  can be updated by minimizing the overall tracker deviation function D  

associated with the sets of finger blobs in tP , 1tTP , and 2tTP . 

3.2.2. Touch Event Identification and Occlusion Resolution Process 

The proposed system can efficiently obtain trackers that reflect the spatial-temporal information of 

the detected finger blobs by applying the above-mentioned tracking process to the detected finger 

blobs. By analyzing the spatial-temporal information of the tracked finger blobs, the changing 

processes of the amount of finger blobs and the variation of the finger blob trajectories can reflect 

possible touching events of commands, or some occlusions of blob trackers caused by the blob 

extraction and tracking process. Such touch events may be: (1) When users press down or lift up their 

fingers, they change the number of finger blobs; (2) When users conduct a single-click or double-click 

action using their fingers, the corresponding finger blobs will quickly disappear and re-appear; (3) 

When users activate a zooming action by moving two fingers apart or close together along a straight 

line, the motion trajectories of a pair of finger blobs will form a straight line with increasing or 

decreasing distances; (4) Users may move two or more fingers close to each other for a while then split 

their fingers, or vice versa. In this case, the corresponding finger blobs might be occluded for a while 

during the blob extraction and tracking process. Using the trackers of the finger blobs t t

iTP TP  

obtained by the blob tracking process, the event analysis and occlusion resolution process can 

determine the corresponding touch events and resolve the occlusions of each finger blob tracker based 

on the spatial-temporal information of the tracked finger blobs. 

To perform the touch event analysis and occlusion resolution process on the tracked finger blobs, 

the following spatial-temporal overlapping score of two finger blobs t

iP  and t

j
P

 , detected at two 

different times t and t’, is defined as: 

 
 

( , )
( ), ( )

t t

i jt t

o i j t t

i j

A P P
S P P

Max A P A P







  (14)  

where  t t

i jA P P
  represents the area of intersection of t

iP  and t

j
P

 . 
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While the finger blobs are being tracked, the touch event analysis and occlusion resolution process 

will determine the associated possible event states based on their spatial-temporal features. In the 

proposed system, the tracked finger blobs might be in one of seven possible event states, and the touch 

event analysis and occlusion resolution process will activate different touch events or operations 

according to the given event states of the tracked finger blobs in each given period. The proposed 

system uses the following tracking event states and associated actions for the tracked finger blobs: 

(1) Update: When the number of tracked finger blobs t t

iTP TP  in the current frame is exactly 

equal to the number of those 1 1t t

j
TP

 TP  in the previous frame, then no touch event happens. In 

this case, the process simply updates the set of tracked finger blobs t t

iTP TP  in the current frame 

with the ones 1 1t t

j
TP

 TP  in the previous frame according to the updated trackers obtained by the 

blob tracking process. 

(2) Appearing / Finger Pressing-down: If the newly appearing finger blobs t t

iP P  do not match 

any 1 1t t

j
TP

 TP  in the previous period, the user may have pressed additional fingers on the panel. 

In this case, new trackers are created for these finger blobs and appended to the updated set tTP  for 

the next recursion of the blob tracking process. 

(3) Disappearing/Finger Lifting-up: Some existing trackers of finger blobs 1 1t t

j
TP

 TP  do not 

match any newly detected finger blobs t t

iP P . This situation might occur when the user lifts up 

some fingers from the panel. A tracked finger blob may temporarily disappear or become occluded 

in some frames, and will soon re-appear in subsequent frames. This can happen when the user wants 

to activate a clicking command. To prevent these finger blobs from being regarded as newly-

appearing finger blobs, the system retains their trackers through the next five frames to help identify 

possible clicking events. If a tracker of finger blob 1t

j
TP

  does not matched any finger blobs t t

iP P  

for more than five succeeding frames, then this finger blob will be determined to have disappeared 

and its tracker will be removed from the tracker set tTP  in the following frames. 

(4) Clicking Action: If a tracked finger blob 1 1t t

jTP
 TP  suddenly disappears for a short period 

(within five frames) and then quickly re-appears, or repeats this event again, in a hovering position 

within a specific area, the user may be performing a single or double clicking operation. Therefore, 

if any finger blobs t k t k

iP
 P  in the following short period of five frames (i.e., k = 0,1,…,5) 

quickly re-appear, they may successfully match 1 1t t

jTP
 TP  by the following matching condition: 

 1,t k t

o i j m
S P TP     (15)  

To identify clicking events accurately, the threshold 
m

  should have reasonable spatial-temporal 

coherences for t k

i
P

  and 1t

jTP
  to determine if they are associated with the same finger clicks. This 

study uses a value of 0.25
m
   to obtain satisfactory click event identification results. 

(5) Merging: If a detected finger blob t

iP  in the current frame matches multiple tracked finger blobs 
1t

j
TP

 , 1
1

t

j
TP


 …, 1t

j n
TP


  (Figure 7), this indicates that the user’s formerly separate fingers are 

currently touching. Therefore, the matching condition [Equation (15)] of the detected finger blob t

iP  

with the tracked finger blobs 1t

j
TP

 , 1
1

t

j
TP


 …, 1t

j n
TP


  will be respectively checked, and any tracked 

finger blobs that satisfy the matching condition will be merged into a single tracker of the renewed 
t

iTP , and the tracker set tTP  will be updated. 
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Figure 7. Illustration of a merging event. 

 

(6) Splitting: If one tracked finger blob 1t

j
TP

  in the previous frame is split into blobs t

iP , 1
t

iP …, 
t

i mP  in the current frame (Figure 8), then the user’s formerly closed fingers are becoming separated. 

Thus, the matching condition (Equation (15)) between this tracked finger blob 1 1t t

j
TP

 TP  is 

evaluated with the newly detected finger blobs t

iP , 1
t

iP …, t

i mP  that are possibly associated with the 

split fingers. If the newly detected blobs having the highest matching score 
o

S  with 1t

j
TP

  are still 

associated with the updated tracker t

jTP , the remaining newly detected blobs that match 1t

j
TP

  will 

be marked as having split from the same closed finger set and will begin their own new trackers 
t

jTP  , 1
t

jTP  …, 1
t

j mTP    in the updated tracker set tTP . 

Figure 8. Illustration of a splitting event. 

 

(7) Zooming Action: When a pair of two tracked finger blobs t

i
TP  and t

jTP  move close together, or 

move from being close together to far apart along a straight line, this may indicate the user is 

zooming out or zooming in (as depicted in Figure 9(a) and Figure 9(b), respectively). When the 

trajectories of a pair of two distant finger blobs t

i
TP  and t

jTP  move close to each other along a 

straight line and eventually result in a merging event, then a zooming out event is identified. When a 

touched blob of two fingers starts with a splitting event into a pair of two blobs t

i
TP  and t

jTP , and 

they move apart along a straight line, then a zooming in event is identified 

Figure 9. Illustrations of zooming action events. (a) Zooming out event. (b) Zooming  

in event. 

  
(a) (b) 
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After identifying the touch events based on the moving blobs in the video sequences captured from 

the proposed touch-sensing interface, the touch events are then be transformed into interactive 

commands for the corresponding computer applications, such as selecting, moving, clicking, or 

zooming some interactive objects on the display screen. 

4. Experimental Results 

This section presents several representative experiments for evaluating the performance of the 

proposed vision-based multi-touch finger detection, tracking, and event identification techniques using 

a prototype system of the proposed multi-touch sensing and display system (Figure 10).  

Figure 10. The prototype system of the proposed multi-touch sensing and display system. 

 

The proposed vision-based multi-touch sensing and display techniques were implemented on a 

2.4 GHz Pentium-IV personal computer platform. To provide better portability and maintainability for 

the proposed system, the software modules of the proposed vision-based techniques were implemented 

using C++ programming language with the Visual C++ 2008 development environment. By releasing 

the source code project associated with the software modules, the proposed vision-based techniques 

can be conveniently distributed and migrated onto different hardware platforms (such as ARM-based 

platforms) with various operating systems (such as Linux, Android, and Windows Mobile). Thus, the 

application developers can easily implement and design many customized multi-touch interactive 

application systems under various hardware platforms and software environments. The frame rate of 

the vision system is approximately 30 frames per second, and the resolution of each frame of captured 

image sequences is 640 pixels by 480 pixels per frame. An experimental set of several multi-touch 

sensing videos captured in various illumination conditions and application environments was adopted 

to evaluate the system’s finger detection and touch event identification. This experimental set consists 

of five experimental video sequences with a total of 16,841 captured frames and 1,113 desired 

interactive touch events in various conditions. 

To evaluate the performance of the proposed vision-based multi-touch detection and tracking 

technique, Figures 11–15 exhibit the most representative experimental samples of touch sensing videos 

with different numbers of finger touches, various actions, and different illumination conditions. These 
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figures indicate newly-detected touch fingers as green circles, while the tracked touch fingers are 

labeled as red circles, and their movements are drawn as red trajectories. Figures 11 and 12 show two 

usual multi-touch processing sequences with one or two touch finger at a time. The snapshots of the 

detection and tracking results in this figure show that the proposed vision-based technique correctly 

detected and tracked almost all of the moving finger touches.  

Figure 11. Touch finger detection and tracking results of the proposed system in Test 

sequence 1. (a) 19th frame. (b) 26th frame. (c) 30th frame. (d) 33rd frame. (e) 226th frame.  

(f) 233rd frame. (g) 235th frame. (h) 243rd frame. (i) 676th frame. (j) 696th frame. (k) 706th 

frame. (l) 725th frame. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

Figure 12. Touch finger detection and tracking results of the proposed system in Test 

sequence 2. (a) 187th frame. (b) 193rd frame. (c) 195th frame. (d) 200th frame. (e) 479th 

frame. (f) 486th frame. (g) 493rd frame. (h) 503rd frame. (i) 1607th frame. (j) 1615th frame. 

(k) 1625th frame. (l) 1645th frame. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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Figure 12. Cont. 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

Figure 13. Touch finger detection and tracking results of the proposed system in Test 

sequence 3. (a) 33rd frame. (b) 35th frame. (c) 38th frame. (d) 41st frame. (e) 152nd frame.  

(f) 164th frame. (g) 166th frame. (h) 174th frame. (i) 2139th frame. (j) 2148th frame.  

(k) 2156th frame. (l) 2170th frame. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 

(i) 

 

(j) 

 

(k) 

 

(l) 
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Figure 14. Touch finger detection and tracking results of the proposed system in Test 

sequence 4. (a) 168th frame. (b) 170th frame. (c) 174th frame. (d) 178th frame. (e) 216th 

frame. (f) 267th frame. (g) 476th frame. (h) 535th frame. (i) 861st frame. (j) 902nd frame.  

(k) 808th frame. (l) 855th frame. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

Figure 15. Touch finger detection and tracking results of the proposed system in Test 

sequence 5. (a) 427th frame. (b) 475th frame. (c) 3063rd frame. (d) 3121st frame. (e) 518th 

frame. (f) 569th frame. (g) 727th frame. (h) 783rd frame. (i) 785th frame. (j) 858th frame.  

(k) 221st frame. (l) 307th frame. 

(a) (b) (c) (d) 

(e) (f) (g) (h) 
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Figure 15. Cont. 

(i) (j) (k) (l) 

 

The experimental samples in Figures 13–15 evaluate the detection and tracking results for more 

complicated multi-touch experimental scenes. The snapshots of the results in these figures show that 

although multiple touch fingers simultaneously move in different directions, perform various complex 

movements and actions, and sometimes these fingers move very close to each other, the proposed 

vision-based technique successfully detects and tracks most of finger movements. 

This study adopts the Jaccard coefficient [39] as a detection score for the quantitative evaluation of 

touch finger detection performance. This score has been frequently used for evaluating performance in 

information retrieval. This measure is defined as: 

p

p p n

T
J

T F F


 
 (16)  

where pT  (true positives) represents the number of correctly detected touch fingers, pF  (false 

positives) represents the number of falsely detected touch fingers, and 
n

F  (false negatives) is the 

number of missed touch fingers. The Jaccard coefficient J for the touch finger detection results of each 

frame of the touch-sensing image sequences were determined by manually counting the number of 

correctly detected touch fingers, falsely detected touch fingers, and missed detections of touch fingers 

in each frame. The average value of the Jaccard coefficients J was then obtained from all frames of the 

captured video sequences using: 

N
J J N  (17)  

where N is the total number of video frames. The ground-truth of detected touch fingers was acquired 

by manual counting. Table 1 shows the results of the quantitative evaluation of the proposed approach 

on touch finger detection.  

Table 1. Experimental data of the proposed approach on touch finger detection performance. 

Test sequence No. of frames 
No. of touch fingers 

appeared in each frame 
Detection Score J 

Test sequence 1 3,327 2,941 96.9% 

Test sequence 2 3,330 5,662 96.2% 

Test sequence 3 3,319 9,756 94.6% 

Test sequence 4 3,510 6,879 98.7% 

Test sequence 5 3,355 7,504 98.1% 

Average Detection Score J 96.9% 

Total number of frames 16,841 
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This table clearly shows that the proposed approach provides high detection accuracy on touch 

fingers, and can thus provide efficient multi-touch sensing results that accurately reflect the user’s 

interactive commands. 

In addition to evaluating the detection accuracy of the touch fingers of the proposed vision-based 

technique on single frames, this study evaluates the identification performance of touch events based on the 

spatial-temporal features of the finger blobs detected and tracked in consecutive image frames. Manually 

analyzing and discriminating the touch events appearing in the five test sequences shows that there are 

1,113 discernible touch events of possible interactive gesture commands, including finger moving, clicking, 

and zooming action events (Table 2). These 1,113 touch events were adopted to evaluate the multi-touch 

event identification performance of the proposed vision-based technique. Table 2 reports the experimental 

data on multi-touch event identification performance, showing that the average event identification rate 

of the proposed vision-based technique is approximately 96.41%. This demonstrates that the proposed 

technique can provide highly accurate multi-touch event identification. Thus, interactive gesture 

commands can be correctly and appropriately generated for various multi-touch applications. 

Table 2. Experimental data of the proposed technique on multi-touch event identification 

performance. 

Test sequence No. of events Event type 
No. of individual 

events 

No. of miss-detected 

events 
Accuracy rate 

Test Sample 1 59 Move 59 2 96.6% 

Test Sample 2 161 

Move 83 4 95.1% 

Zoom in 41 2 95.1% 

Zoom out 37 1 97.3% 

Test Sample 3 400 

Move 306 13 95.8% 

Zoom in 42 2 95.2% 

Zoom out 52 2 96.1% 

Test Sample 4 259 

Move 66 2 96.9% 

Zoom in 54 2 96.3% 

Zoom out 54 2 96.3% 

Click 85 2 97.6% 

Test Sample 5 234 

Move 132 4 96.9% 

Zoom in 48 1 97.9% 

Zoom out 54 1 98.1% 

Overall 1,113 1,113 40 96.41% 

 

The identified finger touch events can further be transformed into interactive commands for various 

applications. Figure 16 depicts an experimental scenario on running a puzzle game application using 

the proposed multi-touch sensing and display system. In this example, the user applied hands and 

fingers to select, move, or rotate objects (puzzle pieces) to complete a puzzle. Figure 17 shows another 

example of the application scenario using the Google Maps application on the proposed multi-touch 

sensing and display system. In this example, the user utilized two fingers to move and scale the map 

views, and the map views of the Google Maps are accordingly zoomed out and zoomed in [Figure 17(a) 

and Figure 17(b), respectively]. 
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Figure 16. Example of performing the object selecting and moving commands on a puzzle 

game application using the proposed multi-touch sensing and display system. (a) Selecting 

objects. (b) Moving and rotating objects. 

  
(a) (b) 

Figure 17. Example of performing the zooming in and zooming out commands on a 

Google Maps application using the proposed multi-touch sensing and display system.  

(a) Zooming out. (b) Zooming in. 

  
(a) (b) 

The computation time required to process one captured frame depends on the complexity of the 

touch command in the frame. Most of the computation time is spent on the connected-component 

analysis and touch blob tracking process. For an input video sequence with 640 × 480 pixels per frame, 

the proposed vision-based multi-touch sensing system requires an average of 12.2 milliseconds 

processing time per frame. This frugal computation cost ensures that the proposed system can 

effectively meet the requirements of real-time processing at over 80 frames per second. The  

above-mentioned experimental results of our numerous real tests on many different application 

scenarios and conditions on multi-touch sensing confirm that the proposed system can provide fast, 

real-time, and effective finger touch detection, tracking, and event identification for human-computer 

interactive applications. In our experimental analysis of the prototype system, the software modules of 

the proposed vision-based multi-touch sensing and display techniques only costs less than 5.0% of the 

CPU computational usage on average, and about 8,640 Kbytes of memory resource. These economic 

costs of computation and memory resources can efficiently provide the interactive multi-touch 

interfaces for many simultaneously executed software applications (such as the puzzle game and 

Google map applications demonstrated in Figure 16 and Figure 17). Thus, the proposed vision-based 
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techniques can also be easily migrated and applied on embedded platforms for many consumer 

electronic products. 

5. Conclusions 

This study proposes a low-cost and efficient multi-touch sensing and display framework based on 

vision-based multi-touch finger detection, tracking, and event identification techniques and a low-cost 

hardware framework. The proposed multi-touch sensing and display system adopts a fast bright-blob 

segmentation process using automatic multilevel histogram thresholding to extract touch blob pixels 

formed by scattered infrared lights in the image sequences acquired by a video camera. This blob 

segmentation process approach is robust to the various ambient lighting conditions and spurious 

infrared noises that may appear in multi-touch sensing devices. The proposed system applies a 

connected-component analysis procedure to these segmented bright pixels to identify the connected 

components of touch finger blobs. The proposed blob tracking and event identification process 

analyzes the spatial-temporal information of these touch blobs in terms of consecutive captured frames, 

refines the detection results, and corrects errors and occlusions, and accordingly identifies possible 

touch events and actions. The proposed blob tracking and touch event identification process can 

efficiently determine meaningful touch events (such as finger moving, rotating, pressing, hovering, and 

clicking actions) by the analyzing spatial-temporal features of touch blobs in successive frames. The 

experiments in this study implement the proposed vision-based multi-touch finger detection, tracking, 

and event identification techniques on a low-cost hardware framework, forming a practical multi-touch 

sensing and display system. Experimental results in various application scenarios and operational 

conditions demonstrate that the proposed vision-based multi-touch sensing and display framework 

achieves fast, real-time, and effective finger touch detection, tracking, and event identification for 

many practical human-computer interactive applications and environments. 

Regarding to the further researches on the vision-based multi-touch sensing and display systems, an 

extension to a large-scale and high-resolution multi-touch sensing and display system is desirable for 

extensive interactive applications. However, this extension will require much more computational 

costs and resources for achieving real-time operation performance on exploiting and processing large 

volumes of sensing video data, as well as the demand on guaranteeing high precision capabilities of the 

multi-touch finger detection, tracking, and event identification functions. In this aspect, further 

improvements and developments of the proposed system on the computational efficiency can be 

achieved by taking advantage of the computational power of the graphic processing units (GPU) [40,41]. 

Thus, the detection, tracking, and event identification processes of the large number of touch fingers 

and the associated large-scale sensing and display areas can be efficiently computed via the parallel 

processes executed on the GPUs. 
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