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Vision-Based Global Localization and Mapping
for Mobile Robots
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Abstract—We have previously developed a mobile robot system
which uses scale-invariant visual landmarks to localize and simul-
taneously build three-dimensional (3-D) maps of unmodified envi-
ronments. In this paper, we examine global localization, where the
robot localizes itself globally, without any prior location estimate.
This is achieved by matching distinctive visual landmarks in the
current frame to a database map. A Hough transform approach
and a RANSAC approach for global localization are compared,
showing that RANSAC is much more efficient for matching spe-
cific features, but much worse for matching nonspecific features.
Moreover, robust global localization can be achieved by matching
a small submap of the local region built from multiple frames.
This submap alignment algorithm for global localization can be
applied to map building, which can be regarded as alignment of
multiple 3-D submaps. A global minimization procedure is car-
ried out using the loop closure constraint to avoid the effects of
slippage and drift accumulation. Landmark uncertainty is taken
into account in the submap alignment and the global minimization
process. Experiments show that global localization can be achieved
accurately using the scale-invariant landmarks. Our approach of
pairwise submap alignment with backward correction in a consis-
tent manner produces a better global 3-D map.

Index Terms—Global localization, map building, mobile robots,
visual landmarks.

I. INTRODUCTION

W
E HAVE previously proposed a vision-based SLAM (Si-

multaneous Localization And Mapping) algorithm [25]

by tracking SIFT (Scale-Invariant Feature Transform) natural

landmarks and building a three-dimensional (3-D) map simul-

taneously on our mobile robot equipped with Triclops1, a trinoc-

ular stereo system.

Our previous algorithm builds a 3-D map continuously

without maintaining the local image data, and hence does not

allow backward correction. Therefore, it may have problems

when long-term drifts occur and the robot closes the loop, i.e.,

returns to a previously mapped area.

In this paper, we consider global localization as a place recog-

nition problem, by matching the SIFT features detected in the
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current frame to the pre-built SIFT database map. A Hough

transform approach and a RANSAC approach are described and

compared. Moreover, we improve the robustness of global local-

ization by building submaps from multiple frames and using the

submaps to align with the database map.

Instead of building a map continuously, we build multiple

3-D submaps which are subsequently merged together. We

align them by applying our submap alignment approach used

in global localization. In global localization, we are interested

in the alignment only, but for map building, we also merge

the input submaps. By aligning and merging submaps, we can

improve the accuracy and efficiency of 3-D map construction.

When the robot returns to a previously mapped area, our

framework of building and aligning multiple overlapping

submaps allows backward correction between submaps in

a consistent manner, even though we do not keep the local

image data. We attribute the accumulated discrepancy to all

the submap alignments, as errors have gathered over time.

This loop closure constraint helps avoid the effects of error

accumulation so that we can obtain a better global 3-D map.

The main contributions of this paper are: the use of distinc-

tive visual SIFT features for localization and 3-D mapping,

global localization using the Hough transform and RANSAC

for matching groups of descriptors to a global map, and the

backward correction of map alignment parameters taking into

account uncertainty. The global localization and backward

correction algorithms are also applicable to other methods that

produce maps of point features with independent dense local

descriptors.

Section II gives a brief literature survey on mobile robot lo-

calization and mapping. Section III overviews SIFT features,

stereo matching and map building of our SLAM algorithm. The

global localization algorithms based on the Hough transform

and RANSAC are presented in Section IV with a comparison

of computational costs. Map alignment for global localization

using multiple frames is described in Section V. Map building by

pairwise and incremental submap alignment is proposed in Sec-

tion VI. Section VII describes the global minimization frame-

work for backward correction taking into account the landmark

uncertainty. Finally, we conclude and discuss some future work

in Section VIII.

II. PREVIOUS WORK

A. Localization

There are two types of localization: local and global. Local

techniques aim at compensating for odometry errors during

robot navigation. They require that the initial location of the

1552–3098/$20.00 © 2005 IEEE
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robot be approximately known. Global techniques can localize

a robot without any prior knowledge about its position, i.e., they

can handle the kidnapped robot problem, in which a robot is

transported to some unknown location without any information

about the motion. Global localization techniques are more

powerful than local ones and allow the robot to recover from

serious positioning errors.

Thrun et al. [29] developed the museum tour-guide robot

MINERVA that employs EM to learn its map and Markov local-

ization with camera mosaics of the ceiling in addition to the laser

scan occupancy map. The Monte Carlo Localization method

based on the CONDENSATION algorithm was proposed in [8].

Given a visual map of the ceiling, it localizes the robot glob-

ally using a scalar brightness measurement. These probabilistic

methods use sensor information of low feature specificity in

a two-dimensional (2-D) plane and require the robot to move

around for the probabilities to gradually converge toward a peak,

whereas our approach makes use of highly distinctive visual in-

formation and allows instant global localization.

Thrun et al. [30] developed a real-time algorithm combining

the strengths of the EM and incremental algorithms. Their

approach computes the full posterior over robot poses to de-

termine the most likely pose. When closing cycles, backward

correction is computed from the difference between the in-

cremental guess and the full posterior guess. Baltzakis and

Trahanias [2] presented an EM-based iterative approach for

building feature maps by extracting lines and corners from

laser data. Their global localization algorithm assigns Kalman

tracks to multiple hypotheses about the robot state while letting

discrete dynamics handle probabilistic relations among them.

There are previous approaches in which appearance-based

models are learnt from many images and then images are rec-

ognized subsequently for mobile robot navigation. Hayet et al.

[12] extracted and recognized visual landmarks for mobile robot

navigation. Planar quadrangular landmarks are extracted from

images and homography rectification is applied to obtain an

invariant representation for the principal component analysis

(PCA) learning stage. Kosecka et al. [14] employed gradient

orientation histograms to capture the essential appearance in-

formation. A Learning Vector Quantization technique is applied

to obtain sparser representations by selecting prototype vectors

which best cover the class. During the recognition phase, new

images are classified using a nearest neighbor test.

Some appearance-based works also compute robot pose.

Sim and Dudek [26] learnt natural visual features for pose

estimation. PCA is used to match landmarks which are sets

of image thumbnails detected in the learning phase, for each

robot grid position. Cobzas and Zhang [7] used a panoramic

image-based model for robot localization. The panoramic

model is constructed with depth and 3-D planarity information,

while the matching is based on planar patches. Krose et al.

[15] used panoramic images for probabilistic appearance-based

robot localization. PCA is applied to hundreds of training im-

ages to extract the 15-dimensional feature vectors for Markov

localization. These appearance-based methods differ from our

approach as they require many more training images from a

complete sample of positions.

B. Map-Building

The general approach of map building is to incrementally in-

tegrate new data into the map. When each new frame is obtained,

it is aligned to a cumulative global map [1]. The resulting map

may become inconsistent as different parts of the map are up-

dated independently.

Smith et al. [27] developed the stochastic map, which con-

tains estimates of the spatial relationships, their uncertainties

and their inter-dependencies. The Kalman Filter is applied to

the state vector consisting of the robot position as well as all the

features in the map and the covariance matrix containing all the

cross-covariances between the features. However, the computa-

tional complexity is where is the number of features

in the environment.

This is similar to bundle adjustment [32] in the photogram-

metry and computer vision literature which refines a visual re-

construction to produce jointly optimal structure and viewing

parameters. This is a large sparse geometric parameter estima-

tion problem and all the structure and camera parameters are

adjusted together in one bundle.

C. Alignment

Lu and Milios [20] presented a 2-D laser scan alignment batch

algorithm which aligns frames of sensor data to obtain a con-

sistent map. They maintain all the local data together with their

estimated poses so that inconsistency can be resolved later. Spa-

tial relationships between local frames are obtained by matching

pairwise laser scans and then the maximum likelihood criterion

is applied to optimally combine all the spatial relations.

There has been a considerable amount of recent work on

submap decomposition as a computationally efficient approach

to large-scale SLAM. These submap-based approaches to map-

ping vary in how map fusion and map transition are tackled.

Leonard and Feder [18] proposed decoupled stochastic map-

ping by representing the environment in terms of multiple glob-

ally-referenced submaps. Techniques are developed to transfer

vehicle state estimate information from one submap to another

as it transitions between map regions. Williams et al. [33] de-

veloped the constrained local submap filter that creates an inde-

pendent local submap of the features in the immediate vicinity,

which is periodically fused into the global map. A large number

of observations can then be fused in a single step.

Tardos et al. [28] proposed sequential map joining that

builds a sequence of independent limited-size stochastic maps

and joins them in a globally consistent way; their method can

handle loop closure. Leonard and Newman [17] developed a

new efficient algorithm that achieves consistency, convergence,

and constant-time update with multiple submaps, while as-

suming known data association.

One of the appealing aspects of a hybrid metrical/topological

approach to mapping and localization [5], [6] is that uncertain

state estimates need not be referenced to a single global refer-

ence frame. Gutmann and Konolige [10] proposed a real-time

method to reconstruct consistent global maps from dense laser

range data. The techniques of scan matching, consistent pose

estimation and map correlation are integrated for incrementally

building maps, finding topological relations and closing loops.
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Fig. 1. Images for global localization experiments showing stereo matched SIFT landmarks, where the lines indicate the disparities (longer lines indicate closer
features). (a) Case L2. (b) Case L4. (c) Case L6. (d) Case L8.

Bosse et al. [4] proposed a hybrid approach by using a graph

where each vertex represents a local frame (a local environment

map) and each edge represents the transformation between ad-

jacent frames. Loop closing is achieved via an efficient map

matching algorithm. Kuipers et al. [16] presented a hybrid ex-

tension to the spatial semantic hierarchy, using metrical SLAM

methods to build local maps of small-scale space while topo-

logical methods are used to represent the structure of large-scale

space. Their method creates a set of topological map hypotheses

and can handle multiple nested large-scale loops.

Our approach also makes use of submaps, but differs from

these works as we build 3-D submaps and our map also allows

global localization to recover from localization failure.

III. SIMULTANEOUS LOCALIZATION AND MAPPING

Our vision-based mobile robot localization and mapping

system uses SIFT visual landmarks in unmodified environments

[25]. By keeping the SIFT landmarks in a database, we track the

landmarks over time and build a 3-D map of the environment,

and use these 3-D landmarks for localization at the same time.

A. SIFT Features

SIFT was developed by Lowe [19] for image feature gener-

ation in object recognition. The features are invariant to image

translation, scaling, and rotation, and are not sensitive to illumi-

nation changes and affine/perspective projection. These charac-

teristics make them suitable landmarks for robust SLAM, since

landmarks are observed over time from different angles, dis-

tances, or under different illumination when mobile robots move

around in an environment. A subpixel image location, scale, and

orientation are associated with each SIFT feature.

Previous approaches to feature detection, such as the widely

used Harris corner detector [11], are sensitive to the scale of an

image and therefore are not suited to building a map that can be

matched from a range of robot positions. There has been con-

siderable recent research on developing affine-invariant features

[21], [24], but they have reduced stability to nonextreme affine

changes compared to our features and have a much higher com-

putational cost for detection. Recently a performance evaluation

of various local descriptors [22] showed that SIFT feature de-

scriptors perform best among them.

B. SIFT Stereo

In our Triclops system, we have three images at each frame.

In addition to the epipolar constraint and disparity constraint,

we also employ the SIFT scale and orientation constraints for

matching the right and left images. These resulting matches are

then matched with the top image in the same manner. We can

then compute the 3-D world coordinates relative to the robot for

each feature. They can subsequently serve as landmarks for map

building and tracking. Fig. 1 shows the stereo matched SIFT

landmarks in some typical lab images of resolution 320 240.

C. Map-Building

To build a map, we need to know how the robot has moved

between frames in order to put the landmarks together coher-

ently. The robot odometry can only give a rough estimate and it
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Fig. 2. Bird’s eye view of the SIFT 3-D map showing the global localization
results with the RANSAC approach. The “V”s indicate the robot field of view
for the images in Fig. 1.

is prone to error. To find matches in the second view, the odom-

etry allows us to predict the region to search for each match

more efficiently.

Once the SIFT features are matched, we can use the matches

in a least-squares procedure to compute a more accurate ego-

motion and hence better localization. This will also help adjust

the SIFT landmark coordinates for map building.

We track the SIFT landmarks and build a 3-D map while the

robot moves around in our lab environment. Fig. 2 shows the

bird’s eye view of the map after 435 frames and there are 2783

SIFT landmarks in the database. The system currently runs at

2 Hz on a Pentium III 700 MHz processor. Readers are referred

to [25] for further details.

IV. GLOBAL LOCALIZATION

For the kidnapped robot problem, the robot needs to detect

that it has been kidnapped and then carries out global localiza-

tion. Failing to track sufficient features indicates that the robot

may be kidnapped or the environment has changed significantly

and that global localization is required.

Global localization is similar to a recognition problem where

the robot tries to match the current view to a previously built

map. The SIFT features used here were originally designed for

object recognition purposes, therefore these visual landmarks

are very suitable for global localization.

A. Local Image Characteristics

In order to recognize where the robot is, sufficiently distinc-

tive features are required to identify scenes in the map. We use

the highly specific feature vector obtained from the local image

region [19]. The local and multi-scale nature of the features

makes them insensitive to noise, clutter, and occlusion, while

the detailed local image properties make them highly selective

for matching to large databases.

Lowe’s object recognition application used a feature vector

computed from 8 orientations, each sampled over 4 4 grid of

locations, so the total number of samples for each SIFT key is

128. For our application our experimental comparison of dif-

ferent sample sizes showed that a smaller vector is sufficiently

discriminating in our environment. We use 4 orientations, each

sampled over a 2 2 grid of locations, to reduce computation

time. The total number of samples in each SIFT key vector is

now 4 2 2 or 16 elements.

Using this local image vector metric, we can simply compute

the Euclidean distance measure between the vectors of two fea-

tures to check whether they are below a matching threshold.

Stereo matching and frame-to-frame matching are based on

the scale and orientation only to avoid extra computational

burden, as consistent results can be obtained without further

information.

The following sections describe two alternative methods for

finding consistent sets of matches: the Hough transform and

RANSAC. Their properties will be compared in later sections.

B. Hough Transform Approach

Given a set of current SIFT features and a set of SIFT land-

marks in the database, we search for the robot position that

would have brought the largest number of landmarks into close

alignment, treating global localization as a search problem.

The Hough transform [13] with a 3-D discretized search

space is used,where is the sideways translation,

is the forward translation and is the orientation. The algorithm

is as follows:

• For each SIFT feature in the current frame, find the set of

potential SIFT landmarks in the database that match,

using the local image vector and the height above the

ground plane as the preliminary constraints.

• For each of the potential matches, compute all the possible

poses and place a vote in the corresponding Hough bins.

Votes are placed in multiple bins as robot pose cannot be

uniquely determined from just one match.

• Votes are also placed in the neighboring bins within the

uncertainty region based on the landmark covariance.

• Select the top poses and carry out least-squares mini-

mization with outlier removal to obtain pose estimates.

• Select the pose with maximum number of matches. This

corresponds to a robot pose which can best match the most

features to the database.

C. RANSAC Approach

Global localization is performed by finding the robot pose

supported by the most landmarks. This can be alternatively for-

mulated as a hypothesis testing problem, where multiple pose

hypotheses are considered and the best one corresponds to the

pose which can match the most features in the current frame to

the database.

RANSAC [9] has been used in many applications for model

fitting, hypothesis testing and outlier removal. We employ

RANSAC for global localization to test the pose hypotheses

and find the inlier landmarks.
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1) Tentative Matches: First, we create a list of tentative

matches from the features in the current frame to the landmarks

in the database. For each feature in the current frame, we find

the landmark in the database which is closest in terms of the

local image vector and has similar height.

2) Computing the Alignment: Next, we randomly select two

tentative matches from the list and compute the alignment pa-

rameters from them. Two tentative matches are re-

quired in this case, since for each match, we can obtain 2 equa-

tions with 3 unknowns

(1)

(2)

where is the landmark position in the database

and is the feature position in the current frame in

camera coordinates. With two matches, and , we have

(3)

(4)

where .

If the two tentative matches are correct, the distance between

two landmarks is invariant for this Euclidean transformation,

so the following constraint is applied to each sample selection:

. This efficiently eliminates many samples

containing wrong matches from further consideration.

Solving (3) and (4), we obtain

and substituting this into (1) and (2) gives an alignment.

3) Seeking Support: Now we check all the tentative matches

which support this particular pose .

First, we compute the landmark position for each match

relative to this pose

and then compute the image position and disparity

for this landmark at this pose.

Match supports this pose if and are close to

the measured image position and disparity for the

feature in the current frame, i.e., and

and (currently ).

4) Hypothesis With Most Support: The random selection,

alignment computation and support seeking steps are repeated

times. The pose with most support is our hypothesis. We then

proceed with least-squares minimization for the inliers that sup-

port this hypothesis and obtain a better estimate for the pose.

Using this new pose estimate, we proceed with another least-

squares minimization if more matches or lower least-squares

error can be obtained.

The probability of a good sample for RANSAC [23] is given

by

(5)

where is the contamination ratio (ratio of false matches to total

matches), is the sample size and is the number of sam-

ples required. Recent work by Tordoff and Murray [31] showed

that, in practice, this stopping condition usually underestimates

the number of iterations required unless a guided sampling ap-

proach is employed. We will utilize the random sampling ap-

proach for the following analysis.

D. Experimental Results

Using the database map built earlier covering a 10 m by 10 m

area, we test the robot by placing it at various positions and let it

localize itself globally. Both approaches give similarly good re-

sults. The following results are obtained using

the RANSAC approach % :

Measured pose is the ground truth measured manually. The

average Euclidean translation error is 7 cm and the average ro-

tation error is around 1 for these 8 cases. These errors could be

further reduced by using higher image resolution but they are

sufficient for our navigation requirement.

We currently set a minimum of 10 matches for a reliable es-

timation. Fig. 1 shows some of the test images for these cases

while Fig. 2 shows these results visually, indicating the robot

location and orientation relative to the database map.

Global localization can fail when the robot is facing some

landmarks which were previously viewed from very different

directions during map building. Therefore, landmarks all over

the environment should be observed from multiple views during

map building, to obtain a richer database map.

E. Comparison

We would like to compare the computational efficiency of

these two approaches of global localization using SIFT features,

i.e., the Hough transform versus RANSAC. Moreover, we also

compare with the cost of the Hough transform and RANSAC

approaches using nonspecific features. The following run-time

results are based on a Pentium III 700 MHz processor.

1) Hough Transform With SIFT: In this approach, for each

of the potential matches, we need to vote for multiple robot

poses that could have observed this landmark. Let be the pose

computation time for one potential match for all features in the

current frame at all orientations. As we find the best matches

for each feature, the pose computation takes .

Assume that it takes to find the highest peak in the Hough

space and do least-squares fitting with outlier removal. We can

simply go through the bins times, so the time required is

. Part of this time can be saved by maintaining the top

bins during the voting process. There is some overhead of as

well and the total time taken is . With
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, the total time

taken is around 0.725 s.

2) Hough Transform With Nonspecific Features: In this

case, we do not have any feature specificity, so we need to con-

sider all possible matches between the current frame features

and the database landmarks. The computational cost is linear

to the number of landmarks in the database and the total time

taken is: s.

3) RANSAC With SIFT: For the RANSAC approach, the

computational cost is affected greatly by how many times we

need to sample, which depends on the contamination ratio.

With and where is the number of features

in the current frame and is the number of correct matches, we

can re-write (5) as:

(6)

using Taylor’s expansion as an approximation.

For each random selection, we need to check the support from

all the tentative matches, so the time required is where

is the time to check for support from tentative matches and

is a fixed overhead. Therefore, the total cost is

where is the time to create the list of tentative matches.

In our case, , the total

time is therefore . Assuming

a contamination ratio of 0.70, to achieve 99% probability of a

good sample, is 50 and the time is around 0.02 s. RANSAC

is much more efficient than the Hough transform when SIFT

features are used.

4) RANSAC With Nonspecific Features: When nonspecific

features are used, we need to consider all the possible matches

between the current frame and the database landmarks. The con-

tamination ratio now is significantly higher, as the

number of all possible matches is where is the number

of landmarks in the database. Therefore, the number of samples

required in this case is given by:

using Taylor’s expansion and (6).

For each random selection, we need to check support from all

possible matches, i.e., from matches. The time required now

is . It is no longer necessary to create the tentative

match list, so the total cost is . The computation

time increases very rapidly, by the cube of the database size.

The time required when is

s. The contamination ratio

now is 0.999 88, making extremely large.

5) Discussion: The computation time for the two ap-

proaches are compared in Fig. 3 which shows that RANSAC is

more efficient for distinctive features (low contamination ratio),

whereas the Hough transform is more efficient for nonspecific

features (high contamination ratio). Using SIFT features is

much more efficient than using nonspecific features for both

approaches.

The graph assumes that the feature extraction cost is constant

for all contamination ratios. SIFT feature extraction only takes

Fig. 3. Effect of contamination ratio on computation time of the Hough
transform and RANSAC.

slightly more time than the extraction of nonspecific features,

hence the advantage of having a more discriminating descriptor

outweighs the cost of calculating the image metrics.

SIFT features and nonspecific features are the two extremes

of feature distinctiveness. There are features in between which

offer some specificity such as lines and color corners. There-

fore, the complexity trade-off between RANSAC and the Hough

transform depends on the particular application and how specific

the features are.

Apart from the higher computational cost when less specific

features are used, global localization is more difficult to achieve

when only using information from one frame, as multiple

possible robot poses may not be reliably differentiated. For

the brightness measurements in [8], stochastic localization

methods are required to localize the robot gradually while it

moves around.

V. MAP ALIGNMENT

When the robot is facing a scene with very few SIFT land-

marks, it might not be able to localize itself globally using just

the current frame. To achieve more robustness, we can build a

small submap of a local region from multiple frames instead and

then align this submap to the database map.

To align two maps, we employ an algorithm very similar to

global localization above. Either the Hough transform approach

or the RANSAC approach can be applied, but we consider the

RANSAC approach here due to its efficiency when used with

SIFT features. It is basically the same as in global localization,

except that during the support seeking stage we now use the

world positions of the landmarks to check for support, instead

of the image coordinates.

In this experiment, when the robot wants to localize itself

globally, it rotates a little bit, from 15 degrees to 15 degrees

and builds a submap of this local region using information from

multiple frames. Fig. 4 shows the various submaps built at sev-

eral test positions. There are 411 landmarks, 207 landmarks,

383 landmarks and 270 landmarks in the submaps respectively.
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Fig. 4. Submaps built at test positions. (a) Case M1. (b) Case M2. (c) Case
M3. (d) Case M4.

Fig. 5. Global localization by map alignment.

There are significantly more landmarks than in just one frame,

typically around 70. Despite the stability and repeatability of

SIFT features, the submaps contain some spurious landmarks

while they are built over multiple frames.

Map alignment using RANSAC is then carried out between

these submaps and the database map, and we obtain the fol-

lowing results :

We can see that very good alignments are obtained with many

matches in all cases. These global localization results are shown

visually in Fig. 5. If only the current frame is used for global

localization here, there are insufficient matches for a reliable

estimate in cases M2 and M4.

Fig. 6. Map built without taking into account slippage occurrences.

VI. BUILDING SUBMAPS

For map building in large environments over time, there are

considerable errors possible due to poor image matching (such

as featureless walls or someone walking in front of the camera)

and long-term drifts. To correct these errors, we can build mul-

tiple 3-D submaps, which are then aligned and merged together.

Fig. 6 shows the map built without taking into account poorly

matched regions where some parts of the map are skewed. Three

rotational slippages of around 5 degrees clockwise each are in-

tentionally added at 90, 180, and 270 degrees robot orienta-

tion. By detecting the regions without sufficient matches, we

can preferentially divide the map at those points so that the map

alignment process can then fix the problem.

Let be a function which returns the number of matches

between the current frame and the database given the current

odometry position . When an unreliable matching occurs, the

number of matches will be low at but significantly higher at a

nearby position (for a small ). The condition is therefore

where is a threshold and denotes “significantly higher.”

The second condition is necessary, as the first condition can be

satisfied even when someone is blocking the camera view.

To cater for the effect of discontinuity in map building, we can

simply estimate the robot pose based on the current frame as in

global localization, and use it to correct the odometry for subse-

quent frames. However, we employ an alternative method which

starts building a new map from scratch whenever a discontinuity

is detected. Afterwards, all the submaps are aligned and com-

bined to obtain a complete map. This approach is more robust

as the discontinuity estimation is based on submap to submap

alignment rather than frame to map alignment and hence more

information can be utilized.

Using this method, we have obtained four submaps in this

case, as shown in Fig. 7, due to the three slippages. They are in
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Fig. 7. Separate submaps are built due to slippage occurrences.

different coordinates now, since the submap coordinates are the

robot coordinates at the initial position for each submap.

To avoid long-term drifts over time, this division can be

done on a regular basis even if no discontinuity is detected,

by building submaps every frames as described in Sec-

tion VII-B.

A. Pairwise Alignment

Using our map alignment algorithm in Section V, we can align

two submaps together, provided there is some overlap. Since

we terminate building the previous submap and then initiate

building the current submap immediately, the last frame of the

previous submap overlaps substantially with the first frame of

the current submap, therefore some overlapping landmarks al-

most certainly exist. In global localization, we are interested in

the alignment only, but for map building, we also merge the two

input submaps together to obtain a combined map.

For pairwise alignment, we align each consecutive pair of

submaps, and combine them based on the transformation from

submap 1 to submap 2, from submap 2 to submap 3, and from

submap 3 to submap 4.

In the map alignment algorithm, we assume no positional in-

formation nor odometry information of the robot, but just use

the two input submaps, which contain highly specific informa-

tion about the 3-D landmarks in the environments. Therefore,

we can align the submaps correctly irrespective of the slippages.

Fig. 8(a) shows the pairwise alignment results where the map is

much better and unskewed. Submaps 1, 2, 3, and 4 occupy the

top right, bottom right, bottom left and top left portions of the

map, respectively.

B. Incremental Alignment

For incremental alignment, we align and combine submaps 1

and 2 to obtain a new map, and then align this new map with

Fig. 8. (a) Pairwise alignment map for submaps in Fig. 7, with the submap
composition indicated. (b) Incremental alignment map for submaps in Fig. 7.

submap 3 to obtain a new map, and so on. Fig. 8(b) shows the

incremental alignment result and it looks very similar to the pair-

wise alignment result.

In pairwise alignment, the alignment of the current submap

depends only on the single previous submap, but in incremental

alignment, the alignment of the current submap depends on all

the previous submaps covering that region.

When submap 4 is aligned in this case, its landmarks are

matched with those in submap 3 as well as those in submap 1,

since we have rotated one revolution. On careful comparison of

Fig. 8(a) and (b), we can see that submap 4 has been pulled in a

little bit toward submap 1 in Fig. 8(b).

Pairwise alignment and incremental alignment results are the

same if each submap overlaps only with the previous submap,

but different if the robot closes the loop.

VII. CLOSING THE LOOP

Closing the loop means revisiting a previously observed

scene. It can be detected by checking if there is a significant

overlap of landmarks between the current submap and the initial

submap. When detected, we can find out the accumulated error

over time and determine a correction, which should be spread

out throughout each intermediate alignment because errors have

gathered over time. We employ a global minimization strategy

to do backward correction to all the submap alignments.

A. Global Minimization

The submaps should be kept individually but not merged

together to allow subsequent backward correction. The in-

cremental alignment requires merging the previous submaps

before the next alignment. Therefore, we apply the pairwise

alignment to each consecutive pair of submaps to find the

pairwise alignment. All the submaps are merged together at

the end after the backward correction step has adjusted all the

alignments.

For submaps where submap closes the loop, i.e.,

submap goes back to the scene observed by submap 1 in the

beginning, we firstly find the pairwise alignments as before. We

also find the pairwise alignment between submap and submap

1, and obtain transformations in total. Let denote the coor-

dinate transformation for aligning submap to submap ,

or submap to submap 1 when equals .
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For a perfect alignment, we have the following constraint:

(7)

where is a 3 3 identity matrix.

During the pairwise alignment, each is obtained indepen-

dently from the least-squares minimization of the inlier matches

between submap and submap . To enforce the constraint

given by (7), we set up a matrix consisting of this constraint as

well as all the local pairwise alignments. We then minimize this

to obtain alignments which can best satisfy this constraint glob-

ally but still conform to the local constraints due to the pairwise

alignments.

We employ Newton’s method which computes a vector of

corrections to be subtracted from the current estimate, i.e., the

pairwise alignment estimate. Given a vector of error measure-

ments between the expected position of the SIFT landmarks

and the matched position observed, and the deviation from our

global constraint, we would like to solve for that would elim-

inate this error. Based on the assumption of local linearity, the

effect of each parameter correction on an error measurement

will be multiplied by the partial derivative of the error with

respect to that parameter. Therefore, we would like to solve for

in where is the Jacobian matrix .

Each row of this matrix equation states that one measured

error should be equal to the sum of all the changes in that error

resulting from the parameter corrections. If all these constraints

can be simultaneously satisfied, then the error will be reduced

to zero after subtracting the corrections.

If there are more error measurements than parameters (in

this case as there are 3 parameters for each alignment), this

system of equations is overdetermined, and we will find a that

minimizes . This minimization is achieved by solving

(8)

assuming the original nonlinear function is locally linear over

the range of typical errors.

To include the constraint in (7) into our framework, we ex-

pand the matrix equation into several scalar equations

where are the alignment parameters from submap

to submap , or submap to submap 1 when equals .

We can obtain three independent scalar constraints to minimize

These three constraints will correspond to the RHS of the

first three rows of our matrix. Let be the number of matches

between submap and submap . For each of the local

pairwise alignments, we augment our matrix system with

rows as we need one row for the X error and one row for the Z

error for each match. Let the th landmark at of submap

be matched with of submap , we have

where .

is a by matrix whose th row is

The computation of these partial derivatives is done analyti-

cally based on the above. Once and are determined, we

can compute and and then can solve (8) for the cor-

rection terms .

For the experiments carried out, the pairwise alignment is

good enough so that a single iteration is sufficient. In general,

this correction can be repeated if necessary, by using the current

corrected estimate for the next iteration.

B. Landmark Uncertainty

While the submaps are built, a covariance matrix for each 3-D

landmark is kept [25]. Therefore, we can incorporate this infor-

mation into the pairwise alignment as well as into the backward

correction procedure.

During pairwise alignment, we take into account the covari-

ances of the matching 3-D landmarks and employ a weighted

least-squares minimization instead. This will also give us the

covariance of the pairwise alignments.

The weighted least-squares equation is given by

(9)

where is a diagonal matrix consisting of the inverse of the

standard deviation of the measurements, assuming that land-

marks are independent. The covariance of the solution is given

by .

For our global minimization, we can compute the covariance

of the three scalar constraints from the uncertainty of each pair-

wise alignment based on first order error propagation [3]

Each of these three rows is also multiplied by the total number

of submaps we are aligning, so that they contribute the appro-

priate weights. We also have the covariance matrix information

for each 3-D landmark for the rest of the matrix. We can then

carry out a weighted least-squares minimization on the whole

matrix, as in (9).
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Fig. 9. Submaps built every 30 frames.

For the experiment above, we compute the product of all the

pairwise alignments obtained originally, i.e.,

which corresponds to a (5.45 cm, 8.85 cm) translational

and 2.8 degrees rotational misalignment. For the weighted

least-squares pairwise alignment, the misalignment becomes

(3.00 cm, 5.92 cm, 0.43 deg).

This is better because, by taking into account the uncertainty

of the matching landmarks, we can trust the more reliable

landmarks more, whereas previously each landmark is trusted

equally. The misalignment is further improved to (0.15 cm,

0.37 cm, 0.03 deg) for the weighted least-squares alignment

with backward correction. We can now trust the more reliable

pairwise alignment more since not all the pairwise alignment

estimates are equally reliable.

The whole process is fast and it only takes 0.12 s on a Pentium

III 700 MHz processor, excluding file I/O time. Each RANSAC

pairwise alignment takes around 0.03 s to align submaps with

several hundred landmarks each, and the global minimization

takes less than 0.01 s.

The complexity of our approach increases by the square of

the number of submaps, not by the square of the number of

landmarks. Even if we do not have the pairwise alignments as

the initial estimate but start with a zero vector, it still converges

to the same result within 10 iterations for our experiments.

To avoid drift accumulation, we can build a new submap

every frames (in this case ) and combine the

submaps together afterwards using this weighted least-squares

approach. Fig. 9 shows the 4 submaps, each of them con-

structed from 30 frames. The pairwise alignment result has

a misalignment of (0.40 cm, 7.48 cm, 7.35 deg), but with

the backward correction, the misalignment is reduced to just

(0.23 cm, 1.59 cm, 0.45 deg).

Fig. 10. Bird’s eye view of 3-D map resulting from backward correction
alignment with weighted least-squares for submaps in Fig. 9, showing the
uncertainty ellipses of the landmarks. Note that the smallest ellipses represent
the most reliable landmarks.

Uncertainty for the SIFT landmarks is propagated to the

resulting map, as shown in Fig. 10. The uncertainty ellipsoids

of the 3-D landmarks are projected as ellipses in the bird’s eye

view. The error ellipses represent one standard deviation of

error. Uncertainty for landmarks closer to the robot tend to be

lower, as expected for landmarks with larger disparities.

VIII. CONCLUSION

In our previous SLAM work [25], we built a database map

with distinctive SIFT landmarks, and they were shown to be

good natural landmarks for tracking and localization over time.

In this paper, we proposed a Hough transform approach and a

RANSAC approach for global localization, demonstrating that

the robot can globally localize itself well using highly specific

SIFT features. We then investigated the computational costs of

these two approaches and found that RANSAC is much more

efficient than the Hough transform for matching distinctive fea-

tures, whereas RANSAC is significantly worse for matching

nonspecific features. Experiments show that global localization

can be achieved with just the current frame data in feature-rich

environments, thanks to the distinctive SIFT features.

Our use of distinctive visual features eliminates the data as-

sociation problems commonly seen in other methods that use

corners or lines for mapping. An individual SIFT feature is al-

ready specific, so a combined set of them is very distinctive

and serves as a type of location fingerprint. The current local

image vector size used is 16, but it can be increased if needed to

increase the feature specificity for larger environments. Never-

theless, for symmetric environments or when there is a lack of

features, global localization with the current frame may be un-

certain and the robot should rotate or move around. It can then

build a small submap of the local region to match to the database
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for more robustness. Moreover, we proposed a map building al-

gorithm based on aligning and combining 3-D submaps using

SIFT features. We can avoid the effect of drifts and slippage by

aligning maps containing highly specific landmarks of the en-

vironment. On closing the loop, our framework will carry out

a backward correction, attribute errors to all the pairwise align-

ments according to the landmark uncertainty and obtain a better

3-D map.

As the SIFT features are highly distinctive, even very few

matches can provide a good alignment, therefore, it should work

in sparse environments. Currently, no odometric information is

used for map alignment, but for sparse environments and envi-

ronments with many similar features, we can use the odometry

to verify the map alignment.

Our pairwise alignment and backward correction are similar

to the scan alignment and maximum likelihood optimization in

[20] and the scan matching and map correlation in [10]. These

algorithms, as well as many described in Section II-C, are de-

veloped mainly for dense 2-D range data obtained from laser or

sonar and are not applicable to sparse 3-D data from vision.

Integrating new data to the map incrementally and bundle

adjustment using all image frames are two extremes of map

building. Incremental map building does not require keeping

any information from each frame and, as a result, it does not

allow any backward correction when we close the loop. It has

low storage and computational costs, but may lead to an in-

consistent map. On the other hand, bundle adjustment requires

keeping image information from each frame but it allows back-

ward correction at each frame. It has high storage and compu-

tational costs.

Our approach is a practical solution that provides a trade-off

between these two methods. It only requires information for

each submap and allows backward correction between submaps.

Backward correction within each submap is not necessary be-

cause while building each submap, odometry has been corrected

locally based on the SIFT landmarks. The complexity of our ap-

proach increases by the square of the number of submaps, not

by the square of the number of landmarks.

We have yet to experiment in extensive environments or

more complicated loop closure scenarios. To detect loop clo-

sures without a costly search, we may maintain a topological

relation between submaps to hypothesize the closures [16].

Our approach can then correct the pairwise alignments such

that these closure constraints are met with the least-squares

matching errors minimized.

Future work also includes extending the global localization

and map alignment algorithms to 3-D, i.e., estimating all 6 de-

grees of freedom robot pose and alignment, for rovers in outdoor

environments.
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