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Abstract— This paper describes the system architecture and
core algorithms for a quadrotor helicopter that uses vision
data to navigate an unknown, indoor, GPS-denied environment.
Without external sensing, an estimation system that relies only
on integrating inertial data will have rapidly drifting position
estimates. Micro aerial vehicles (MAVs) are stringently weight-
constrained, leaving little margin for additional sensors beyond
the mission payload. The approach taken in this paper is
to introduce an architecture that exploits a common mission
payload, namely a video camera, as a dual-use sensor to aid in
navigation. Several core algorithms, including a fast environ-
ment mapper and a novel heuristic for obstacle avoidance, are
also presented. Finally, drift-free hover and obstacle avoidance
flight tests in a controlled environment are presented and
analyzed.

I. INTRODUCTION

Recent warfighting efforts have focused increasingly on

operations in dense, urban environments where GPS interfer-

ence, whether unintentional or malicious, is to be expected.

Simultaneously, unmanned aerial systems (UASs) have seen

increasing use in military conflicts as a means to both reduc-

ing casualties and providing critical data to the warfighter.

However, operations in indoor environments require the

vehicle to autonomously maneuver through openings, down

hallways, and around obstacles, all necessitating highly ac-

curate position estimation and environment mapping.

While many ground vehicle solutions exist that perform

autonomous indoor operations, these vehicles typically uti-

lize multiple localization sensors at the expense of weight.

UASs and especially micro aerial vehicles (MAVs) are

stringently weight-constrained, with mass adversely affecting

agility, endurance, and range. Yet by exploiting for the

purpose of navigating through a GPS-denied environment

the video feed already onboard a UAS, the camera becomes

a dual-use sensor.

There are MAV and hover-capable MAV (HMAV) systems

currently under development that address the autonomous

flight problem for indoor, GPS-denied, or unknown envi-

ronments. Forward flight MAVs that use optical flow for

obstacle avoidance have demonstrated robust flight stability

and collision avoidance in small flight spaces, however, they

neither map the 3D environment nor accurately estimate

position [1], [2], [3].

Refs. [4] and [5] present quadrotor MAV solutions that

utilize downward-looking cameras to enable drift-free au-
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tonomous hover. Although very capable in the hands of a

human pilot, these solutions: are incapable of estimating

absolute position while traversing unknown environments;

cannot map obstacles; and, thus, cannot navigate unknown

environments autonomously.

Ref. [6] demonstrates the utility of LIDAR onboard

HMAVs for position estimation in indoor environments.

These systems show promise for HMAV development with

the continuing miniaturization of LIDAR modules, yet they

currently require prior maps of the environment to enable

registration of measurements, and position estimates are

too noisy to accurately estimate velocity for effective con-

trol feedback. Ref. [7] demonstrates accurate simultaneous

localization and mapping of corner features, although the

methods used are specific to unobstructed hallways and are

not formulated for absolute position estimation. Given this

prior work, the primary contributions of this paper are the

system architecture and key supporting algorithms for vision-

based guidance and control of an HMAV in unknown, indoor

environments [8].

II. HARDWARE ARCHITECTURE

Fig. 1. Diagram of the hardware architecture.

The basic hardware structure is outlined in Fig. 1. The

airborne system consists of the vehicle, the wireless camera,

and reflective infrared markers (dots). The conceptually “on-

board” system is composed of a regular desktop computer,

a Wi-Fi router for communication with the onboard camera,

and a Vicon motion capture system for emulating inertial

data. The base station is composed simply of a separate

desktop computer workstation. For ease of prototyping, and

in an effort to eschew the development of custom vehicles

and electronics, as much computation is done offboard as

possible. At the same time, extensive process timing analysis

is done in order to analyze the feasibility of the core algo-

rithms to ultimately run in real-time on an embedded system.

The airborne system and the emulated onboard system are

described in detail in the following sections.
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A. Vehicle

The HMAV chosen for this research is the Hummingbird

quadrotor, which is outfitted with an embedded electronics

suite, from Ascending Technologies [9], [10]. An onboard

8-bit microcontroller samples and fuses the data of a 6-

axis IMU at 1 kHz to generate a tilt estimate used for

onboard tilt stabilization. The digital communication channel

(when connected, for example, with an xBee-Pro digital

radio) allows external access to the IMU readings and tilt

estimates. Any external controller need only specify the

desired tilt angle; the vehicle, which receives control signals

via a standard 72 MHz R/C receiver, will track this reference

with high performance.

B. Imaging Sensor

The imaging sensor selected is a Wi-Fi enabled Panasonic

BL-C131A network camera, which hosts 320x240 pixel

images that are retrieved at 15–20 Hz through the network

as JPEG files and loaded into the image processing system.

The 1mm diameter lens has a 41◦ vertical and 53◦ horizontal

FOV.

Experience has shown that digital wireless cameras are

better suited for machine vision applications than their analog

counterparts, which suffer indoors from multi-path interfer-

ence and thereby produce images with distortions and lines

of static [11]. The sensor used in this experiment produces

images with JPEG compression artifacts that degrade image

quality yet are consistent enough to not disturb frame-to-

frame processing routines.

C. RAVEN and Emulated Inertial Data

The MIT Real-time indoor Autonomous Vehicle test EN-

vironment (RAVEN) [12], [13] provides the hardware foun-

dation for the developments presented. RAVEN combines the

tracking capabilities of a Vicon-MX camera system [14] with

R/C hardware and an array of networked servers, comprising

an ideal rapid-development environment.

The estimation filter of the conceptually onboard system

takes IMU data and camera images as inputs. Although

the vehicle is equipped with a digital radio to access IMU

data, communication dropouts and transmission corruption

severely impair the ability of the estimation filter to ac-

curately estimate vehicle ego-motion. Therefore RAVEN is

used to emulate inertial data in all flight tests presented. The

outputs of RAVEN’s Vicon system are the vehicle position

and an attitude quaternion, each of which is passed through

an Extended Kalman Filter (EKF) to emulate accelerometer

and gyroscope data, respectively.

Figs. 2 and 3 compare the hardware IMU data to filtered

Vicon data and indicate the former to be less reliable than

the latter, due to the existence of a wireless data link and

as typified by the spikes and dropouts in Fig. 2. Despite

this, both the hardware and filtered Vicon data have similar

nominal behavior. The root mean square (RMS) noise levels

of the hardware IMU data are 0.028 m/s2 and 0.89 deg/s; the

Vicon RMS are slightly higher, at 0.037 m/s2 and 0.96 deg/s.
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Fig. 2. Comparison between inertial data measurement systems. Note
dropout between 29 and 29.5 seconds.
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(a) Z-axis acceleration.
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(b) Pitch-axis rotation rate.

Fig. 3. At-rest inertial data comparison.

Filtering also incurs an additional lag over hardware data,

e.g., 40 ms for gyroscope data.

Discretization of the IMU data, clearly shown by the wide

gaps between bars in Fig. 3, is due to the fixed precision

of the embedded electronics, which evaluates to 0.020 m/s2

and 0.61 deg/s in physical terms. However, because the

magnitudes of the RMS noise levels and the operational

values are larger than the respective fixed precisions, the

discretization should not significantly affect the performance

of the filter.

Because of the close match of noise characteristics and

knowledged of the penalties incurred by using filtered Vicon

data, it is expected that the existing ego-motion estimation

system likely would operate with similar, if not higher,

performance when implemented on an embedded system.

Finally, because Vicon has sub-millimeter position accuracy,

its unfiltered data can be used off-line as truth for the

purposes of measuring estimation errors.

III. IMAGING, ESTIMATION, & MAPPING

A. Image Processing

Visual perception is essential to system performance, as

it remains the vehicle’s exclusive capability in sensing the

environment and is a direct function of the absolute position

and orientation. Conversely, inertial data only provide an

indication of rates and tilt.

The primary tasks of image processing are the detection

and maintenance of features of interest, or points in space

that correspond to locations in the images. To this end, low-

level image processing technologies of the Open Computer
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Fig. 4. Vision bearings as the vehicle traverses dashed path.

Vision Library (OpenCV) [15] are utilized. The Shi-Tomasi

“good features to track” detector [18] finds points with large

eigenvalues of the image gradient in multiple directions. In

order to achieve feature spread across the image, which is

advantageous for the purposes of navigation (i.e., yield a

low position dilution of precision [20]), a mask is erected in

the vicinity of existing features, within which new features

are not detected. The pyramidal Lucas-Kanade optical flow

calculator [16], [17] compares pixel patches in successive

images in an attempt to accurately maintain the locations of

features detected in previous images.

Once tracking is performed, the remaining features are

scanned; those that are clumped together, have jumped, or

have poorly converging 3D position estimates are discarded

and replaced in subsequent calls to the detector. The ultimate

result of feature tracking is the delivery of feature locations to

the estimation filter and the fast environment mapper, which

are discussed next.

B. Ego-Motion Estimation

The process for ego-motion estimation was developed in

collaboration with Draper Laboratory [19] building in part

on [21], [22]. The EKF used in this implementation accounts

for: the position, velocity, and attitude of the vehicle; biases

in all axes of the accelerometer and gyroscope; and position

of initial sighting, horizontal bearing, vertical bearing, and

range of all features.

C. Fast Environment Mapping

While the ego-motion estimation filter explicitly estimates

feature locations, it is computationally expensive; thus, only

a small number of features can be tracked at once. An

alternative method employs a simple least-squares pseudo-

intersection algorithm, is well suited for mapping many

features, and gives a more complete view of the world than

that given by the features in the estimation filter.

Fig. 4 shows the formulation for optimally estimating the

pseudo-intersection point qi,k of obstacle i at time k. In

the figure, xk is the estimated vehicle position, ôi,k is the

corresponding unit vector bearing estimate from the vehicle

to feature i, and hi,k is the minimum distance from qi,k to

the estimated vision ray. The two previous bearing estimates

at times k− 1 and k− 2 show the approximate nature of the

intersection.

A simple least-squares algorithm efficiently computes the

best-fit intersection point qi,k by minimizing Σh2. Originally

formulated by Bethke in [23] for simultaneous measurements

from multiple vehicles tracking the same target, the algorithm

is adapted here to the single vehicle case, where each mea-

surement i is taken at a different point in time. Because the

vehicle position estimate tends to drift, an exponential decay

of parameter α that slowly attenuates the contributions of

older measurements can be incorporated into the transition.

The recursive update equations for obstacle i at the current

timestep k, with Ai,0 and bi,0 initialized to zero, are

Ai,k = αAi,k−1 + (I − ôiô
T
i ) (1)

bi,k = αbi,k−1 + (xk − (xk · ôi) · ôi) (2)

qi,k = A−1

i,kbi,k. (3)

For each feature, we need only store the 3x3 A matrix

and 3-element b vector and update them with a constant

time expression, independent of the number of measurements

we have accumulated over time. We can also express each

feature’s confidence as c =
∑k

j=1
‖∆xj‖/‖∆q‖ where

the estimate jitter ‖∆q‖ is simply the magnitude of the

difference between the current and previous estimates q.

Taking the distance moved since the last update ‖∆xi‖
as approximately ‖v∆t‖, the confidence can be recursively

updated as

c̃i,k = c̃i,k−1 + ‖v∆t‖ ⇒ ci,k =
c̃i,k

‖qi,k − qi,k−1‖
. (4)

Once computed, these confidences determine both whether

a feature is used for obstacle avoidance and (in the case of

sufficiently low confidence) whether that feature is due to

be culled from the map should its confidence not improve

during a predefined grace period.

D. Flight Control Issues

The primary difficulty with vision-in-the-loop estimation

is that estimate errors decrease control performance, gen-

erally via oscillations. These oscillations cause the camera

view to change constantly, which forces features to go out of

view more often, reducing their persistence. With low-light

indoor conditions and low camera quality, the high rate of

movement also causes the images to blur. Decreased vision

fidelity begets further estimate degradation, and a positive

feedback loop is formed as the control performance and

estimation subsequently decline.

IV. OBSTACLE AVOIDANCE

A lightweight reactive obstacle avoidance heuristic for

the purpose of indoor navigation in complex, unknown

environments is now presented. Fast, effective, and natively

three-dimensional, the heuristic is easily tractable onboard

existing micro flight controllers. As the formulas are of

closed form, sampling, which typically requires compromise

between completeness and speed (especially when working

in three dimensions [24]), is not necessary.

The algorithm takes as inputs the environment map gen-

erated using the extended fast-mapping technique (Section

III-C), the goal position, and the vehicle’s reference state;

it generates as an output a reactive acceleration component

ar. By utilizing the vehicle’s reference state rather than its
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Fig. 5. Collision corridor with two obstacles outside the corridor (dashed
ellipses) ignored. The corridor is a three-dimensional cylinder, flattened in
this diagram to facilitate discussion.

Fig. 6. Comparison of a “repulsion only” (no anticipation) trajectory in
magenta versus the corridor-augmented method trajectory in blue, with 20
obstacles in the plane z = 0.

estimated state, the algorithm becomes deterministic given a

goal and a set of obstacle locations. Thus, trajectory genera-

tion is decoupled from control and estimation performance;

such coupling would otherwise cause undesirable feedback.

The same methodology was successfully employed by MIT

in the DARPA Urban Challenge [25].

Fig. 5 shows a 2D cutaway diagram of a typical obstacle-

avoiding trajectory. The vector from the vehicle at x to the

goal is g (normalized to ĝ), and the vector from the vehicle

to the obstacle i with position estimate qi is oi. The ith
cross-goal vector di is the shortest segment from obstacle i
to g, such that

di = (ĝ · oi) · ĝ − oi with oi = qi − x. (5)

The avoidance buffer of an obstacle rbuf , within which the

vehicle will try to reverse itself, subsumes the vehicles radius

rveh. If ∃i such that rveh < ‖qi − x‖ < rbuf , the vehicle

has not crashed but is in the avoidance buffer of a feature,

the reactive acceleration can be immediately set to ar =
−amaxôi, where amax is a maximum reactive acceleration

magnitude.

The distance xstop that vehicle will travel towards an

object given the current velocity v is calculated from simple

kinematics as xstop = (v · ôi)
2/(2amax). At time k, for the

purposes of navigating between xk and xk +g, we consider

only those obstacles that: have a confidence ci above a set

threshold; are within a cylindrical “corridor” of g; are in front

of the vehicle; and are closer than the goal to the vehicle.

Formally, we express the “avoidance criteria,” respectively,

for obstacle i as

ci > cmin

‖di‖ < 2(rbuf + xstop)
‖oi‖ < ‖g‖
oi · g > 0















(6)

For an obstacle that meets the avoidance criteria, its con-

tribution to the reactive acceleration direction vector aa is

composed of its cross-goal vector di, which by construction

is orthogonal to g, and is inversely weighted by the time-to-

impact ti. If there are n obstacles that meet the avoidance

criteria, the final reactive acceleration ar is aligned with

aa and has a magnitude proportional to the velocity to the

nearest obstacle and inversely proportional to an acceleration

time constant τr. More compactly,

ti =
‖oi‖

ôi · v
(7)

aa =

[

n
∑

i=1

‖di‖d̂i

ti

]

=

[

n
∑

i=1

di

ti

]

(8)

ar = 1.5
‖oj‖

tjτr

âa, with j = argmini ti. (9)

This heuristic generates a reference reactive acceleration

ar that can be combined with a goal-seeking acceleration

ag and an orbital cancelation acceleration ac ⊥ ag such that

a = ag + ac + ar. The orbital cancelation term can very

simply be found to be

ac =
ĝ · (v · ĝ) − v

τc

(10)

for some acceleration time constant τc. While ag is always

along ĝ, the scheduling of its magnitude is less trivial and is

left to the implementer. Note that in the case of an emergency

reverse, the vehicle can use just reactive acceleration refer-

ences and impose ac = ag = 0. A simulation of randomly

generated obstacles (merely for ease of presentation, in the

plane z = 0) is shown in Fig. 6.

V. FLIGHT TEST RESULTS

A. Drift-Free Hover

When hovering, the vehicle maintains an almost fixed

point of view, maximizing feature persistence and minimiz-

ing drift. Fig. 7 shows data from a typical hover using the

vision-based state estimate for control feedback. Because the

vehicle remains in the same approximate location, no features

are lost, and, thus, the average drift for the 96 seconds the

vehicle is commanded to hover is negligible. The RMS of the

error in the inertial X axis, for example, is 7.61 centimeters.

By contrast, if vision data is not incorporated and the

estimator must rely strictly on the IMU, the position estimate

quickly diverges (i.e., ‖x‖ → ∞) while the vehicle is still

on the ground and waiting to take off. This is result of the

estimator performing a double integration on biases and noise

in the accelerometer measurements.
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Fig. 7. Simple closed-loop hover using vision-based state estimation for state feedback.

(a) The environment. (b) Approaching the stool.

Fig. 8. Onboard camera view of the final environment setup for autonomous
obstacle avoidance. The circles superimposed on the image indicate features
of interest used for navigation and guidance.

B. Vision-Based Control and Obstacle Avoidance

As can be seen in Fig. 8, the environment was set up with

the pole, a bar stool, and additional clutter in the center of

the room, leaving enough space for the vehicle to maneuver,

but with a clear and complex obstacle set blocking the direct

path to the goal.

Fig. 9(a) shows two plots from the top (x,y) and side

(z,y) of a successful obstacle avoidance flight. The green

circle is the take-off point, the crosses are the landing points,

and the purple spots represent a snapshot in time of the

features used for obstacle avoidance; a cylinder and a cuboid,

representing the obstacles, have been superimposed in the

operator’s view of Fig. 9(b) for demonstrative purpose. As

the vehicle attempted to move toward the goal, the obstacle

avoidance commanded to fly the vehicle up, around the pole

to the left, over the stool, and down to a smooth touchdown

near the goal.

It is of interest to note that the during the 5 m flight,

the position estimate drifted by approximately 1 m, but the

vast majority of error was accumulated just as the vehicle

passed over the stool, corresponding with the discarding of

all features associated with the obstacle. This would indicate

that future trajectory generators should allow the camera

to be pointed along a bearing other than the direction of

movement, as was imposed in this experiment.

Fig. 10 shows orthographic and operator views of a test

flight with the same starting conditions and goal state as with

the test previously discussed. However, due to a difference

in absolute position at the time the waypoint command was

given, the navigation system plans a trajectory to the East,

around the pole, avoiding the stool entirely. The data visible

in the figure is a clear example of the complimentary offset

errors that develop in both the feature estimates and the

estimated vehicle position.

VI. CONCLUSION

This paper has focused on the higher level system archi-

tecture and key supporting algorithms for the guidance and

control of an HMAV in unknown, GPS-denied environments.

The concepts and methodologies for image processing are

discussed, and the implementations of the environmental

mapping and reactive obstacle avoidance algorithms are pre-

sented. Flight results of the autonomous system are analyzed,

demonstrating the viability of this solution to achieve its ob-

jectives in real environments on physical hardware. Although

developed in a testbed for ease of prototyping, many of the

issues involving the transition to embedded flight systems

are directly addressed, with promising conclusions for the

ultimate real-world implementation of these contributions.
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