
Vision Based Fuzzy Control Autonomous Landing with UAVs: From

V-REP to Real Experiments

Miguel A. Olivares-Mendez∗ and Somasundar Kannan∗ and Holger Voos∗

Abstract— This paper is focused on the design of a vision
based control approach for the autonomous landing task
of Vertical Take-off and Landing (VTOL) Unmanned Aerial
Vehicles (UAVs). Here is presented the setup of a simulated
environment developed in V-REP connected to ROS, and its
uses for tuning a vision based control approach. In this work,
a Fuzzy control approach was proposed to command the UAV’s
vertical, longitudinal, lateral and orientation velocities. The
UAV’s pose estimation was done based on a vision algorithm
and the knowledge of the landing target. Real experiments with
a quadrotor landing in a moving platform are also presented.

Index Terms— Unmanned aerial vehicles, fuzzy control, vi-
sion based control, autonomous navigation.

I. INTRODUCTION

Simulation environments are always an important design

tool in research, specially in the specific field of robotics.

First we will discuss a few relevant tools tools with the

advantages and disadvantages. The Webots [1] is one of the

most sought about, but free versions are unavailable. The

Matlab based Robotics Toolbox by Peter Corke [2] is recom-

mendable to understand many robotics control problems and

its vision based on outer control loop. The disadvantage of

this approach is that there is no direct way to use what is im-

plemented in the toolbox with a real robot. This is something

that was solved with ROS [3]. The Robot Operative System

provides an open source framework to develop packages to

interactive with real sensors, actuators, robots, etc, using a

publisher/subscriber system for the communication between

them. The main advantage of this pseudo-operative system,

is that is easy to use, to develop new packages and to

communicate with existing packages. This framework comes

with a 3D simulation environment called Gazebo 3D [4].

The main advantage of this software is that all the packages

(algorithms, control, etc) used in the virtual world of Gazebo,

can be used with minor changes in the real version of the

simulated robot. This fact implies an enormous reduction of

time in the software implementation part of any research.

The disadvantage of the Gazebo simulator is that it requires

heavy computational capabilities. An alternative environment

for 3D simulation is the software developed by Coppelia

Robotics, the Virtual Robotics Experimentation Platform (V-

REP) [5]. Compared to Gazebo, this software can be installed

and run without a powerful graphic card and does not

required a powerful CPU. The V-REP comes with a large

number of robots, sensors and actuators models, and several

∗Automation Research Group. Interdisciplinary Centre for
Security, Reliability and Trust (SnT), University of Lux-
embourg. 6, Rue Coudenhove-Kalergi, L-1359, Luxembourg
miguel.olivaresmendez@uni.lu

structures to create a virtual world. It also allows us to

interact with the virtual environment during the simulation

running time. An important advantage of this software is the

bridge with ROS [6], allowing to use everything developed in

the previously mentioned framework. All these characteris-

tics make the V-REP and the connection with ROS the ideal

platform to learn, teach, perform research and developed with

robots.

This work focuses on the vision based control system of a

quadrotor in the simulated environment to be used later with

a real aircraft. A specific task of autonomous landing on a

moving target with a quadrotor has been defined to test the

V-REP and ROS connection. There are many visual servoing

applications present in the literature. Different vision-based

algorithms have been used to follow a car from a UAV

[7], [8],[9]. Visual terrain following (TF) methods have been

developed for a Vertical Take Of and Landing (VTOL) UAV

[10]. In [11] a description of a vision-based algorithm to

follow and land on a moving platform and other related

tasks are proposed. A cooperative strategy has been presented

in [12] for multiple UAVs to pursuit a moving target in

an adversarial environment. The low-altitude road following

problem for UAV using computer vision technology was

addressed in [13]. People following method with Parallel

Tracking and Mapping (PTAM) algorithm has been devel-

oped in [14]. Contrary to the above discussed research,

the autonomous landing approach presented in this work is

based on the control of the lateral, longitudinal,, vertical, and

heading velocities of the quadrotor to modify its position to

land on a predefined platform.

The work presented in this paper is based on the authors’

previous works [15], [16]. In the first of these previous works

the authors shows the tuning process of the fuzzy control

system and the tests done in the simulation environment of

the autonomous landing on a static and moving platform.

Here in this paper the authors extend this work with real

experiments. In the second of these works the authors present

a tuning process of the fuzzy control system, simulation tests

and real experiments of a tracking process of different static

objects on a wall. Here in this work the authors extend this

work by the tracking of a moving object, as well as the

autonomous landing on a static and moving platforms.

The outline of this paper is structured in the following

way. Section II presents the simulation environment. Section

III explains the vision algorithm and fuzzy control approach.

In Section IV we discuss the V-REP simulation and then the

experiments done with a quadrotor and a ground vehicle.

Section V will discuss the conclusions and the future work.



II. SIMULATION ENVIRONMENT

Here we briefly discuss the simulation environment of V-

REP. The V-REP presents an easy and intuitive environment

to create your own virtual system and include any of the

robots that are provided, as well as objects, structures,

actuators and sensors. It also allows to create your own

robot by adding actuators, joints, sensors and basic forms.

An example of a V-REP environment is shown in Figure

1. On the left side of the environment there is a list of

robots, sensors, actuators, structures, etc that could be easily

include in the simulation scene by drag and drop (model

browser). In the next column, there is the scene hierarchy,

where all the robots, sensors, graphs and structures of the

current scene are represented. A script based on LUA script

could be associated to each sensor and robot to interact with

them, inside the V-REP environment of from the outside (e.g.

C++ code or from a ROS package). The central window

could be divided in one or more views, we divided it in

four views, two external cameras (top and back), and the

representation of the velocities and the position of the UAV.

More detailed information about this robotics experimental

platform is found in the V-REP official site. The V-REP

comes with a quadrotor model which will be used for the

simulation purpose here.

Fig. 1. Capture frame of the V-REP environment.

III. VISION BASED FUZZY CONTROL APPROACH

A. Vision Algorithm

The purpose of the vision algorithm is to obtain the

position of the landing platform. With this information, the

control system approach has to be able to command the UAV

to center landing platform in the image, orientate it, and

approximate it to the landing platform. The vision algorithm

is not the principal purpose of this work, for this reason we

use a visual algorithm based on the detection, recognition,

and processing of augmented reality (AR) markers or codes.

The idea is to have a moving landing platform with a code

printed on it. Based on a markers database, the camera

calibration parameters, and the size of the code, the algorithm

is able to estimate the pose of the camera (quadrotor) respect

to the marker, that is the orientation of the camera (the

quadrotor) in the three axis, the distance between the camera

(the quadrotor) and the code, as well as the lateral and

vertical displacement versus the center of the marker. The

developed ROS package for the visual algorithm is the

adaptation to ROS of the ArUco software [17], a developed

C++ library of augmented reality that uses OpenCV. It is

an improved Hamming Code based algorithm with an error

detection.

The ArUco-ROS package, called aruco eye is subscribed

(that is the ROS method to get information shared by other

packages) to the specific image streaming publisher from the

camera (real or virtual). The current frame is processed and

the extracted information is sent by a publisher defined for

this purpose.

To use this package with the virtual camera and a real one

it is needed to include the camera calibration and the specific

topic’s name in the location where the camera published

the images. This could be done by the command line or

configuring a roslaunch file. To do the tests in the virtual

environment a panel with one of the ArUco codes added as

a texture is included, as it is shown in the Figure 2. In the

real world the codes where printed and paste into a wall.

Fig. 2. Virtual image captured by the virtual camera on the UAV and
processed using the ArUco ROS package.

The image processing algorithm consists of estimation of

the distance between the ArUco target code and the UAV in

the three axis (longitudinal, lateral and vertical distances), as

it is shown in the Figure 3.

Fig. 3. Explanation of the image processing algorithm.

The developed ROS package presented in this section and

some examples of how to use it, are available online [18].



Fig. 4. Control loop of the Fuzzy control system approach for moving object tracking and autonomous landing.

B. Fuzzy Control

The autonomous landing task defined in this work is based

on the capability of the quadrotor to change its position

to land over the moving landing platform. The UAV must

center itself to the landing platform, and once centered it

must start to descend. To solve this task a control system ap-

proach was designed using four fuzzy controllers working in

parallel. The longitudinal and lateral speed controllers keep

the UAV positioning to have the moving landing platform

in the center of the image. The vertical speed controller

approximates the UAV to the landing platform. The heading

controller modifies the heading of the UAV to have the lading

platform well oriented. The longitudinal, lateral, and heading

velocity controllers have been designed as a fuzzy PID-like

controller, with three inputs and one output. The vertical

speed controller is just a simple fuzzy PD-like controller.

The longitudinal, lateral, and vertical speed controllers have

as outputs velocity commands in meters per seconds, and for

the heading velocity controller is degrees per seconds. Figure

4 shows the control loop of the control system approach

implemented for this work.

All the controllers were defined in a simply way, with

just three sets per each input, and five sets for the output,

defined using triangular functions, that means that the rules’

base is composed just with 27 rules for the longitudinal,

lateral and heading velocity controllers and 9 rules for the

vertical speed controller. The defuzzification method used is

the height weight and the inference motor is the product. The

rule base was defined based on the heuristic information of

the relation of the three inputs. In the longitudinal and lateral

speed controllers were taken into account the current pitch

and roll angles of the UAV in the information obtained by

the vision algorithm for the estimation of the translation in

x and y axis respected to the moving landing platform.

The Tables I, II, III show the initial definition of the rule

base.

To implement the fuzzy controllers in the ROS environ-

ment a new ROS package was developed called MOFS-

ROS. This ROS package is the adaptation to ROS of the

own developed C++ library MOFS (Miguel Olivares’ Fuzzy

Dot/error Left Zero Right

Negative Left Zero Right

Zero Zero Right Right

Positive Right Right Big Right

TABLE I

BASE OF RULES WITH VALUE FOR THE THIRD INPUT (INTEGRAL OF THE

ERROR) EQUAL TO NEGATIVE, BEFORE THE MANUAL TUNNING PROCESS

Dot/error Left Zero Right

Negative Left Zero Zero

Zero Left Zero Right

Positive Zero Zero Right

TABLE II

BASE OF RULES WITH VALUE FOR THE THIRD INPUT (INTEGRAL OF THE

ERROR) EQUAL TO ZERO, BEFORE THE MANUAL TUNNING PROCESS

Dot/error Left Zero Right

Negative Big Left Left Left

Zero Left Left Zero

Positive Left Zero Right

TABLE III

BASE OF RULES WITH VALUE FOR THE THIRD INPUT (INTEGRAL OF THE

ERROR) EQUAL TO POSITIVE, BEFORE THE MANUAL TUNNING PROCESS

Software) [19]. As well as the C++ library, this new ROS

package (MOFS-ROS) allows to implement fuzzy controllers

in an easy way, loading the specific characteristics of the

controller and the rule base from two different txt files. This

package interacts with the roscore and other packages by a

service, that provides a new output each time that new inputs

were received by the common subscriber/publisher ROS’

communication policy. The specification of the subscriber

and the publisher is done by a parameter in the rosrun

command line or by a roslaunch file.

This ROS package allows to create new fuzzy controllers

using triangular or trapezoidal membership functions, the

product or the maximum inference motor and the height

weight defuzzification method. Extended possibilities will

be included in the next versions of this ROS package. More

detailed information of this software is found in [20] in where



Fig. 5. Interaction between all the actives processes from V-REP and ROS
during the simulator tests.

is explained the C++ library version.

An extra ROS package was developed to put across the

information from the visual algorithm, to the fuzzy control

system. This package is also in charge of sending the con-

trollers’ output to the virtual or real quadrotor. This package

receives two different names, when it is used with the virtual

quadrotor is called VREP VC (VREP visual control), and

(visual control system). This package is the only one that has

to be modified depending the UAV to be used, the number

of controllers to use, and the error’s signals to control.

In this way the ArUco-ROS package and the MOFS-ROS

package is kept without significant changes to be used with

the virtual or the real environment, or either for future control

approaches. This package also contains some extra process

when a real AR.Drone quadrotor is in use. This process is

called emergency ardrone control, and it allows to send basic

commands to take off, land, and to do an emergency stop to

the AR.Drone. Through this process the user can also select

the specific ArUco code to set as a target.

All the developed ROS packages presented in this section

and some examples of how to use them are available online

[18].

IV. EXPERIMENTS

A. V-REP Tests

1) Tuning Process: The simulation environment was set

by a quadrotor with a looking forward camera, and a panel

with one ArUCo code, as it is shown in Figure 6. The

location of the quadrotor is set to have a two meters step

signal when it starts to work.

A complete scheme of all the processes involved in the

simulation environment is shown in Figure 5. Where vrep

is the V-REP simulator environment, explained in section II,

aruco eye is the process of the vision algorithm explained

in section III, the flcLatSp, flcLongSp, and flcVerticalSp are

the fuzzy controllers for the lateral, longitudinal and vertical

speed respectively, and flcOrientSp (explained in section III).

The vrep VC is the process that shares the visual information

to the control system and send the control commands to the

virtual quadrotor in the V-REP. The rosbag is an internal

ROS package to store some data of each test. Finally, the

rosout is the core of the ROS system.

During the manual tuning process, the range of the vari-

ables are first adapted and then the output of some specific

rules. The V-REP simulation environment and in conjunction

Fig. 6. V-REP environment design with a quadrotor and the ArUco code.

with ROS and the developed ROS’ packages allow to test the

controllers and to modify the different characteristics of the

controllers easily. Because of the big similarities between

the lateral, longitudinal, and heading controllers, the tuning

process is applied to one of the three controllers, and then the

results are used in the others. The tunning process is defined

by the response of the lateral speed controller responding

against a 2 meters step signal. First, the inputs’ range have

to be adjusted. The Figure 7 shows the response of some of

the different configuration tested for the range of the inputs.

It is started with the initial controller explained in section

III, represented as MF1 with the blue line in Figure 7. Then

several modifications are tested on the range of the inputs

and the output, some of them are shown in the mentioned

Figure as MF2, MF3, MF4, being the last one (represented

by the green line) the one that gets a better response. The

variables definition of the three controllers is shown in Figure

8.

Fig. 7. Response of the different lateral speed controllers during the tunning
phase of the inputs’ range adjustment.

Based on this controller, tuning process it is continued with

the adaptation of the rules’ base. In this phase the output of

few rules were modified to reduce the overshoot presented in

the response of the best controller obtained in the previous

phase (the MF4). Also for this phase the test is the same than

in the previous phase, a step signal of 2 meters. The Figure

9 shows the behavior of some of the controllers tested. The

behavior of the different controllers tested are quite similar



Fig. 8. Final design of the variables of the fuzzy controller after the manual
tuning process.

unless one of them, that reduces completely the overshoot

presented in the others (Rules4). The Tables IV, V, VI show

the final state of the rule base after the manual tuning process.

Fromm the initial base of rules presented in section III-B,

10 output’s rules were changed.

Fig. 9. Response of the different lateral speed controllers during the tunning
phase of the rules’ base adaptation.

Dot/error Left Zero Right

Negative Big Left Left Right

Zero Left Zero Right

Positive Right Right Big Right

TABLE IV

BASE OF RULES WITH VALUE FOR THE THIRD INPUT (INTEGRAL OF THE

ERROR) EQUAL TO NEGATIVE, AFTER THE MANUAL TUNNING PROCESS

Once the lateral speed controller is tuned, this information

is used to set the other controllers, the longitudinal, vertical,

Dot/error Left Zero Right

Negative Left Left Zero

Zero Left Zero Right

Positive Zero Right Right

TABLE V

BASE OF RULES WITH VALUE FOR THE THIRD INPUT (INTEGRAL OF THE

ERROR) EQUAL TO ZERO, AFTER THE MANUAL TUNNING PROCESS

Dot/error Left Zero Right

Negative Big Left Left Left

Zero Left Zero Right

Positive Left Right Big Right

TABLE VI

BASE OF RULES WITH VALUE FOR THE THIRD INPUT (INTEGRAL OF THE

ERROR) EQUAL TO POSITIVE, AFTER THE MANUAL TUNNING PROCESS

and heading velocities. An adaptation to degrees (inputs),

and degrees per seconds (output) was done for the heading

controller.

2) Autonomous Landing Tests: Once the four controllers

are obtained, they can be used all together to control the

virtual quadrotor in the specific task of autonomous landing.

Two different test are defined. In the first one, the landing

platform is static, and in the second one it change its

position in the plane x,y and turn over the z axis. In both

cases the code is located over a ground robot, to be easy

to configure the movements of the landing platform. The

initial position of the quadrotor is the same in both cases,

8.0 meters of altitude, and a displacement of 1.6 and 0.9

meters respect to the landing platform for the x,y axis of the

quadrotor respectively. The vertical velocity controller has

the constraint of not to act until the error in the x and y axis

of the QR are reduced under 0.5 meters. This is an strategy

to reduce the potential disturbances created by the action of

the descend of the Quadrotor.

The behavior of the control system approach was evaluated

using the root mean square error (RMSE) during both tests.

The Table VII shows the RMSE values for the longitudinal,

lateral and heading velocities controllers.

Controller Static Platform Moving Platform

type (RMSE value) (RMSE value) units

Longitudinal 0.5346 0.4615 meters

Lateral 0.3661 0.3777 meters

Heading 3.9029 4.3728 degrees

TABLE VII

ROOT MEAN SQUARE ERROR FOR THE LONGITUDINAL, LATERAL AND

HEADING VELOCITIES CONTROLLERS IN THE TWO TESTS PRESENTED.

The videos related to the tests presented in this section are

available online [21].

B. Real Tests

For the evaluation of the behavior of the control system

approach an experimental environment was set using a real

quadrotor and a ground vehicle. The quadrotor used was the

AR.Drone parrot [22]. The UAV was modified to have the



looking forward camera in downward direction. The ground

vehicle used was a youbot-kuka [23]. The youbot’s robotic

arm was removed to install a helipad as is shown in Figure

10. It was composed by three different ARuCo codes with

different sizes, to be seen by the UAV at different distances.

The ground vehicle was commanded with a smart phone

based on movements measured by the internal gyroscopes.

The omnidirectional wheels of this ground robot allow to

move the platform in all the direction possibles in the ground

plane, as well as change the orientation at any time.

Fig. 10. Omnidirectional moving landing platform based on a Kuka youbot
robot with three ARuCo’s codes.

Two different type of tests were defined. The first one was

defined to test the behavior of the control system to track

the moving platform form a fixed altitude of 4.0 meters. The

second one was defined to evaluate the control system to do

an autonomous landing from an altitude of 3.5 meters.

In the case of the tracking the helipad, the vertical speed

controller was set to keep the UAV at a predefined altitude

from the helipad. The other controllers work in parallel to

keep the platform in the center of the the image, and with

the desire orientation. The Figure 11 shows the evolution of

the control system for the vertical, lateral and longitudinal

controllers. The Figure 12 shows the performance of the

heading controller during this test. In this Figure is also

shown a big orientation change in the moving platform in

the first half of the test.

Fig. 11. Evolution of the error of the lateral, longitudinal and vertical
controllers during one of the experiments of tracking the moving helipad.

Fig. 12. Evolution of the error of the heading controller during one of the
experiments of tracking the moving helipad.

The Table VIII shows the root means squared error

(RMSE) of the different control inputs of the control sys-

tem approach for two different tracking a moving platform

experiments. The Experiment #1 corresponds to Figures

11, 12. In both experiments the helipad platform was in

continuous movements during the almost 2 minutes of the

tests. The RMSE values of the mentioned table shown the

good behavior of the control system approach for the tracking

experiments, with a average value in the two experiments of

0.51915 meters for the lateral velocity controller, 0.17815

meters for the longitudinal velocity controller, 8.18005 de-

grees for the heading controller, and 0.3945 meters for the

vertical velocity controller.

Controller Experiment #1 Experiment #2

type (RMSE value) (RMSE value) units

Longitudinal 0.1876 0.1687 meters

Lateral 0.6664 0.3719 meters

Heading 7.8555 8.5046 degrees

Vertical 0.3726 0.4164 meters

TABLE VIII

ROOT MEAN SQUARE ERROR FOR THE LONGITUDINAL, LATERAL,

VERTICAL AND HEADING VELOCITIES CONTROLLERS IN THE TWO

EXPERIMENTS DONE DURING THE TRACKING OF A MOVING PLATFORM.

For the autonomous landing on a moving platform exper-

iments a constraint for the vertical velocity controller was

included. This controller is not going to act until the error’s

absolute value for the lateral and longitudinal controller

is smaller than 0.2 meters. This constraint is included to

compensate the reduction of the field caused by the reduction

in the altitude. The finalization of the landing task is done

when the measured altitude between the UAV and moving

helipad is smaller than 0.4 meters. In this moment, and when

the previous mentioned constraint happens, the UAV reduce

gradually the speed of the motors (trust torque) and lands. A

small tracking phase is also included at the beginning of the

test. The landing phase is activated by a keyboard through

one of the developed ROS packages previously mentioned.

Figures 13, 14 show the evolution of the control system

of the lateral, longitudinal and vertical velocities for the

first mentioned Figure, and the heading controller for the



second mentioned Figure. In this last Figure is shown how

the initial orientation of the UAV is turned more than 60

degrees respect to the desire orientation. In the Figure 13 is

shown the tracking phase and the landing phase, as well as

the exactly moment when the control system stop to work

at the altitude of 0.4 meters.

Fig. 13. Evolution of the error of the lateral, longitudinal and vertical
controllers during one of the experiments of autonomous landing on the
moving helipad.

Fig. 14. Evolution of the error of the heading controller during one of the
experiments of autonomous landing on the moving helipad.

The Table VIII shows the root means squared error

(RMSE) of the different control inputs of the control system

approach for the tracking a moving platform experiments.

The performance of the vertical controller is not shown be-

cause, the measure of the error between the current altitude of

the UAV and the desire altitude position, that means 0 meters,

is not going to be 0 until the end of the experiment, when the

UAV is landed. The Figures 13, 14 represent the behavior of

the experiment #3. It is the most representative because of

the big difference in the heading desire position. The RMSE

values of the mentioned table shown the good behavior of

the control system approach for the autonomous landing

experiments, with a average value in the three experiments

of 0.51915 meters for the lateral velocity controller, 0.3091

meters for the longitudinal velocity controller, and 14.2572

degrees for the heading controller. It has to be taken into

account that the big difference between the average value of

the heading controller in this kind of test and the previous one

is because of the previously mentioned error at the starting

point of the test.

Controller Experiment #1 Experiment #2 Experiment #3

type (RMSE value) (RMSE value) (RMSE value) units

Longitudinal 0.2199 0.3708 0.3368 meters

Lateral 0.6984 0.3989 0.4524 meters

Heading 7.1984 7.7271 27.8461 degrees

TABLE IX

ROOT MEAN SQUARE ERROR FOR THE LONGITUDINAL, LATERAL AND

HEADING VELOCITIES CONTROLLERS IN THE TWO EXPERIMENTS DONE

DURING THE LANDING ON A MOVING PLATFORM.

All the videos related to these experiments are available

online [24] [21].

V. CONCLUSIONS

In this paper is presented the use of the V-REP simula-

tion environment in connection to the Robotics Operative

System (ROS) for the design and tuning of a Fuzzy control

approach for the complete control of a UAV based on visual

information. The selected tasks to do the tuning and test this

control approach were the object tracking and autonomous

landing, both with moving targets. A vision algorithm based

on augmented reality codes was used to estimated the pose

of the UAV. The presented control approach was composed

by four Fuzzy controllers working in parallel to manage the

lateral, longitudinal, vertical and heading velocities of the

UAV. The control approach was designed to keep the center

of the moving platform in the center of the image, with a

predefined orientation. The vertical controller was designed

to keep the UAV at a predefined distance for the tracking

experiments, and to land on the moving platform for the

landing task. The control tuning process was implemented

in a simulated environment using V-REP and ROS, as well

as some simulated tests for the tracking and the autonomous

landing tasks. The evaluation of the control approach was

done in an indoor environment with a quadrotor and a ground

vehicle equipped with omnidirectional wheels, as the moving

landing platform. Two different kind of real experiments

were presented, one for tracking the moving target from a

fixed altitude, and another for the landing on it. In both cases

the control system accomplished successfully a set of tests.

The evaluation of the performance of the control system was

presented by the RMSE values of a set of experiments.

The future work is focus in two different kind of test,

on one hand to do a more precise evaluation of the control

approach using a motion capture system, and on the other

hand to test the system in outdoor environment. After that,

the authors will focus their effort to estimate the pose of

the UAV without using augmented reality codes, keeping in

mind the assumptions of GPS-denied environments.

ACKNOWLEDGMENT

The authors would like to thanks Jan Dentler, Arun An-

naiyan and Raphael Hinger from the Automation Research

Group of the SnT - University of Luxembourg, for their

support in the experimental tests.



REFERENCES

[1] Webots official site. http://www.cyberbotics.com, 2014.
[2] Peter corke’s robotics toolbox for matlab.

http://petercorke.com/Robotics Toolbox.html, 2014.
[3] Robot operating system (ros). http://ros.org, 2014.
[4] Gazebo 3d simulator. http://ros.org/wiki/gazebo, 2014.
[5] Coppelia robotics. virtual robotics experimentation platform (v-rep).

http://www.vrep.org, 2014.
[6] Wiki site of the ros bridge with v-rep.

http://wiki.ros.org/vrep ros bridge, 2014.
[7] P. Campoy, J. F. Correa, I. Mondragón, C. Martı́nez, M. A. Olivares,

L. Mejı́as, and J. Artieda. Computer vision onboard uavs for civilian
tasks. Journal of Intelligent and Robotic Systems, pages 105–135,
2009.

[8] W. Ding, Z. Gong, S. Xie, and H. Zou. Real-time vision-based object
tracking from a moving platform in the air. In Intelligent Robots and

Systems, 2006 IEEE/RSJ International Conference on, pages 681–685,
2006.

[9] Celine Teuliere, Laurent Eck, and Eric Marchand. Chasing a moving
target from a flying uav. In IEEE/RSJ International Conference on

Intelligent Robots and Systems, IROS2011, pages 4929–4934, 2011.
[10] F. Ruffier and N. Franceschini. Visually guided micro-aerial vehicle:

automatic take off, terrain following, landing and wind reaction. In
Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE

International Conference on, pages 2339–2346, 2004.
[11] D. Lee, T. Ryan, and H.J. Kim. Autonomous landing of a vtol uav on a

moving platform using image-based visual servoing. In Robotics and

Automation (ICRA), 2012 IEEE International Conference on, pages
971–976, 2012.

[12] U. Zengin and A. Dogan. Cooperative target pursuit by multiple uavs
in an adversarial environment. Robotics and Autonomous Systems,
pages 1049–1059, 2011.

[13] Joseph Egbert and Randal W. Beard. Low-altitude road following
using strap-down cameras on miniature air vehicles. Mechatronics,
pages 831–843, 2011.

[14] G. Rodrı́guez-Canosa, S. Thomas, J. del Cerro, A. Barrientos, and
B. MacDonald. A real-time method to detect and track moving objects
(datmo) from unmanned aerial vehicles (uavs) using a single camera.
Remote Sensing, pages 1090–1111, 2012.

[15] Miguel A. Olivares Mendez, S. Kannan, and H. Voos. V-rep & ros
testbed for design, test, and tuning of a quadrotor vision based fuzzy
control system for autonomous landing. In IMAV 2014: International

Micro Air Vehicle Conference and Competition 2014, August 2014.
[16] Miguel A. Olivares Mendez, S. Kannan, and H. Voos. Setting up a

testbed for uav vision based control using v-rep amp; ros: A case study
on aerial visual inspection. In Unmanned Aircraft Systems (ICUAS),

2014 International Conference on, pages 447–458, May 2014.
[17] S. Garrido-Jurado, R. Munoz-Salinas, F.J. Madrid-Cuevas, and M.J.

Marin-Jimenez. Automatic generation and detection of highly reliable
fiducial markers under occlusion. Pattern Recognition, 47(6):2280 –
2292, 2014.

[18] Miguel angel olivares-mendez snt homepage, 2014.
[19] M.A. Olivares-Mendez, P. Campoy, C. Martinez, and I. Mondragon.

A pan-tilt camera fuzzy vision controller on an unmanned aerial ve-
hicle. In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ

International Conference on, pages 2879–2884, Oct.
[20] I. Mondragón, M. A. Olivares-Méndez, P. Campoy, C. Martı́nez, and

L. Mejias. Unmanned aerial vehicles uavs attitude, height, motion
estimation and control using visual systems. Autonomous Robots,
29:17–34, 2010. 10.1007/s10514-010-9183-2.

[21] Youtube channel of the automation research group at snt-
university of luxembourg: Automation research group snt.uni.lu.
https://www.youtube.com/channel/UCBkpapz06ViwK cztjwqCAQ
, 2014.

[22] Ar.drone parrot. http://ardrone.parrot.com, 2013.
[23] Kuka youbot robot official site, 2014.
[24] Isruav project homepage of the automation re-

search group at snt - university of luxembourg.
http://wwwen.uni.lu/snt/research/automation research group/
projects/isruav, 2014.


