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1 Introduction

In recent years, research efforts seeking to provide more natural, human-centered
means of interacting with computers have gained growing interest. A particu-
larly important direction is that of perceptive user interfaces, where the com-
puter is endowed with perceptive capabilities that allow it to acquire both im-
plicit and explicit information about the user and the environment. Vision has
the potential of carrying a wealth of information in a non-intrusive manner and
at a low cost, therefore it constitutes a very attractive sensing modality for
developing perceptive user interfaces. Proposed approaches for vision-driven
interactive user interfaces resort to technologies such as head tracking, face and
facial expression recognition, eye tracking and gesture recognition.

In this paper, we focus our attention to vision-based recognition of hand
gestures. The first part of the paper provides an overview of the current state
of the art regarding the recognition of hand gestures as these are observed and
recorded by typical video cameras. In order to make the review of the related
literature tractable, this paper does not discuss:

e techniques that are based on cameras operating beyond the visible spec-
trum (e.g. thermal cameras, etc),

e active techniques that require the projection of some form of structured
light, and,
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e invasive techniques that require modifications of the environment, e.g.
that the user wears gloves of particular color distribution or with particular
markers.

Despite these restrictions, a complete review of the computer vision-based tech-
nology for hand gesture recognition remains a very challenging task. Never-
theless, and despite the fact that the provided review might not be complete,
an effort was made to report research results pertaining to the full cycle of vi-
sual processing towards gesture recognition, covering issues from low level image
analysis and feature extraction to higher level interpretation techniques.

The second part of the paper presents a specific approach taken to gesture
recognition intended to support natural interaction with autonomous robots
that guide visitors in museums and exhibition centers. The proposed gesture
recognition system builds on a probabilistic framework that allows the utiliza-
tion of multiple information cues to efficiently detect image regions that belong
to human hands. Tracking over time is achieved by a technique that can simul-
taneously handle multiple hands that may move in complex trajectories, occlude
each other in the field of view of the robot’s camera and vary in number over
time. Dependable hand tracking, combined with fingertip detection, facilitates
the definition of a small, simple, intuitive hand gestures vocabulary that can be
used to support robust human robot interaction. Sample experimental results
presented in this paper, confirm the effectiveness and the efficiency of the pro-
posed approach, meeting the robustness and performance requirements of this
particular case of human-computer interaction.

2 Computer Vision Techniques for Hand Gesture Recognition

Most of the complete hand interactive systems can be considered to be comprised
of three layers: detection, tracking and recognition. The detection layer is
responsible for defining and extracting visual features that can be attributed to
the presence of hands in the field of view of the camera(s). The tracking layer is
responsible for performing temporal data association between successive image
frames, so that, at each moment in time, the system may be aware of “what
is where”. Moreover, in model-based methods, tracking also provides a way
to maintain estimates of model parameters, variables and features that are not
directly observable at a certain moment in time. Last, the recognition layer is
responsible for grouping the spatiotemporal data extracted in the previous layers
and assigning the resulting groups with labels associated to particular classes
of gestures. In this section, research on these three identified subproblems of
vision-based gesture recognition is reviewed.

2.1 Detection

The primary step in gesture recognition systems is the detection of hands and
the segmentation of the corresponding image regions. This segmentation is
crucial because it isolates the task-relevant data from the image background,
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before passing them to the subsequent tracking and recognition stages. A large
number of methods have been proposed in the literature that utilize a several
types of visual features and, in many cases, their combination. Such features
are skin color, shape, motion and anatomical models of hands. In [CPCO06], a
comparative study on the performance of some hand segmentation techniques
can be found.

2.1.1 Color

Skin color segmentation has been utilized by several approaches for hand detec-
tion. A major decision towards providing a model of skin color is the selection
of the color space to be employed. Several color spaces have been proposed
including RGB, normalized RGB, HSV, YCrCb, YUV, etc. Color spaces ef-
ficiently separating the chromaticity from the luminance components of color
are typically considered preferable. This is due to the fact that by employing
chromaticity-dependent components of color only, some degree of robustness to
illumination changes can be achieved. Terrillon et al [TSFAQ0] review different
skin chromaticity models and evaluate their performance.

To increase invariance against illumination variability some methods [MC97,
Bra98, Kam98, FM99, HVD"99a, KOKS01] operate in the HSV [SF96], YCrCb
[CNO8], or YUV [YLW98, AL04b] colorspaces, in order to approximate the
“chromaticity” of skin (or, in essence, its absorption spectrum) rather than its
apparent color value. They typically eliminate the luminance component, to
remove the effect of shadows, illumination changes, as well as modulations of
orientation of the skin surface relative to the light source(s). The remaining
2D color vector is nearly constant for skin regions and a 2D histogram of the
pixels from a region containing skin shows a strong peak at the skin color.
Regions where this probability is above a threshold are detected and described
using connected components analysis. In several cases (e.g. [ALO4b]), hysteresis
thresholding on the derived probabilities is also employed prior to connected
components labeling. The rationale of hysteresis thresholding is that pixels with
relatively low probability of being skin-colored, should be interpreted as such in
case that they are connected to pixels with high such probability.Having selected
a suitable color space, the simplest approach for defining what constitutes skin
color is to employ bounds on the coordinates of the selected space [CN98]. These
bounds are typically selected empirically, i.e. by examining the distribution of
skin colors in a preselected set of images. Another approach is to assume that
the probabilities of skin colors follow a distribution that can be learned either
off-line or by employing an on-line iterative method [SF96].

Several methods [SF96, KK96, SWP98, DKS01, JR02, AL04b, SSA04] uti-
lize precomputed color distributions extracted from statistical analysis of large
datasets. For example, in [JR02], a statistical model of skin color was obtained
from the analysis of thousands of photos on the Web. In contrast, methods such
as those described in [KOKS01, ZYWO00] build a color model based on collected
samples of skin color during system initialization.

When using a histogram to represent a color distribution (as for example
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in [JR02, KK96, WLHO00]), the color space is quantized and, thus, the level of
quantization affects the shape of the histogram. Parametric models of the color
distribution have also been used in the form of a single Gaussian distribution
[KKAK98, YLW98, CG99] or a mixture of Gaussians [RMG98, RG98, SRG99,
JP97, JRP97]. Maximum-likelihood estimation techniques can be thereafter
utilized to infer the parameters of the probability density functions. In an-
other parametric approach [WLHO00], an unsupervised clustering algorithm to
approximate color distribution is based on a self-organizing map.

The perceived color of human skin varies greatly across human races or even
between individuals of the same race. Additional variability may be introduced
due to changing illumination conditions and/or camera characteristics. There-
fore, color-based approaches to hand detection need to employ some means for
compensating for this variability. In [YA98, SSA04], an invariant representation
of skin color against changes in illumination is pursued, but still with not conclu-
sive results. In [YLW98], an adaptation technique estimates the new parameters
for the mean and covariance of the multivariate Gaussian skin color distribution,
based on a linear combination of previous parameters. However, most of these
methods are still sensitive to quickly changing or mixed lighting conditions. A
simple color comparison scheme is employed in [DKS01], where the dominant
color of a homogeneous region is tested as if occurring within a color range that
corresponds to skin color variability. Other approaches [Bra98, KOKS01, MC97]
consider skin color to be uniform across image space and extract the pursued
regions through typical region-growing and pixel-grouping techniques. More ad-
vanced color segmentation techniques rely on histogram matching [Ahm94], or
employ a simple look-up table approach [KK96, QMZ95] based on the training
data for the skin and possibly its surrounding areas. In [FM99, HVD199a],
the skin color blobs are detected by a method using scan lines and a Bayesian
estimation approach.

In general, color segmentation can be confused by background objects that
have a color distribution similar to human skin. A way to cope with this prob-
lem is based on background subtraction [RK94, GD96]. However, background
subtraction is typically based on the assumption that the camera system does
not move with respect to a static background. To solve this problem, some
research [UO98, BNI99], has looked into the dynamic correction of background
models and/or background compensation methods.

In another approach [Ahm94|, the two image blobs at which the hand ap-
pears in a stereo pair are detected based on skin color. The hands are approx-
imated by an ellipse in each image and the axes of the ellipses are calculated.
By corresponding the two pairs of axes in the two images, the orientation of
the hand in 3D is computed. The method in [MHPT01, HVDT99b], also uses a
stereoscopic pair to estimate the position of hands in 3D space. The binocular
pair could pan and tilt and, also, the zoom and fixation distance of the cameras
was software-controlled. The estimated distance and position of the hands were
utilized so that the system could focus attention of the hands of the user, by
rotating, zooming and fixating accordingly.

Skin color is only one of many cues to be used for to hand detection. For
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example, in cases where the faces also appear in the camera field of view, further
processing is required to distinguish hands from faces [WADP97, YK04, ZHO05].
Thus, skin color has been utilized in combination with other cues to obtain
better performance. Stereoscopic information has been utilized mainly in con-
junction with the skin color cue to enhance the accuracy of hand localization.
In [TVdMO8], stereo is combined with skin color to optimize the robustness of
tracking and in [ETKO91] to cope with occlusions. In [YSA95] skin detection
is combined with non-rigid motion detection and in [DWT04] skin color was
used to restrict the region where motion features are to be tracked. An impor-
tant research direction is, therefore, the combination multiple cues. Two such
approaches are described in [ADS98, SSKM98].

2.1.2 Shape

The characteristic shape of hands has been utilized to detect them in images
in multiple ways. Much information can be obtained by just extracting the
contours of objects in the image. If correctly detected, the contour represents
the shape of the hand and is therefore not directly dependent on viewpoint, skin
color and illumination. On the other hand, the expressive power of 2D shape can
be hindered by occlusions or degenerate viewpoints. In the general case, contour
extraction that is based on edge detection results in a large number of edges
that belong to the hands but also to irrelevant background objects. Therefore,
sophisticated post-processing approaches are required to increase the reliability
of such an approach. In this spirit, edges are often combined with (skin-)color
and background subtraction/motion cues.

In the 2D/3D drawing systems of [Kru91, Kru93, U097, UO98]|, the user’s
hand is directly extracted as a contour by assuming a uniform background and
performing real-time edge detection in this image. Examples of the use of con-
tours as features are found in both model [KH95] and appearance based tech-
niques [GD96, PSH96]). In [DD91], finger and arm link candidates are selected
through the clustering of the sets of parallel edges. In a more global approach
[GDY95], hypotheses of hand 3D models are evaluated by first synthesizing the
edge image of a 3D model and comparing it against the acquired edge image.

Local topological descriptors have been used to match a model with the
edges in the image. In [BMPO02], the shape context descriptor is proposed, which
characterizes a particular point location on the shape. This descriptor is the
histogram of the relative polar coordinates of all other points. Detection is based
on the assumption that corresponding points on two different shapes will ideally
have a similar shape context. The descriptor has been applied to a variety of
obvect recognition problems [BMP02, MMO02], with limited background clutter.
In [SCO02], all topological combinations of four points are considered in a voting
matrix and one-to-one correspondences are established using a greedy algorithm.

Background clutter is effectively dealt in [IB96b, IB98a], where particle fil-
tering is employed to learn which curves belong to a tracked contour. This tech-
nique makes shape models more robust to background noise, but shape-based
methods are better suited for tracking an object once it has been acquired. The
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approach in [SSK99], utilizes as input hand images against a homogeneous and
planar background. The illumination is such that the hand’s shadow is cast on
the background plane. By corresponding high-curvature features of the hand’s
silhouette and the shadows, depth cues such as vanishing points are extracted
and the hand’s pose is estimated.

Certain methods focus on the specific morphology of hands and attempt
to detect them based on characteristic hand shape features such as fingertips.
The approaches in [ALO6b, Mag95, VD95, AL06b] utilize curvature as a cue to
fingertip detection. Another technique that has been employed in fingertip de-
tection is template matching. Templates can be images of fingertips [CBC95] or
fingers [RK95] or generic 3D cylindrical models [DS94b]. Such pattern matching
techniques can be enhanced by using additional image features, like contours
[RK94]. The template-matching technique was utilized also in [CBC95, OZ97],
with images of the top view of fingertips as the prototype. The pixel result-
ing in the highest correlation is selected as the position of the target object.
Apart from being very computationally expensive, template matching can not
cope with neither scaling nor rotation of the target object. This problem was
addressed in [CBC95] by continuously updating the template.

In [STO05], the fingertip of the user was detected in both images of a calibrated
stereo pair. In these images, the two points at which this tip appears establish a
stereo correspondence, which is utilized to estimate the fingertip’s position is 3D
space. In turn, this position is utilized by the system to estimate the distance of
the finger from the desk and, therefore, determine if the user is touching it. In
[Jen99], a system is described for tracking the 3D position and orientation of a
finger using several cameras. Tracking is based on combining multiple sources of
information including stereo range images, color segmentation and shape infor-
mation. The hand detectors in [AP96] and [BOP97] utilize nonlinear modeling
and a combination of iterative and recursive estimation methods to recover 3D
geometry from blob correspondences across multiple images. These correspon-
dences were thereafter utilized to estimate the translations, and orientations
of blobs in world coordinates. In [ALO6a], stereoscopic information is used to
provide 3D positions of hand centroids and fingertips but also to reconstruct
the 3D contour of detected and tracked hands in real time. In [Yin03] stereo
correspondences of multiple fingertips have been utilized to calibrate a stereo
pair. In the context of fingertip detection, several heuristics have also been
employed. For example, for deictic gestures it can be assumed that the finger
represents the foremost point of the hand [Mag95, QMZ95]. Many other indi-
rect approaches for the detection of fingertips have been employed, like image
analysis using specially tuned Gabor kernels [MR92]. The main disadvantage in
the use of fingertips as features is that they can be occluded by the rest of the
hand. A solution to this occlusion problem involves the use of multiple cameras
[LK95, RK94]. Other solutions are based on the estimation of the occluded
fingertip positions, based on the knowledge of the 3D model of the gesture in
question [SSKM98, WLH01, WTH99, RK95].
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2.1.3 Learning detectors from pixel values

Significant work has been carried out on finding hands in grey level images based
on their appearance and texture. In [WHO0O], the suitability of a number of clas-
sification methods for the purpose of view-independent hand posture recognition
was investigated. Several methods [CSW95, CW96b, QZ96, TM96, TVAM98|
attempt to detect hands based on hand appearances, by training classifiers on
a set of image samples. The basic assumption is that hand appearance differs
more among hand gestures than it differs among different people performing the
same gesture. Still, automatic feature selection constitutes a major difficulty.
Several papers consider the problem of feature extraction [TM96, QZ96, NR9S8,
TVAM98] and selection [CSW95, CWI6b], with limited results regarding hand
detection. The work in [CW96b], investigates the difference between the most
discriminating features (MDFs) and the most expressive features (MEFSs) in
the classification of motion clips that contain gestures. It is argued that MEFs
may not be the best for classification, because the features that describe some
major variations in the class are, typically, irrelevant to how the sub-classes are
divided. MDFs are selected by multi-class, multivariate discriminate analysis
and have a significantly higher capability to catch major differences between
classes. Their experiments also showed that MDF's are superior to the MEF's in
automatic feature selection for classification.

More recently, methods based on a machine learning approach called boost-
ing have demonstrated very robust results in face and hand detection. Due to
these results, they are reviewed in more detail below. Boosting is a general
method that can be used for improving the accuracy of a given learning algo-
rithm [Sch02]. It is based on the principle that a highly accurate or “strong”
classifier can be derived through the linear combination of many relatively inac-
curate or “weak” classifiers. In general, an individual weak classifier is required
to perform only slightly better than random. As proposed in [VJO01] for the
problem of hand detection, a weak classifier might be a simple detector based
on basic image block differences efficiently calculated using an integral image.

The AdaBoost algorithm [FS97] provides a learning method for finding suit-
able collections of weak classifiers. For training, it employs an exponential loss
function that models the upper bound of the training error. The method uti-
lizes a training set of images that consists of positive and negative examples
(hands and non-hands, in this case), which are associated with corresponding
labels. Weak classifiers are added sequentially into an existing set of already
selected weak classifiers in order to decrease the upper bound of the training
error. It is known that this is possible if weak classifiers are of a particular form
[FHROO, SS98]. AdaBoost was applied to the area of face and pedestrian detec-
tion [VJO01, VJS03] with impressive results. However, this method may result in
an excessive number of weak classifiers. The problem is that AdaBoost does not
consider the removal of selected weak classifiers that no longer contribute to the
detection process. The FloatBoost algorithm proposed in [LZ04] extends the
original AdaBoost algorithm, in that it removes an existing weak classifier from
a strong classifier if it no longer contributes to the decrease of the training error.
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This results in a more general therefore more efficient set of weak classifiers.

In the same context, the final detector can be divided into a cascade of strong
classifier layers [VJO01]. This hierarchical structure is comprised of a general
detector at the root, with branch nodes being increasingly more appearance-
specific as the depth of the tree increases. In this approach, the larger the
depth of a nodes the more specific the training set becomes. To create a la-
beled database of training images for the above tree structure, an automatic
method [OB04] for performing grouping of images of hands at the same posture
is proposed, based on an unsupervised clustering technique.

2.1.4 3D model-based detection

A category of approaches utilize 3D hand models for the detection of hands in
images. One of the advantages of these methods is that they can achieve view-
independent detection. The employed 3D models should have enough degrees
of freedom to adapt to the dimensions of the hand(s) present in an image.

Different models require different image features to construct feature-model
correspondences. Point and line features are employed in kinematic hand mod-
els to recover angles formed at the joints of the hand [RK95, SSKM98, WTH99,
WLHO1]. Hand postures are then estimated provided that the correspondences
between the 3D model and the observed image features are well established. Var-
ious 3D hand models have been proposed in the literature. In [RK94, SMC02],
a full hand model is proposed which has 27 degrees of freedom (DOF) (6 DOF
for 3D location/orientation and 21 DOF for articulation). In [LWHO02], a “card-
board model” is utilized, where each finger is represented by a set of three
connected planar patches. In [GABUP95], a 3D model of the arm with 7 pa-
rameters is utilized. In [GD96], a 3D model with 22 degrees of freedom for the
whole body with 4 degrees of freedom for each arm is proposed. In [MI00], the
user’s hand is modeled much more simply, as an articulated rigid object with
three joints comprised by the first index finger and thumb.

In [RK94], edge features in the two images of a stereoscopic pair are cor-
responded to extract the orientation of in-between joints of fingers. These are
subsequently utilized for model based tracking of the hands. In [NR9S], artifi-
cial neural networks that are trained with body landmarks, are utilized for the
detection of hands in images. Some approaches [HH96b, HH96a, LK95] utilize a
deformable model framework to fit a 3D model of the hand to image data. The
fitting is guided by forces that attract the model to the image edges, balanced
by other forces that tend to preserve continuity and evenness among surface
points [HH96b, HH96a]. In [LK95], the process is enhanced with anatomical
data of the human hand that are incorporated into the model. Also, to fit
the hand model to an image of a real hand, characteristic points on the hand
are identified in the images, and virtual springs are implied which pull these
characteristic points to goal positions on the hand model.
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2.1.5 Motion

Motion is a cue utilized by a few approaches to hand detection. The reason is
that motion-based hand detection demands for a very controlled setup, since it
assumes that the only motion in the image is due to hand movement. Indeed,
early works (e.g. [FW95, Que95, CW96b]) assumed that hand motion is the
only motion occurring in the imaged environment. In more recent approaches,
motion information is combined with additional visual cues. In the case of
static cameras, the problem of motion estimation reduces to that of background
maintenance and subsequent subtraction. For example in [CT98, MDC98] such
information is utilized to distinguish hands from other skin-colored objects and
cope with lighting conditions imposed by colored lights. The difference in lu-
minance of pixels from two successive images is close to zero for pixels of the
background. By choosing and maintaining an appropriate threshold, moving
objects are detected within a static scene.

In [YSA95], a novel feature, based on motion residue, is proposed. Hands
typically undergo non-rigid motion, because they are articulated objects. Con-
sequently, hand detection capitalizes on the observation that for hands, inter-
frame appearance changes are more frequent than for other objects such as
clothes, face, and background.

2.2 Tracking

Tracking, or the frame-to-frame correspondence of the segmented hand regions
or features, is the second step in the process towards understanding the ob-
served hand movements. The importance of robust tracking is twofold. First,
it provides the inter-frame linking of hand/finger appearances, giving rise to
trajectories of features in time. These trajectories convey essential information
regarding the gesture and might be used either in a raw form (e.g. in certain
control applications like virtual drawing the tracked hand trajectory directly
guides the drawing operation) or after further analysis (e.g. recognition of a
certain type of hand gesture). Second, in model-based methods, tracking also
provides a way to maintain estimates of model parameters variables and features
that are not directly observable at a certain moment in time.

2.2.1 Template based tracking

This class of methods exhibits great similarity to methods for hand detection.
Members of this class invoke the hand detector at the spatial vicinity that the
hand was detected in the previous frame, so as to drastically restrict the image
search space. The implicit assumption for this method to succeed is that images
are acquired frequently enough.

Correlation-based feature tracking is directly derived from the above ap-
proach. In [CBC95, OZ97] correlation-based template matching is utilized to
track hand features across frames. Once the hand(s) have been detected in a
frame, the image regions in which they appear is utilized as the prototype to
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detect the hand in the next frame. Again, the assumption is that hands will
appear in the same spatial neighborhood. This technique is employed for a
static camera in [DEP96], to obtain characteristic patterns (or “signatures”) of
gestures, as seen from a particular view. The work in [HB96] deals also with vari-
able illumination. A target is viewed under various lighting conditions. Then,
a set of basis images that can be used to approximate the appearance of the
object viewed under various illumination conditions is constructed. Tracking
simultaneously solves for the affine motion of the object and the illumination.
Real-time performance is achieved by pre-computing “motion templates” which
are the product of the spatial derivatives of the reference image to be tracked
and a set of motion fields.

Some approaches detect hands as image blobs in each frame and temporally
correspond blobs that occur in proximate locations across frames. Approaches
that utilize this type of blob tracking are mainly the ones that detect hands
based on skin color, the blob being the correspondingly segmented image region
(e.g. [BMMO7, AL04b]). Blob-based approaches are able to retain tracking of
hands even when there are great variations from frame to frame.

Extending the above approach, deformable contours, or “snakes” have been
utilized to track hand regions in successive image frames [CJ92]. Typically, the
boundary of this region is determined by intensity or color gradient. Never-
theless, other types of image features (e.g. texture) can be considered. The
technique is initialized by placing a contour near the region of interest. The
contour is then iteratively deformed towards nearby edges to better fit the ac-
tual hand region. This deformation is performed through the optimization of
an “energy” functional that sums up the gradient at the locations of the snake
while, at the same time, favoring the smoothness of the contour. When snakes
are used for tracking, an active shape model is applied to each frame and the
convergence of the snake in that frame is used as a starting point for the next
frame. Snakes allow for real-time tracking and can handle multiple targets as
well as complex hand postures. They exhibit better performance when there is
sufficient contrast between the background and the object [CTHG95]. On the
contrary, their performance is compromised in cluttered backgrounds. The rea-
son is that the snake algorithm is sensitive to local optima of the energy function,
often due to ill foreground/background separation or large object diplacements
and/or shape deformations between successive images.

Tracking local hand features on the hand has been employed in specific con-
texts only, probably because tracking local features does not guarantee the seg-
mentation of the hands from the rest of the image. The methods in [MDC98,
BHY94], track hands in image sequences by combining two motion estimation
processes, both based on image differencing. The first process computes dif-
ferences between successive images. The second computes differences from a
background image that was previously acquired. The purpose of this combina-
tion is increased robustness near shadows.
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2.2.2 Optimal estimation techniques

Feature tracking has been extensively studied in computer vision. In this con-
text, the optimal estimation framework provided by the Kalman filter [Kal60)
has been widely employed in turning observations (feature detection) into es-
timations (extracted trajectory). The reasons for its popularity are real-time
performance, treatment of uncertainty, and the provision of predictions for the
successive frames.

In [ALO4b], the target is retained against cases where hands occlude each
other, or appear as a single blob in the image, based on a hypothesis formu-
lation and validation/rejection scheme. The problem of multiple blob tracking
was investigated in [ALO4a], where blob tracking is performed in both images
of a stereo pair and blobs are corresponded, not only across frames, but also
across cameras. The obtained stereo information not only provides the 3D lo-
cations of the hands, but also facilitates the potential motion of the observing
stereo pair which could be thus mounted on a robot that follows the user. In
[BK98, Koh97], the orientation of the user’s hand was continuously estimated
with the Kalman filter to localize the point in space that the user indicates by
extending the arm and pointing with the index finger. In [U099], hands are
tracked from multiple cameras, with a Kalman filter in each image, to estimate
the 3D hand postures. Snakes integrated with the Kalman filtering framework
(see below) have been used for tracking hands [DS92]. Robustness against back-
ground clutter is achieved in [Pet99], where the conventional image gradient is
combined with optical flow to separate the foreground from the background.
In order to provide accurate initialization for the snake in the next frame, the
work in [KLO1], utilizes the optical flow to obtain estimations of the direction
and magnitude of the target’s motion. The success of combining optical flow is
based on the accuracy of its computation and, thus, the approach is best suited
for the case of static cameras.

Treating the tracking of image features within a Bayesian framework has
been long known to provide improved estimation results. The works in [FB02,
IB98b, VPGB02, HLCP02, IM01, KMAO1] investigate the topic within the con-
text of hand and body motion. In [WADP97], a system tracks a single person
by color-segmentation of the image into blobs and then uses prior information
about skin color and topology of a person’s body to interpret the set of blobs as
a human figure. In [Bre97], a method is proposed for tracking human motion by
grouping pixels into blobs based on coherent motion, color and temporal support
using an expectation-maximization (EM) algorithm. Each blob is subsequently
tracked using a Kalman filter. Finally, in [MB99, MI00], the contours of blobs
are tracked across frames by a combination of the Iterative Closed Point (ICP)
algorithm and a factorization method to determine global hand pose.

The approaches in [BJ96, BJ98c| reformulate the eigenspace reconstruction
problem (reviewed in Section 2.3.2) as a problem of robust estimation. The goal
is to utilize the above framework to track the gestures of a moving hand. To
account for large affine transformations between the eigenspace and the image,
a multi-scale eigenspace representation is defined and a coarse-to-fine matching
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strategy is adopted. In [LB96], a similar approach was proposed which uses a
hypothesize-and-test approach instead of a continuous formulation. Although
this approach does not address parameterized transformations and tracking, it
exhibits robustness against occlusions. In [GMR'02], a real-time extension of
the work in [BJ96], based on EigenTracking [IB98a] is proposed. Eigenspace rep-
resentations have been utilized in a different way in [BH94] to track articulated
objects by tracking a silhouette of the object, which was obtained via image
differencing. A spline was fit to the object’s outline and the knot points of the
spline form the representation of the current view. Tracking an object amounts
to projecting the knot points of a particular view onto the eigenspace. Thus,
this work uses the shape (silhouette) information instead of the photometric one
(image intensity values).

In [UO99], the 3D positions and postures of both hands are tracked using
multiple cameras. Each hand position is tracked with a Kalman filter and 3D
hand postures are estimated using image features. This work deals with the
mutual hand-to-hand occlusion inherent in tracking both hands, by selecting
the views in which there are no such occlusions.

2.2.3 Tracking based on the Mean Shift algorithm

The Mean Shift algorithm [Che95] is an iterative procedure that detects local
maxima of a density function by shifting a kernel towards the average of data
points in its neighborhood. The algorithm is significantly faster than exhaustive
search, but requires appropriate initialization.

The Mean Shift algorithm has been utilized in the tracking of moving ob-
jects in image sequences. The work in [CRMO00, CRMO03] is not restricted to
hand tracking, but can be used to track any moving object. It characterizes the
object of interest through its color distribution as this appears in the acquired
image sequence and utilizes the spatial gradient of the statistical measurement
towards the most similar (in terms of color distribution similarity) image region.
An improvement of the above approach is described in [CLO1], where the mean
shift kernel is generalized with the notion of the “trust region”. Contrary to
mean shift which directly adopts the direction towards the mean, trust regions
attempt to approximate the objective function and, thus, exhibit increased ro-
bustness towards being trapped in spurious local optima. In [Bra98], a version
of the Mean Shift algorithm is utilized to track the skin-colored blob of a human
hand. For increased robustness, the method tracks the centroid of the blob and
also continuously adapts the representation of the tracked color distribution.
Similar is also the method proposed in [KOKS01], except the fact that it uti-
lizes a Gaussian mixture model to approximate the color histogram and the EM
algorithm to classify skin pixels based on the Bayesian decision theory.

Mean-Shift tracking is robust and versatile for a modest computational cost.
It is well suited for tracking tasks where the spatial structure of the tracked
objects exhibits such a great variability that trackers based on a space-dependent
appearance reference would break down very fast. On the other hand, highly
cluttered background and occlusions may distract the mean-shift trackers from
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the object of interest. The reason appears to be its local scope in combination
with the single-state appearance description of the target.

2.2.4 Particle filtering

Particle filters have been utilized to track the position of hands and the con-
figuration of fingers in dense visual clutter. In this approach, the belief of the
system regarding the location of a hand is modeled with a set of particles. The
approach exhibits advantages over Kalman filtering, because it is not limited by
the unimodal nature of Gaussian densities that cannot represent simultaneous
alternative hypotheses. A disadvantage of particle filters is that for complex
models (such as the human hand) many particles are required, a fact which
makes the problem intractable especially for high-dimensional models. There-
fore, other assumptions are often utilized to reduce the number of particles. For
example in [IB98a], dimensionality is reduced by modeling commonly known
constraints due to the anatomy of the hand. Additionally, motion capture data
are integrated in the model. In [MB99] a simplified and application-specific
model of the human hand is utilized.

The CONDENSATION algorithm [IB98a] which has been used to learn to
track curves against cluttered backgrounds, exhibits better performance than
Kalman filters, and operates in real-time. It uses “factored sampling”, previ-
ously applied to the interpretation of static images, in which the probability
distribution of possible interpretations is represented by a randomly generated
set. Condensation uses learned dynamical models, together with visual obser-
vations, to propagate this random set over time. The result is highly robust
tracking of agile motion. In [MI0O0] the “partitioned sampling” technique is em-
ployed to avoid the high computational cost that particle filters exhibit when
tracking more than one object. In [LLO1], the state space is limited to 2D
translation, planar rotation, scaling and the number of outstretched fingers.

Extending the CONDENSATION algorithm the work in [MCAO1], detects
occlusions with some uncertainty. In [PHVGO02], the same algorithm is inte-
grated with color information; the approach is based on the principle of color
histogram distance, but within a probabilistic framework, the work in introduces
a new Monte Carlo tracking technique. In general, contour tracking techniques,
typically, allow only a small subset of possible movements to maintain contin-
uous deformation of contours. This limitation was overcome to some extent in
[HH96b], who describe an adaptation of the CONDENSATION algorithm for
tracking across discontinuities in contour shapes.

2.3 Recognition

The overall goal of hand gesture recognition is the interpretation of the seman-
tics that the hand(s) location, posture, or gesture conveys. Basically, there have
been two types of interaction in which hands are employed in the user’s com-
munication with a computer. The first is control applications such as drawing,
where the user sketches a curve while the computer renders this curve on a 2D
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canvas [LWHO02, WLHO01]. Methods that relate to hand-driven control focus on
the detection and tracking of some feature (e.g. the fingertip, the centroid of
the hand in the image etc) and can be handled with the information extracted
through the tracking of these features. The second type of interaction involves
the recognition of hand postures, or signs, and gestures. Naturally, the vocab-
ulary of signs or gestures is largely application dependent. Typically, the larger
the vocabulary is, the hardest the recognition task becomes. Two early systems
indicate the difference between recognition [BMM97] and control [MM95]. The
first recognizes 25 postures from the International Hand Alphabet, while the
second was used to support interaction in a virtual workspace.

The recognition of postures is of topic of great interest on its own, because
of sign language communication. Moreover, it also forms the basis of numerous
gesture-recognition methods that treat gestures as a series of hand postures.
Besides the recognition of hand postures from images, recognition of gestures
includes an additional level of complexity, which involves the parsing, or seg-
mentation, of the continuous signal into constituent elements. In a wide variety
of methods (e.g. [TVAM98]), the temporal instances at which hand velocity
(or optical flow) is minimized are considered as observed postures, while video
frames that portray a hand in motion are sometimes disregarded (e.g. [BMM97]).
However, the problem of simultaneous segmentation and recognition of gestures
without being confused with inter-gesture hand motions remains a rather chal-
lenging one. Another requirement for this segmentation process is to cope with
the shape and time variability that the same gesture may exhibit, e.g. when
performed by different persons or by the same person at different speeds.

The fact that even hand posture recognition exhibits considerable levels of
uncertainty casts the above processing computationally complex or error prone.
Several of the reviewed works indicate that lack of robustness in gesture recog-
nition can be compensated by addressing the temporal context of detected ges-
tures. This can be established by letting the gesture detector know of the
grammatical or physical rules that the observed gestures are supposed to ex-
press. Based on these rules, certain candidate gestures may be improbable.
In turn, this information may disambiguate candidate gestures, by selecting to
recognize the most likely candidate. The framework of Hidden Markov Models
(HMMs) that is discussed later in this section, provides a suitable framework
for modeling the context-dependent reasoning of the observed gestures.

2.3.1 Template matching

Template matching, a fundamental pattern recognition technique, has been uti-
lized in the context of both posture and gesture recognition. In the context of
images, template matching is performed by the pixel-by-pixel comparison of a
prototype and a candidate image. The similarity of the candidate to the proto-
type is proportional to the total score on a preselected similarity measure. For
the recognition of hand postures, the image of a detected hand forms the candi-
date image which is directly compared with prototype images of hand postures.
The best matching prototype (if any) is considered as the matching posture.
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Clearly, because of the pixel-by-pixel image comparison, template matching is
not invariant to scaling and rotation.

Template matching was one of the first methods employed to detect hands
in images [FW95]. To cope with the variability due to scale and rotation,
some authors have proposed scale and rotational normalization methods (e.g.
[BMM97]), while others equip the set of prototypes with images from multiple
views (e.g. [DP93]). In [BMMO97], the image of the hand is normalized for
rotation based on the detection of the hands main axis and, then, scaled with
respect to hand dimensions in the image. Therefore, in this method the hand
is constrained to move on a planar surface that is frontoparallel to the camera.
To cope with the increased computational cost when comparing with multiple
views of the same prototype, these views were annotated with the orientation
parameters [FAKO03]. Searching for the matching prototype was accelerated, by
searching only in relevant postures with respect to the one detected in the previ-
ous frame. A template comprised of edge directions was utilized in [FR95]. Edge
detection is performed on the image of the isolated hand and edge orientations
are computed. The histogram of these orientations is used as the feature vector.
The evaluation of this approach showed that edge orientation histograms are
not very discriminative, because several semantically different gestures exhibit
similar histograms.

A direct approach of including the temporal component into the template
matching techniques has been proposed in [DP93, DP95, DEP96]. For each
input frame, the (normalized) hand image region is compared to different views
of the same posture and a 1D function of responses for each posture is obtained;
due to the dense posture parameterization this function exhibits some continuity.
By stacking the 1D functions resulting from a series of input frames, a 2D pattern
is obtained and utilized as a template.

Another approach to creating gesture patterns that can be matched by tem-
plates, is to accumulate the motion over time within a “motion” or “history”
image. The input images are processed frame-by-frame and some motion-related
feature is detected at each frame. The detected features, from all frames, are
accumulated in a 2D buffer at the location of their detection. The obtained
image is utilized as a representation of the gesture and serves as a recognition
pattern. By doing so, the motion (or trail) of characteristic image points over
the sequence is captured. The approach is suited for a static camera observing
a single user in front of a static background. Several variations of this basic
idea have been proposed. In [BD96, BDO01] the results of a background sub-
traction process (human silhouettes) are accumulated in a single frame and the
result is utilized as the feature vector. In [Dav0l, BD00, BD02], an extension
of the previous idea encodes temporal order in the feature vector, by creating
a “history gradient”. In the accumulator image, older images are associated
with a smaller accumulation value and, so, they form a “fading-out” pattern.
Similar is the approach in [CT98], where the accumulation pattern is comprised
of optical flow vectors. The obtained pattern is rather coarse, but with the use
of a user-defined rule-based technique the system can distinguish only among a
very small vocabulary of coarse body gestures. In [YAT02], an artificial neural
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network is trained to learn motion patterns similar to the above. In [ICLB05], a
single hand was imaged in a control environment that featured no depth and its
(image) skeleton was computed; the accumulation of such skeletons along time,
in a single image, was used as the feature vector.

2.3.2 Methods based on Principal Component Analysis

Principal Component Analysis (PCA) methods have been directly utilized mainly
in posture recognition. However, this analysis facilitates several gesture recog-
nition systems by providing the “tokens” to be used as input to recognition.

PCA methods require an initial training stage, in which a set of images
of similar content is processed. Typically, the intensity values of each image
are considered as values of a 1D vector, whose dimensionality is equal to the
number of pixels in the image; it is assumed, or enforced, that all images are
of equal size. For each such set, some basis vectors are constructed that can
be used to approximate any of the (training) images in the set. In the case of
gesture recognition, the training set contains images of hands in certain postures.
The above process is performed for each posture in the vocabulary, which the
system should later be able to recognize. In PCA-based gesture recognition, the
matching combination of principal components indicates the matching gesture
as well. This is because the matching combination is one of the representatives
of the set of gestures that were clustered together in training, as expressions
of the same gesture. A problem of eigenspace reconstruction methods is that
they are not invariant to image transformations such as translation, scaling, and
rotation.

PCA was first applied to recognition in [SK87]and later extended in [TP91]
and [MN95]. A simple system is presented in [RA97], where the whole image of
a person gesturing is processed, assuming that the main component of motion is
the gesture. View-dependency is compensated by creating multiple prototypes,
one for each view. As in detection, the matching view indicates also the relative
pose to the camera. To reduce this complexity in recognition, the system in
[BMMO7], rotationally aligns the acquired image with the template based on
the arm’s orientation and, therefore, stores each gesture prototype in a single
orientation.

PCA systems exhibit the potential capability of compressing the knowledge
of the system by keeping only the principal components with the n highest
eigenvalues. However, in [BMM97], it was shown that this is not effective if only
a small number of principal components are to be kept. The works in [CH96,
MP95] attempt to select the features that best represent the pattern class, using
an entropy based analysis. In a similar spirit, in [CSW95, CW96b] features that
better represent a class (expressive) are compared to features that maximize the
dissimilarity across classes (discriminative), to suggest that the latter give rise
to more accurate recognition results. A remarkable extension of this work is the
utilization of the recognition procedure as feedback to the hand segmentation
process [CW96a]. In that respect, authors utilize the classification procedure in
combination with hand detection to eliminate unlikely segmentations.
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2.3.3 Boosting

The learning methods reviewed in section 2.1.3 have remarkable performance in
hand detection and hand posture recognition, but limited application in hand
gesture recognition. Here, characteristic examples of the use of these methods
for posture recognition are reviewed.

In [LF02], a real-time gesture recognition system is presented. Their method
which is based on skin-color segmentation, is facilitated by a boosting algorithm
[FS97] for fast classification. To normalize for orientation, the user is required
to wear a wristband so that the hand shape can be easily mapped to a canon-
ical frame. In [TPS03], a classification approach was proposed, together with
parameter interpolation to track hand motion. Image intensity data was used
to train a hierarchical nearest neighbor classifier, classifying each frame as one
of 360 views, to cope with viewpoint variability. This method can handle fast
hand motion, but it relies on clear skin color segmentation and controlled light-
ing conditions. In [WKSE02], the hand is detected and the corresponding image
segment is subsampled to a very low resolution. The pixels of the resulting pat-
terns are then treated as N-dimensional vectors. Learning in this case is based
on a C-means clustering of the training parameter space.

2.3.4 Contour and silhouette matching

This class of methods mainly refers to posture recognition and is conceptually
related to template matching in that it compares prototype images with the
hand image that was acquired to obtain a match. The defined feature space
is the edges of the above images. The fact that a spatially sparser feature is
utilized (edges instead of intensities) gives rise to the employment of slightly
different similarity metrics in the comparison of acquired and prototype images.
In addition, continuity is favored in order to avoid the consideration of spurious
edges that may belong e.g. to background clutter.

In [Bor88| and [GD96], Chamfer matching [BTW77] is utilized as the simi-
larity metric. In [SMCO02], matching is based on an “Unscented Kalman filter”,
which minimizes the geometric error between the profiles and edges extracted
from the images. The same, edge, image features are utilized in [DBR00] and
recognition is completed after a likelihood analysis. The work in [Bor88| ap-
plies a coarse-to-fine search, based on a resolution pyramid of the image, to
accelerate the process. In an image-generative approach [GD96], the edges of
idealized models of body postures are projected onto images acquired from mul-
tiple views and compared with the true edges using Chamfer matching while,
also, a template hierarchy is used to handle shape variation. In [OH97], a tem-
plate hierarchy is also utilized to recognize 3D objects from different views and
the Hausdorff distance [HKR93] is utilized as the similarity metric. In a more
recent approach, the work in [CKBHO0] utilizes the robust “shape context”
[BMP02] matching operator.

The research in [RASS01, AS01, AS02, AS03] utilizes Chamfer matching
between input and model edge images. The model images are a priori synthe-
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sized with the use of a data-glove. The number of model images is very high
(=~ 10°) in order to capture even minute differences in postures. To cope with
this amount of data, the retrieval is performed hierarchically, by first rejecting
the greatest proportion of all database views, and then ranking the remaining
candidates in order of similarity to the input. In [AS02], the Chamfer matching
technique was evaluated against edge orientation histograms, shape moments
and detected finger positions.

The use of silhouettes in gesture recognition has not been extensive, probably
because different hand poses can give rise to the same or similar silhouette.
Another reason is that silhouette matching requires alignment (or else, point-
to-point correspondence establishment across the total arclength), which is not
always a trivial task. Also, matching of silhouettes using their conventional
arclength descriptions (or “signatures”) is very sensitive to deformations and
noise. Due to the local nature of edges, perceptually small dissimilarities of
the acquired silhouette with the prototype may cause large metric dissimilarity.
Thus, depending on the metric, the overall process can be sensitive even to
small shape variations, which are due to hand articulation in-between stored
poses of the hand. To provide some flexibility against such variations, the
work in [STTCO06] aligns the contours to be matched using the Iterative Closest
Point (ICP) algorithm [BM92]. A more effective approach for dealing with this
variability is presented in [SSK99], where the intrusions and protrusions of the
hand’s silhouette are utilized as classification features.

In [LTA95], a simple contour matching technique was proposed that tar-
geted posture recognition. In [KH95], contour matching is enabled mainly for
control and coarse hand modeling. The approach in [HS95], employs a silhou-
ette alignment and matching technique to recognize a prototype hand-silhouette
in an image and subsequently track it. Finally, polar-coordinate descriptions of
the contours points, or “signatures” [BF95]) and “size functions” [UV95] have
been used. Similar is also the approach in [SKS01] which, after extracting the
silhouette of a hand, it computes a silhouette-based descriptor that the recog-
nition will be based upon. Because this descriptor is a function of the contour’s
arclength, it is very sensitive to deformations that alter the circumference of
the contour and, thus, the authors propose a compensation technique. In ad-
dition, to reduce the search space of each recognition query, an adjacency map
indexes the database of models. In each frame, the search space is limited to
the “adjacent” views of the one estimated in the previous frame.

2.3.5 Model-based recognition methods

Most of the model-based gesture recognition approaches employ successive ap-
proximation methods for the estimation of their parameters. Since gesture
recognition is required to be invariant of relative rotation, intrinsic parameters
such as joint angles are widely utilized. The strategy of most methods in this
category is to estimate the model parameters, e.g. by inference or optimization,
so that the extracted features match a model.

In an early approach [Que95], the 3D trajectory of hands was estimated in
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the image, based on optical flow. The extremal points of the trajectory were
detected and used as gesture classification features. In [CBAT96a], the 3D
trajectories of hands are acquired by stereo vision and utilized for HMM-based
learning and recognition of gestures. Different feature vectors were evaluated as
to their efficacy in gesture recognition. The results indicated that choosing the
right set of features is crucial to the obtained performance. In particular, is was
observed that velocity features are superior to positional features, while partial
rotational invariance is also a discriminative feature.

In [DS94a], a small vocabulary of gestures are recognized through the pro-
jection of fingertips on the image plane. Although the detection is based on
markers, a framework is offered that uses only the fingertips as input data and
permits a model that represents each fingertip trajectory through space as a
simple vector. The model is simplified in that it assumes that most finger move-
ments are linear and exhibit minute rotational motion. Also in [KI93], grasps
are recognized after estimating finger trajectories from both passive and active
vision techniques [KI91]. However, the authors formulate the grasp-gesture de-
tector in the domain of 3D trajectories, offering, at the same time, a detailed
modeling of grasp kinematics (see [KI91] for a review on this topic).

The approach in [BW97], uses a “time-collapsing” technique for computing
a prototype trajectory of an ensemble of trajectories, in order to extract proto-
types and recognize gestures from an unsegmented, continuous stream of sensor
data. The prototype offers a convenient arclength parameterization of the data
points, which is then used to calculate a sequence of states along the prototype.
A gesture is defined as an ordered sequence of states along the prototype and
the feature space is divided into a relatively small number of finite states. A
particular gesture is recognized as a sequence of transitions through a series
of such states thus casting a relationship to HMM-based approaches (see Sec-
tion 2.3.6). In [KMO3], continuous states are utilized for gesture recognition in a
multi-view context. In [CBAT96b], the 3D trajectories of hands when gesturing
are estimated based on stereoscopic information and, in turn, features of these
trajectories, such as orientation, velocity etc, are estimated. Similarly, for the
purpose of studying of two-handed movements, the method in [SS05] estimates
features of 3D gesture trajectories.

In [WP97], properties such as blob trajectories are encoded in 1D functions of
time and then matched with gesture patterns using dynamic temporal warping
(DTW). In [EGGT03], a framework is presented for the definition of templates
encoding the motion and posture of hands using predicates that describe the
postures of fingers at a semantic level. Such data-structures are considered to be
semantic representations of gestures and are recognized, via template-matching,
as certain gesture prototypes.

The approach presented in [BJ98a, BJ98b| achieves the recognition of ges-
tures given some estimated representation of the hand motion. For each pair
of frames in a video sequence, a set of parameters that describe the motion
are computed, such as velocity or optical flow. These parameter vectors form
temporal trajectories that characterize the gesture. For a new image sequence,
recognition is performed by incrementally matching the estimated trajectory to
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the prototype ones. Robust tracking of the parameters is based on the CON-
DENSATION tracking algorithm [IB96b, IB96a]. The work in [IB98c] is also
similar to the above, showing that the CONDENSATION algorithm is com-
patible with simple dynamical models of gestures to simultaneously perform
tracking and recognition. The work in [GWP99], extends the above approach
in including HMMs to increase recognition accuracy.

In [LWHO02], the hand gesture is estimated by matching the 3D model pro-
jections and observed image features, so that the problem becomes a search
problem in a high dimensional space. In such approaches, tracking and recog-
nition are tightly coupled: since by detecting or tracking the hand the gesture
is already recognized. For this reason, these methods are discussed in more
depth in section 2.3. In [RASSO01], the low level visual features of hand joint
configuration were mapped with a supervised learning framework for training
the mapping function. In [WHO0] the supervised and the unsupervised learning
framework was combined and, thus, incorporate a large set of unlabeled training
data. The major advantage of using appearance based methods is the simplicity
of their parameter computation. However, the mapping may not be one-to-one,
and the loss of precise spatial information makes them especially less suited for
hand position reconstruction.

2.3.6 HMMs

A Hidden Markov Model (HMM) is a statistical model in which a set of hidden
parameters is determined from a set of related, observable parameters. In a
HMM, the state is not directly observable, but instead, variables influenced by
the state are. Each state has a probability distribution over the possible output
tokens. Therefore, the sequence of tokens generated by an HMM provides infor-
mation about the sequence of states. In the context of gesture recognition, the
observable parameters are estimated by recognizing postures (tokens) in images.
For this reason and because gestures can be recognized as a sequence of pos-
tures, HMMSs have been widely utilized for gesture recognition. In this context,
it is typical that each gesture is handled by a different HMM. The recognition
problem is transformed to the problem of selecting the HMM that matches best
the observed data, given the possibility of a state being observed with respect to
context. This context may be spelling or grammar rules, the previous gestures,
cross-modal information (e.g. audio) and others. An excellent introduction and
further analysis on the approach, for the case of gesture recognition, can be
found in [WB95].

Early versions of this approach can be found in [YOI92, SHJ94a, RKS96].
There, the the HMMs were performing directly on the intensity values of the
images acquired by a static camera. In [ML97], the edge image combined with
intensity information is used to create a static posture representation or a search
pattern. The work in [RKE98] includes the temporal component in an approach
similar to that of [BD96] and HMMs are trained on a 2D “motion image”.
The method operates on coarse body motions and visually distinct gestures
executed on a plane that is frontoparallel to the camera. Images are acquired in
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a controlled setting, where image differencing is utilized to construct the required
motion image. Incremental improvements of this work have been reported in
[EKR198].

The work in [VMO98], proposes a posture recognition system whose inputs are
3D reconstructions of the hand (and body) articulation. In this work, HMMs are
coupled with 3D reconstruction methods to increase robustness. In particular,
moving limbs are extracted from images, using the segmentation of [KMB94]
and, subsequently, joint locations are recovered by inferring the articulated mo-
tion from the silhouettes of segments. The process is performed simultaneously
from multiple views and the stereo combination of these segmentations provides
the 3D models of these limbs which are, in turn, utilized for recognition.

In [SWP98], the utilized features are the moments of skin-color based blob
extraction for two observed hands. Grammar rules are integrated in the HMM
to increase robustness in the comprehension of gestures. This way, posture-
combinations can be characterized as erroneous or improbable depending on
previous gestures. In turn, this information can be utilized as feedback to in-
crease the robustness of the posture recognition task and, thus, produce overall
more accurate recognition results. The approach in [LK99], introduces the con-
cept of a threshold model that calculates the likelihood threshold of an input
(moments of blob detection). The threshold model is a weak model for the su-
perset of all gestures in the vocabulary and its likelihood is smaller than that of
the correct gesture model for a given gesture, but larger than for a non-gesture
motion. This can be utilized to detect if some motion is part of a gesture or
not. To reduce the states model, states with similar probability distributions are
merged, based on a relative entropy measure. In [WP97], the 3D locations that
result from stereo multiple-blob tracking are input to a HMM that integrates a
skeletal model of the human body. Based on the 3D observations, the approach
attempts to infer the posture of the body.

Conceptually similar to conditional based reasoning is the “causal analysis”
approach. This approach stems from work in scene analysis [BBC93], which was
developed for rigid objects of simple shape (blocks, cubes etc). The approach
uses knowledge about body kinematics and dynamics to identify gestures based
on human motor plans, based on measurements of shoulder, elbow and wrist
joint positions in the image plane. From these positions, the system extracts
a feature set that includes wrist acceleration and deceleration, effort to lift
the hand against gravity, size of gesture, area between arms, angle between
forearms, nearness to body etc. Gesture filters use this information, along with
causal knowledge on humans interaction with objects in the physical world,
to recognize gestures such as opening, lifting, patting, pushing, stopping, and
clutching.

2.4 Complete gesture recognition systems

Systems that employ hand driven human-computer communication, interpret
the actions of hands in different modes of interaction depending on the appli-
cation domain. In some applications the hand or finger motion is tracked to be
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replicated in some kind of 2D or 3D manipulation activity. For example, in a
painting application the finger may sketch a figure in thin air, which however,
is to be replicated as a drawing on the computer’s screen. In other cases, the
posture, motion, and/or gesture of the user must be interpreted as a specific
command to be executed or a message to be communicated. Such a specific
application domain is sign language understanding for the hearing impaired.
Most of the systems presented in this subsection fall in these categories, how-
ever, there are some that combine the above two modes of interaction. Finally, a
few other applications focus on gesture recognition for understanding and anno-
tating human behavior, while others attempt to model hand and body motion
for physical training.

The use of a pointing finger instead of the mouse cursor appears to be an
intuitive choice in hand-driver interaction, as it has been adopted by a number
of systems - possibly due to the cross-culture nature of the gesture as well as
its straightforward detection in the image. In [FSM94], a generic interface that
estimates the location and orientation of the pointing finger was introduced. In
[CBC95], the motion of the user’s pointing finger indicates the line of drawing in
a “FingerPaint” application. In [Que96], 2D finger movements are interpreted
as computer mouse motion in a “FingerMouse” application. In [Ahm94], the 3D
position and planar orientation of the hand are tracked to provide of an interface
for navigation around virtual worlds. In [WHSSAVLO04], tracking of a human
finger from a monocular sequence of images is performed to implement a 3D
blackboard application; to recover the third dimension from the two-dimensional
images the fact that the motion of the human arm is highly constrained is
utilized.

The Digital Desk Calculator application [Wel93], tracked the user’s pointing
finger to recognize numbers on physical documents on a desk and recognize
them in order to do calculations with them. The system in [SHWPO7] utilizes
the direction of the pointing gesture of the user to infer the object that the user
is pointing at, on his/hers desk. In [KF94|, a “responsive workbench” allows
the user to manipulate objects in a virtual environment for industrial training
via tracking of the user’s hands. More recently the, very interesting, system
in [BHWS04, BHW05] attempts to recognize actions performed by the user’s
hands in an unconstrained office environment. Besides the fact that it applies
attention mechanisms, visual learning and contextual as well as probabilistic
reasoning to fuse individual results and verify their consistency it also attempts
to learn novel actions performed by the user.

In [ALOGb], a vision-based interface for controlling a computer mouse via
2D and 3D hand gestures is presented. Two vocabularies are defined: the first
depends only on 2D hand tracking while the second makes use of 3D information
and requires a second camera. The second condition of operation is of particular
importance because it allows the gesture observer (a robot) to move along with
the user. In another robotic application [KHB96], the user points the finger and
extends the arm to indicate locations on the floor, in order to instruct a robot
to move to the indicated location.

Applications where hand interaction facilitates the communication of a com-
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mand or message from the user to the system, require that the posture and
motion of hands is recognized and interpreted. Early gesture recognition ap-
plications supported just a few gestures that signified some basic commands or
concepts to the computer system. For example in [DP93], a monocular vision
system supported the recognition of a wide variance of yes/no hand gestures.
In [SHJ94b], a rotation-invariant image representation was utilized to recognize
a few hand gestures such as “hello” and “goodbye” in a controlled setup. The
system in [CCK96], recognized simple natural gestures such a hand trajectories
that comprised circles and lines.

Some systems combine the recognition of simple gestures with manipulative
hand interaction. For example in [WO03], stereo-vision facilitates hand-tracking
and gesture-recognition in a GUI that permits the user to perform window-
management tasks, without the use of the mouse or keyboard. The system in
[BPHI8] integrated navigation control gestures into the “BattleView” virtual
environment. The integrated gestures were utilized in navigating oneself as well
as moving objects in the virtual environment. Hand-driven 3D manipulation
and editing of virtual objects is employed in [PSH96, ZPD'97], in the context
of a virtual environment for molecular biologists. In [SK98], a hand-gesture
interface is proposed that allows the manipulation of objects in a virtual 3D
environment by recognizing a few simple gestures and tracking hand motion.
The system in [HCNPO6] tracks hand motion to rotate the 3D content that is
displayed in an autostereoscopic display. In the system of [Hoc98|, the user
interacts in front of a projection screen, and where interaction in physical space
and pointing gestures are used to direct the scene for filmmaking.

In terms of communicative gestures, the sign language for the hearing im-
paired has received significant attention [SP95, CSW95, Wal95, GA97, SWP9S,
VM99, BH00, VMO01, TSS02, YAT02, MWSKO02]. Besides providing a con-
strained and meaningful dataset, it exhibits significant potential impact in so-
ciety since it can facilitate the communication of the hearing impaired with
machines through a natural modality for the user. In [ILI98], a bidirectional
translation system between Japanese Sign Language and Japanese was imple-
mented, in order to help the hearing impaired communicate with normal speak-
ing people through sign language. Among the earliest systems is the one in
[SP95] which recognizes about 40 American Sign Language which was later ex-
tended [SWP9S8] to observe the user’s hands from a camera mounted on a cap
worn by the user. Besides the recognition of individual hand postures, the sys-
tem in [MWSKO2] recognized motion primitives and full sentences, accounting
for the fact that the same sign may have different meanings depending on con-
text. The main difference of the system in [YATO02] is that it extracts motion
trajectories from an image sequence and uses these trajectories as features in
gesture recognition in combination with recognized hand postures.

Gestures have been utilized in the remote control of a television set via hand
gestures in [Fre99|, where an interface for video games is also considered. In
[Koh97], a more general system for the control of home appliances was intro-
duced. In [LK99], a gesture recognition method was developed to spot and rec-
ognize about 10 hand gestures for a human computer interface, instantiated to
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control a slide presentation. The systems in [ZNG'04] and [CRMMO00, MMRO00],
recognize a few hand postures for the control of in-car devices and non-safety
systems, such as radio/CD, AC, telephone and navigation system, with hand
postures and dynamic hand gestures, in an approach to simplify the interac-
tion with these devices while driving. Relevant to control of electronic devices,
in [MHPT01], a system is presenting for controlling a video camera via hand
gestures with commands such as zoom, pan and tilt. In [TM96], a person-
independent gesture interface was developed on a real robot; the user is able
to issue commands such as how to grasp an object and where to put it. The
application of gesture recognition in tele-operation systems has been investi-
gated in [She93], to pinpoint the challenges that arise when controlling remote
mechanisms in such large distances (earth to satellite) that the round trip time
delay for visual feedback is several tenths of a second.

Tracking and recognizing body and hand motion has also been employed in
personal training. The system in [BOP97] infers the posture of the whole body
by observing the trajectories of hands and the head, in constrained setups. In
[DB98], a prototype system for a virtual Personal Aerobics Trainer was imple-
mented that recognizes stretching and aerobic movements and guides the user
into a training program. Similarly in [Bec97], a virtual T’ai Chi trainer is pre-
sented. Recently, Sony [Fox05] introduced a system that tracks body motion
against a uniform background and features a wide variety of gaming and per-
sonal training capabilities. The “ALIVE II” system [MDBP95] identifies full
body gestures, in order to control “artificial life” creatures, such as virtual pets
and companions that, sometimes, mimic the body gestures of the user. Ges-
tures such as pointing the arm are interpreted by the simulated characters as
a command to move to the indicated location. In addition, the user can issue
gesture-driven commands to manipulate virtual objects. In [CT98] the authors
present a hand and body gesture-driven interactive virtual environment for chil-
dren.

The system in [Que00], attempts to recognize free-form hand gestures that
accompany speech in natural conversations and which provide a complementary
modality to speech for communication. A gesture-recognition application is pre-
sented in [JBMK97], where an automatic system for analyzing and annotating
video sequences of technical presentations was developed. In this case, the sys-
tem passively extracts information about the presenter of the talk. Gestures
such as pointing or writing are recognized and utilized in the annotation of the
video sequence. Similarly, in [BJ98a], a system that tracks the actions of the
user on a blackboard actions was implemented. The system can recognize ges-
tures that commands the system to e.g. “print”, “save” and “cut” the contents
of the blackboard.
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3 The Proposed Approach to Human-Robot Interaction
based on Hand Gestures

In this section we present the development of a prototype gesture recognition
system intended for human-robot interaction. The application at hand involves
natural interaction with autonomous robots installed in public places such as
museums and exhibition centers. The operational requirements of such an ap-
plication challenge existing approaches in that the visual perception system
should operate efficiently under totally unconstrained conditions regarding oc-
clusions, variable illumination, moving cameras, and varying background. More-
over, since no training of users can take place (users are assumed to be normal
visitors of museums/exhibitions), the gesture vocabulary needs to be limited to
a small number of natural, generic and intuitive gestures that humans use in
their everyday human-to-human interactions.

The proposed gesture recognition system builds upon a probabilistic frame-
work that allows the utilization of multiple information cues to efficiently detect
regions belonging to human hands [BALTO08]. The utilized information cues in-
clude color information, motion information through a background subtraction
technique [GS99, SEG99], expected spatial location of hands within the image
as well as velocity and shape of the detected hand segments. Tracking over time
is achieved by a technique that can handle hands that may move in complex
trajectories, occlude each other in the field of view of the robot’s camera and
vary in number over time [ALO4b]. Finally, a simple set of hand gestures is
defined based on the number of extended fingers and their spatial configuration.

3.1 The proposed approach in detail

A block diagram of the proposed gesture recognition system is illustrated in Fig-
ure 1. The first two processing layers of the diagram (i.e processing layers 1 and
2) perform the detection task (in the sense described in Section 2) while process-
ing layers 3 and 4 correspond to the tracking and recognition tasks respectively.
In the following sections, details on the implementation of the individual system
components are provided.

3.1.1 Processing layer 1: Estimating the probability of observing a hand
at the pixel level

Within the first layer, the input image is processed in order to identify pixels
that depict human hands. Let U be the set of all pixels of an image. Let M
be the subset of U corresponding to foreground pixels (i.e a human body) and
S be the subset of U containing pixels that are skin colored. Accordingly, let
‘H stand for the sets of pixels that depict human hands. The relations between
the above mentioned sets are illustrated in the Venn diagram shown in Figure
2. The implicit assumption in the above formulation is that H is a subset of M,
i.e. hands always belong to the foreground. It is also important that according
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—— | Compute Gestures » Compute Gestures ——»
Processing Layer 4 ? ?
Create/manage Create/manage
hand hypotheses hand hypotheses :
Processing Layer 3 ? ?
Compute hand blobs Compute hand blobs
Processing Layer 2 ? ?
Assign probabilities L, Assign probabilities
to pixels to pixels
Processing Layer 1 T T
Image frame n image frame n+1

Fig. 1: Block diagram of the proposed approach for hand tracking and gesture
recognition. Processing is organized into four layers.

v

Fig. 2: The Venn diagram representing the relationship between the pixel sets
U, M, S and H.

to this model, all pixels belonging to hands are not necessarily assumed to be
skin-colored.

Accordingly, let S, and H be binary random variables (i.e taking values in
{0,1}), indicating whether a pixel belongs to S and H, respectively. Also, let
M be a binary variable (determined by the employed foreground subtraction
algorithm) that indicates whether a pixel belongs to M. Let L be the 2D
location vector containing the pixel image coordinates and let T' be a variable
that encodes a set of features regarding the currently tracked hypotheses (the
contents of T" will be explained later in this section). Given all the above,
the goal of the this processing layer, is to compute whether a pixel belongs
to a hand, given (a) the color ¢ of a single pixel, (b) the information m on
whether this pixel belongs to the background (i.e. M = m) and, (c¢) the values
[ and t of L and T, respectively. More specifically, the conditional probability
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Fig. 3: The proposed Bayes net.

Py, = P(H=1|C=c, T=t, L=, M=m) needs to be estimated®.

To perform this estimation, we assume the Bayesian network shown in Figure
3. The nodes in the graph of this figure correspond to random variables that
represent degrees of belief on particular aspects of the problem. The edges in the
graph are parameterized by conditional probability distributions that represent
causal dependencies between the involved variables. It is known that

P(H=1,¢,t,l,m)
P(e,t,l,m) (1)

2Ty

P(H=1l¢e,t,l,m) =

By marginalizing the numerator over both possible values of S and the denomi-
nator over all four possible combinations of S and H (the values of S and H are
expressed by the summation indices s and h, respectively), Pj, can be expanded
as:

Z P(H=1,s,¢,t,1,m)

P, = se{0,1} (2)

B Z Z P(h,s,c,t,l,m)

s€{0,1} he{0,1}

By applying the chain rule of probability and by taking advantage of the variable
(in-)dependencies implied by the graph of Figure 3(b), we obtain:

P(h,s,c,t,l,m) = P(m)P(l)P(t|h)P(c|s)P(s|l,m)P(hl|l, s, m) (3)

I Note that capital letters are used to indicate variables and small letters to indicate specific
values for these variables. For brevity, we will also use the notation P(z) to refer to probability
P(X = z) where X any of the above defined variables and = a specific value of this variable.
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Finally, by substituting to Equation (1), we obtain:

P(tH=1) Y P(c|s)P(s|l, m)P(H=1|l,s,m)

P o— s€{0,1} (4)
TS Py S P(els)P(slm)P(hlL, s, m)

he{0,1} se{0,1}

Details regarding the estimation of the individual probabilities that appear in
Equation (4) are provided in the following sections.

Foreground segmentation

It can be easily verified that when M = 0 (i.e. a pixel belongs to the back-
ground), the numerator of Equation (4) becomes zero as well. This is because,
as already mentioned, hands have been assumed to always belong to the fore-
ground. This assumption simplifies computations because Equation (4) should
only be evaluated for foreground pixels.

In order to compute M, we employ the foreground /background segmentation
technique proposed by Stauffer and Grimson [GS99, SEG99] that employs an
adaptive Gaussian mixture model on the background color of each image pixel.
The number of Gaussians, their parameters and their weights in the mixture
are computed online.

The color model

P(c|s) is the probability of a pixel being perceived with color ¢ given the in-
formation on whether it belongs to skin or not. To increase robustness against
lighting variability, we transform colors to the YUV color space. Following the
same approach as in [YLW98] and [ALO04b], we completely eliminate the Y (lu-
minance) component. This makes C a two-dimensional variable encoding the U
and V (chrominance) components of the YUV color space.

P(c|s) is obtained off-line through a separate training phase with the pro-
cedure described in [ALO4b]. Assuming that C is discrete (i.e taking values in
[0..255]2) the result can be encoded in the form of two, 2D look-up tables; one
table for skin-colored objects (s = 1) and one table for all other objects (s = 0).
The rows and the columns of both look-up tables correspond to the U and V
dimensions of the YUV color space.

The spatial distribution model

A spatial distribution model for skin and hands is needed in order to evaluate
P(s|l,m) and P(h|l,s,m). These two probabilities express prior probabilities
that can be obtained during training and are stored explicitly for each each
location ! (i.e for each image pixel). In order to estimate these probabilities,
a set of four different quantities are computed off-line during training. These
quantities are depicted in Table 1 and indicate the number of foreground pixels
found in the training sequence for every possible combination of s and h. As
discussed in Section 3.1.1, only computations for foreground pixels are necessary.
Hence, all training data correspond to M = 1. We can easily express P(s|l, M =
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Tab. 1: Quantities estimated during training for the spatial distribution model
h=0 h=1
s=0]s=1]s=0]|s=1
500 S01 510 S11

1) and P(hl|l, s, M = 1) in terms of sgg, So1, $10 and s1; as:

P(SvM:]-al) Sos 1 S1s
P(s|l, M=1|) = = 5
(slt D P(M=1,1) 800 + So1 + S10 + S11 (5)

Similarly:
P(h,s, M=1,1) Shs
P(hll,s, M=1|) = = 0
(h|l, s, ) P(s,M=1,1) S0s + S1s (6)

Top-down information regarding hand features

Within the second and the third processing layers, pixel probabilities are con-
verted to blobs (second layer) and hand hypotheses which are tracked over time
(third layer). These processes are described later in Sections 3.1.2 and 3.1.3, re-
spectively. Nevertheless, as Figure 1 shows, the third processing layer of image
n provides top-down information exploited during the processing of image n+ 1
at layer 1. For this reason, the description of the methods employed to compute
the probabilities P(¢|h) that are further required to estimate P, is deferred to
section 3.1.3.

3.1.2 Processing layer 2: From pixels to blobs

This layer applies hysteresis thresholding on the probabilities determined at
layer 1. These probabilities are initially thresholded by a “strong” threshold
Tinaz to select all pixels with P, > Ti,4.. This yields high-confidence hand
pixels that constitute the seeds of potential hand blobs. A second thresholding
step, this time with a “weak” threshold T},;,, along with prior knowledge with
respect to object connectivity to form the final hand blobs. During this step,
pixels with probability P, > Tyin where Thin < Tiae, that are immediate
neighbors of hand pixels are recursively added to each blob.

A connected components labeling algorithm is then used to assign different
labels to pixels that belong to different blobs. Size filtering on the derived
connected components is also performed to eliminate small, isolated blobs that
are attributed to noise and do not correspond to meaningful hand regions.

Finally, a feature vector for each blob is computed. This feature vector
contains statistical properties regarding the spatial distribution of pixels within
the blob and will be used within the next processing layer for data association.

3.1.3 Processing layer 3: From blobs to object hypotheses

Within the third processing layer, blobs are assigned to hand hypotheses which
are tracked over time. Tracking over time is realized through a scheme which
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can handle multiple objects that may move in complex trajectories, occlude each
other in the field of view of a possibly moving camera and whose number may
vary over time. For the purposes of this paper?, it suffices to mention that a hand
hypothesis h; is essentially represented as an ellipse h; = h; (ca,, ¢y, , v, Bi, 05)
where (¢g,,cy,) is the ellipse centroid, «; and ; are, respectively, the lengths
of the major and minor axis of the ellipse, and 6; is its orientation on the im-
age plane. The parameters of each ellipse are determined by the covariance
matrix of the locations of blob pixels that are assigned to a certain hypoth-
esis. The assignment of blob pixels to hypotheses ensures (a) the generation
of new hypotheses in cases of unmatched evidence (unmatched blobs), (b) the
propagation and tracking of existing hypotheses in the presence of multiple,
potential occluding objects and (c¢) the elimination of invalid hypotheses (i.e.
when tracked objects disappear from the scene of view).

Top-down information regarding hand features revisited

In this work, for each tracked hand hypothesis, a feature vector T is generated
which is propagated in a “top-down” direction in order to further assist the
assignment of hand probabilities to pixels at processing layer 1. The feature
vector T' consists of two different features:

1. The average vertical speed v of a hand, computed as the vertical speed of
the centroid of the ellipse modeling the hand. The rationale behind the
selection of this feature is that hands are expected to exhibit considerable
average speed v compared to other skin colored regions such as heads.

2. The ratio r of the perimeter of the hand contour over the circumference
of a hypothetical circle having the same area as the area of the hand. The
rationale behind the selection of this feature is that hands are expected to
exhibit high 7 compared to other objects. That is, r = 2p/\/Ta, where p
and « are the hand circumference and area, respectively.

Given v and r, P(t|h) is approximated as:
P(th) = P(v[h)P(r|h) (7)

P(t|h) is the probability of measuring a specific value ¢ for the feature vector
T, given the information of whether a pixel belongs to a hand or not. A pixel
is said to belong to a hand, depending on whether its image location lies within
the ellipse modeling the hand hypothesis. That is, the feature vector T" encodes
a set of features related to existing (tracked) hands that overlap with the pixel
under consideration.

In our implementation, both P(v|h) and P(r|h) are given by means of one-
dimensional look-up tables that are computed off-line, during training. If there
is more than one hypothesis overlapping with the specific pixel under considera-
tion, the hypothesis that yields maximal results is chosen for P(¢|h). Moreover,
if there is no overlapping hypothesis at all, all of the conditional probabilities

2 For the details of this tracking process, the interested reader is referred to [ALO04b]
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Ll

Fig. 4: The gesture vocabulary of the proposed approach. (a) The “Stop” ges-
ture, (b) The “Thumbs Up” gesture. (¢) The “Thumbs Down” gesture.
(d) The “Point” gesture.

of Equation (7) are substituted by the maximum values of their corresponding
look-up tables.

3.1.4 Processing layer 4: Recognizing hand gestures

The application considered in this paper involves natural interaction with au-
tonomous mobile robots installed in public places such as museums and exhibi-
tion centers. Since the actual users of the system will be untrained visitors of
a museum/exhibition, gestures should be as intuitive and natural as possible.
Moreover, the challenging operational requirements of the application at hand
impose the absolute need for gestures to be simple and robustly interpretable.
Four simple gestures have been chosen to comprise the proposed gesture vocab-
ulary which is graphically illustrated in Figure 4. All four employed gestures are
static gestures, i.e., gestures in which the information to be communicated lies
in the hand and finger posture at a certain moment in time. More specifically,
the employed gestures are:

e The “Stop” gesture. The user extends his/her hand with all five fingers
stretched to stop the robot from its current action.

e The “Thumbs Up” gesture. The user performs a “thumbs up” sign to
approve or answer “yes” to a question by the robot.

e The “Thumbs Down” gesture. The user expresses disapproval or answers
“no” to a question by doing the thumbs down gesture.

e The “Point” gesture. The user points to a specific exhibit or point of
interest to ask the robot to guide him/her there.

It is also important that because of the generic nature of the employed ges-
tures, their actual meaning can be interpreted by the robot based on specific,
contextual information related to the scenario of use.

In order to robustly recognize the gestures constituting our gesture vocabu-
lary, we employ a rule-based technique that relies on the number and the posture
of the distinguishable fingers i.e the number of detected fingertips corresponding
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()

Fig. 5: Fingertip Detection. Fingers are denoted as black yellow circles

to each tracked hand hypothesis and their relative location with respect to the
centroid of the hypothesis.

Finger Detection
Fingertip detection is performed by evaluating a curvature measure of the con-
tour of the blobs that correspond to each hand hypothesis as in [ALO6b]. The
employed curvature measure assumes values in the range [0.0, 1.0] and is defined
as: .
1 ( . PP-BP )
|

Ki(P) =3 (14— 22 (8)
BB - | PP

2
where P;, P and P, are successive points on the contour, P being separated
from P, and P, by the same number of contour points. The symbol (-) denotes
the vector dot product. The algorithm for finger detection computes K;(P) for
all contour points of a hand and at various scales (i.e. for various values of
the parameter [). A contour point P is then characterized as the location of a
fingertip if both of the following conditions are met:

e K;(P) exceeds a certain threshold for at least one of the examined scales,
and,

e K;(P) is a local maximum in its (scale-dependent) neighborhood of the
contour.

Evaluation of curvature information on blob contours points has been demon-
strated in the past[ALO6b] to be a robust way to detect fingertips.

A significant advantage of contour features like fingertips is that in most
cases they can be robustly extracted regardless the size of the blob (i.e distance
of the observer), lighting conditions and other parameters that usually affect
color and appearance based features. Figure 5 shows some examples from a fin-
gertip detection experiment. In this experiment, there exist several hands which
are successfully tracked among images. Fingers are also detected and marked
with black squares. In the reported experiments, the curvature threshold of the
first criterion was set to 0.7.

Recognizing a Gesture
As already mentioned, all employed gestures are static i.e., gestures in which the
information to be communicated lies in features obtained at a specific moment
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Tab. 2: Rules used to recognize the four gestures of our vocabulary.

Gesture Visible Fingertips | Orientation ¢ (in degrees)

Stop 5 Irrelevant

Thumbs Up 1 ¢ € [60,120]

Thumbs Down 1 ¢ € [240, 300]

Point 1 ¢ € [0,60] U [120, 240] U [300, 360]

in time. The employed features consist of the number of distinguishable fingers
(i.e fingers with distinguishable fingertips) and their orientation ¢ with respect
to the horizontal image axis. To compute the orientation ¢ of a particular finger,
the vector determined by the hand’s centroid and the corresponding fingertip is
assumed.

To recognize the four employed gestures a rule based approach is used. Table
2 summarizes the rules that need to be met for each of the four gestures in our
vocabulary. Moreover, to determine the specific point in time that a gesture
takes place three additional criteria have to be satisfied.

e Criterion 1: The hand posture has to last for at least a fixed amount of
time t4. In the actual implementation of the system, a minimum duration
of half a second is employed (i.e t; = 0.5 sec). Assuming a frame rate of
30Hz, this means that in order to recognize a certain posture, this has to
be maintained for a minimum of fifteen consecutive image frames.

e Criterion 2: The hand that performs the gesture has to be (almost) still.
This is determined by applying the requirement that the hand centroid
remains within a specific threshold radius r,4 for at least ¢, seconds. In all
our experiments an r, value of about 30 pixels has been proven sufficient
to ensure that the hand is almost standstill.

e Criterion 3. The speed of the hand has to be at its minimum with respect
to time. To determine whether the hand speed has reached its minimum,
a time lag ¢; is assumed (fixed to about 0.3 sec in our experiments).

3.2 Experimental results

The proposed approach has been assessed using several video sequences contain-
ing people performing various gestures in indoor environments. Several videos
of example runs are available on the web?3.

In this section we will present results obtained from a sequence depicting a
man performing a variety of hand gestures in a setup that is typical for human
robot interaction applications. i.e the subject is standing at a typical distance
of about 1m from the robot looking towards the robot. The robot’s camera is
installed at a distance of approximately 1.2m from the floor. The resolution
of the sequence is 640 x 480 and it was obtained with a standard, low-end
web camera at 30 frames per second. Figure 6 depicts various intermediate

3 http://www.ics.forth.gr/ xmpalt/research/gestures/index.html
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Fig. 6: The proposed approach in operation. (a) original frame, (b) background
subtraction result, (c), pixel probabilities for hands, (d),contour and
fingertip detection

results obtained at different stages of the proposed approach. A frame of the
test sequence is shown in Figure 6(a). Figure 6(b) depicts the result of the
background subtraction algorithm, i.e P(M). In order to achieve real-time
performance, the background subtraction algorithm operates at down-sampled
images of dimensions 160 x 120. Figure 6(c) depicts P, i.e. the result of the
first processing layer of the proposed approach. The contour of the blob and the
detected fingertip that correspond to the only present hand hypothesis is shown
in Figure 6(d). As can be verified, the algorithm manages to correctly identify
the hand of the depicted man. Notice also that, in contrast to what would
happen if only color information were utilized, neither skin-colored objects in
the background nor the subject’s face is falsely recognized as a hand.

Figure 7 shows six more frames out of the same sequence. In all cases,
the proposed approach has been successful in correctly identifying the hands of
the person and in correctly recognizing the performed gesture. The presented
results were obtained at a standard 3GHz personal computer which was able to
process images of size 640 x 480 at 30Hz.

4 Summary

In this paper, we reviewed several existing methods for supporting vision-based
human-computer interaction based on the recognition of hand gestures. The
provided review covers research work related to all three individual subproblems
of the full problem, namely detection, tracking and recognition. Moreover, we
provide an overview of some integrated gesture recognition systems.
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Fig. 7: Six frames of a sequence depicting a man performing gestures in an office
environment.

Additionally, in this paper we have presented a novel gesture recognition sys-
tem intended for natural interaction with autonomous robots that guide visitors
in museums and exhibition centers. The proposed gesture recognition system
builds on a probabilistic framework that allows the utilization of multiple in-
formation cues to efficiently detect image regions that belong to human hands.
Tracking over time is achieved by a technique that can simultaneously handle
multiple hands that may move in complex trajectories, occlude each other in the
field of view of the robot’s camera and vary in number over time. Dependable
hand tracking, combined with fingertip detection, facilitates the definition of a
small and simple hand gesture vocabulary that is both robustly interpretable
and intuitive to humans interacting with robots. Experimental results presented
in this paper, confirm the effectiveness and the efficiency of the proposed ap-
proach, meeting the run-time requirements of the task at hand. Nevertheless,
and despite the vast amount of relevant research efforts, the problem of efficient
and robust vision-based recognition of natural hand gestures in unprepared en-
vironments still remains open and challenging, and is expected to remain of
central importance to the computer vision community in the forthcoming years.
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