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Abstract— This paper presents a vision-based localization
approach for an underwater robot in a structured envi-
ronment. The system is based on a coded pattern placed
on the bottom of a water tank and an onboard down-
looking camera. Main features are, absolute and map-based
localization, landmark detection and tracking, and real-time
computation (12.5 Hz). The proposed system provides three-
dimensional position and orientation of the vehicle along
with its velocity. Accuracy of the drift-free estimates is very
high, allowing them to be used as feedback measures of
a velocity-based low level controller. The paper details the
localization algorithm, by showing some graphical results,
and the accuracy of the system.

I. INTRODUCTION

The positioning of an underwater vehicle is a big chal-
lenge. Techniques involving inertial navigation systems,
acoustic or optical sensors have been developed to esti-
mate the position and orientation of the vehicle. Among
these techniques, visual mosaics have greatly advanced
during last years offering, besides position, a map of
the environment [6], [5]. Main advantages of mosaicking
with respect inertial and acoustic sensors are smaller cost
and smaller sensor size. Another advantage respect to
acoustic transponder networks is that the environment does
not require any preparation. However, position estimation
based on mosaics can only be used when the vehicle
is performing tasks near the ocean floor and requires a
reasonable visibility in the working area. There are also
unresolved problems like motion estimation in presence
of shading effects, presence of ”marine snow” or non-
uniform illumination. Moreover, as the mosaic evolves,
a systematic bias is introduced in the motion estimated
by the mosaicking algorithm, producing a drift in the
localization of the robot [3].

Current work on underwater vehicle localization at
the University of Girona concentrates on visual mosaics
[2]. While a real time application which deals with the
mentioned problems is being developed, a simplified po-
sitioning system was implemented. The aim of it is to
provide an accurate estimation of the position and velocity
of URIS Autonomous Underwater Vehicle (AUV) in a
water tank, see Fig. 1. The utility of this water tank is
to experiment in different research areas, like dynamics

Fig. 1. URIS’s experimental environment

modelling or control architectures, in which the position
and velocity of the vehicle are usually required.

In this paper we present a vision-based localization
system to estimate the position, orientation and veloc-
ity of an underwater robot in a structured environment.
Main features of this system are absolute and map-based
localization, landmark detection and tracking, and real-
time computation. The components of the system are an
onboard down-looking camera and a coded pattern placed
on the bottom of the water tank. The algorithm calculates
the three-dimensional position and orientation, referred to
the water tank coordinate system, with a high accuracy
and drift-free. An estimation of the vehicle’s velocities,
including surge, sway, heave, roll, pitchand yaw, is also
computed. These estimates are used by the velocity-based
low level controller of the vehicle.

The structure of this paper is as follows: section II
describes URIS’s underwater vehicle and its experimental
setup. In this section emphasis is given to the down-
looking camera and to the visually coded pattern, both
used by the localization system. Section III details the
localization algorithm explaining the different phases. In
section IV, some results which show the accuracy of the
system are presented. And finally, conclusions are given
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Fig. 2. URIS’s AUV, a) picture b) schema

in section V.

II. URIS’S EXPERIMENTAL SETUP

In order to experiment with URIS underwater vehicle,
a water tank is used, see Fig. 1. The shape of the tank is
a cylinder with 4.5 meters in diameter and 1.2 meters in
height. This environment allows the perfect movement of
the vehicle in the horizontal plane and a restricted vertical
movement of only 30 centimeters. The localization system
is compounded by a coded pattern which covers the whole
bottom of the tank and a down-looking camera attached
on URIS. Next subsections describe URIS, the model of
the camera and the coded pattern.

A. URIS’s Autonomous Underwater Vehicle

The robot for which has been designed this navigation
system is URIS, see Fig. 2. This vehicle was developed
at the University of Girona with the aim of building a
small-sized AUV. The hull is composed of a stainless steel
sphere with a diameter of 350mm, designed to withstand
pressures of 3 atmospheres (30 meters depth). On the
outside of the sphere there are two video cameras (forward
and down looking) and 4 thrusters (2 inX direction and 2
in Z direction). Due to the stability of the vehicle inpitch
and roll , the robot has four degrees of freedom (DOF);
surge, sway, heaveand yaw. Except for thesway DOF,
the others DOFs can be directly controlled.

The robot has an onboard PC-104 computer, running
the real-time operative system QNX. In this computer, the
low and high level controllers are executed. An umbilical
wire is used for communication, power and video signal
transmissions. The localization system is currently being
executed on an external computer. A new onboard com-
puter for video processing purposes will be incorporated
in the near future.

B. Down-Looking Camera Model

The camera used by the positioning system is an analog
B/W camera. It provides a large field of view (about
57o in width by 43o in height underwater). The camera
model that has been used is the Faugeras-Toscani [1]
algorithm in which only a first order radial distortion has
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Fig. 3. Camera projective geometry

been considered. This model is based on the projective
geometry and relates a three-dimensional position in the
space with a two-dimensional position in the image, see
Figure 3. These are the equations of the model:

CX
CZ

=
(xp−u0)(1+k1r2)

f ku
(1)

CY
CZ

=
(yp−v0)(1+k1r2)

f kv
(2)

r =

√(
xp−u0

ku

)2

+
(

yp−v0

kv
)
)2

(3)

where,(CX,CY,C Z) are the coordinates of a point in the
space respect the camera coordinate system{C} and (xp

,yp) are the coordinates, measured in pixels, of this point
projected in the image plane. And, as intrinsic parameters
of the camera: (u0,v0) are the coordinates of the center
of the image, (ku,kv) are the scaling factors,f is the
focal distance,k1 is the first order term of the radial
distortion andr is the distance, in length units, between
the projection of the point and the center of the image.

The calibration of the intrinsic parameters of the camera
was done off-line using several representative images and
applying an optimization algorithm, which by iteration,
estimated the optimal parameters.

C. Visually Coded Pattern

The main goal of the pattern is to provide a set of known
global positions to estimate, by solving the projective
geometry, the position and orientation of the underwater
robot. The pattern is based on grey level colors and
only round shapes appear on it to simplify the landmark
detection, see Fig. 4,a). Each one of these rounds or
dots will become a global position used in the position
estimation. Only three colors appear on the pattern, white
as background, and grey or black in the dots. Again, the
reduction of the color space was done to simplify the dots
detection and to improve the robustness. The dots have
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Fig. 4. Visually Coded pattern. The absence of a dot identifies a global
mark. The dots marked here with a circle are used to find the orientation
of the pattern

been distributed among the pattern following theX andY
directions, see Fig. 4. These two directions are called the
main lines of the pattern.

The pattern contains some global marks, which encode
a unique global position. These marks are recognized by
the absence of one dot surrounded by 8 dots, see Fig. 4.
From the 8 dots that surround the missing one, 3 are used
to find the orientation of the pattern and 5 to encode the
global position. The 3 dots which mark the orientation,
appear in all the global marks in the same position and
with the same colors. The detailed view seen in Fig. 4
shows with a circle these 3 dots. The global position
is encoded in the binary color (grey or black) of the 5
remainder dots. The maximum number of positions is 32.
These global marks have been uniformly distributed on the
pattern. A total number of 37 global marks have been used,
repeating 5 codes in opposite positions on the pattern. The
zones of the pattern that do not contain a global mark,
have been fulfilled with alternately black and grey dots,
which helps the tracking algorithm, as will be explained
in Section III-C.

In order to choose the distance between two neighbor
dots several aspects were taken into account. A short
distance represents a higher number of appearing dots
in the image, and therefore, a more accurate estimation
of the vehicle’s position. On the other hand, if a lot of
dots appear in the image and the vehicle moves fast, dot
tracking can be very hard or impractical. A long distance
between two neighbor dots produces the contrary effects.
Therefore, an intermediate distance was chosen for this
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Fig. 5. Phases of the localization system: a) acquired image, b)
binarization, c) detection of the dots, d) main lines of the pattern, e)
dots neighborhood, f) estimated position and orientation

particular application. The aspects which influenced the
decision were the velocities and oscillations of the vehicle,
the camera field of view and the range of depths in which
the vehicle can navigate. The final distance between each
two neighbor dots was 10 cm.

III. LOCALIZATION PROCEDURE

The vision-based localization algorithm was designed
to work at 12.5 frames per second, half of the video
frequency. Each iteration requires a set of sequential tasks
starting from image acquisition to velocity estimation.
Next subsections describe the phases that constitute the
whole procedure.

A. Pattern Detection

The first phase of the localization algorithm consists
in detecting the dots of the pattern. To accomplish this
phase a binarization is first applied to the acquired image,
see Fig. 5a and 5b. Due to the non-uniform sensitivity of
the camera in its field of view, a correction of the pixel
grey level values is performed before binarization. This
correction is based on the illumination-reflectance model
[4] and provides a robust binarization of the pattern also
under non-uniform lighting conditions.



Once the image is binarized, the algorithm finds the
objects and checks the area and shape of them, dismissing
the ones that do not match the characteristics of a dot ob-
ject. Finally, for each detected dot, the algorithm classifies
its grey level labelling them in three groups:grey, black
or unknown. In case the label is unknown, the dot will
be partially used in next phases, as Section III-C details.
Fig. 5c shows the original image with some marks on the
detected dots.

B. Dots Neighborhood

The next phase in the localization system consists in
finding the neighborhood relation among the detected dots.
The goal is to know which dot is next to which one. This
will allow the calculation of the global position of all of
them, starting from the position of only one. Next phase
will consider how to find this initial position.

The first step, in this phase, is to compensate the
radial distortion that affects the position of the detected
dots in the image plane. In Fig. 5d, the dots before
distortion compensation are marked in black and, after
the compensation, in grey. The new position of the dots
in the image is based on the ideal projective geometry.
This means that lines in the real world appear as lines
in the image. Using this property, and also by looking at
relative distances and angles, the main lines of the pattern
are found. Fig. 5d shows the detected main lines of the
pattern. To detect the main lines, at least 6 dots must
appear in the image.

Next step consists in finding the neighborhood of each
dot. The algorithm starts from a central dot, and goes over
the others according to the direction of the main lines.
To assign the neighborhood of all the dots, a recursive
algorithm was developed which also uses distances and
angles between dots. After assigning all the dots, a net-
work joining all neighbor dots can be drawn, see Fig. 5e.

C. Dots Global Position

Two methodologies are used to identify the global
position of the detected dots. The first one is used when
a global mark is detected, what means that, a missing dot
surrounded by 8 dots appears on the network and, any of
them has theunknowncolor label, see Fig. 5e. In this case,
the algorithm checks the three orientation dots to find how
the pattern is oriented. From the four possible orientations,
only one matches the three colors. After that, the algorithm
checks the five dots which encode a memorized global
position. Then, starting from the global mark, the system
calculates the position of all the detected dots using the
dot neighborhood.

The second methodology is used when any global mark
appears on the image, or when there are dots of the global
mark which have the color labelunknown. It consists on
tracking the dots from one image to the next one. The dots

that appear in the same zone in two consecutive images
are considered to be the same, and therefore, the global
position of the dot is transferred. The high speed of the
localization system, compared with the slow dynamics of
the underwater vehicle, assures the tracking performance.
The algorithm distinguishes between grey and black dots,
improving the robustness on the tracking. Also, because
different dots are tracked at the same time, the transferred
positions of these dots are compared, using the dot neigh-
borhood, and therefore, mistakes are prevented.

D. Position and orientation estimation

Having the global positions of all the detected dots,
the localization of the robot can be carried out. Equa-
tion 4 contains the homogeneous matrix which relates
the position of one point(Xi ,Yi ,Zi) respect the camera
coordinate system{C}, with the position of the same
point respect to the water tank coordinate system{T}. The
parameters of this matrix are the position(TXC,T YC,T ZC)
and orientation(r11, ..., r33) of the camera respect{T}.
The nine parameters of the orientation depend only on
the values ofroll , pitch andyaw angles.
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For each doti, the position(TXi ,
T Yi ,

T Zi) is known, as
well as the ratios:

CXi
CZi

and
CYi
CZi

(5)

which are extracted from Equations 1 and 2. These ratios
can be applied to Equation 4 eliminatingCXi andCYi . Also,
CZi can be eliminated by using the next equation:

(TXi −T Xj)2 +(TYi −T Yj)2 +(TZi −T Z j)2 =
(CXi −C Xj)2 +(CYi −CYj)2 +(CZi −C Z j)2 (6)

in which the distance between two dots,i and j, calculated
respect{T} is equal to the distance respect{C}. Using
Equation 6 together with 4 and 5 for dotsi and j, an
equation with only the camera position and orientation is
obtained. And repeating this operation for each couple of
dots, a set of equations is obtained from which an estima-
tion of the position and orientation can be performed. In
particular, a two-phase algorithm has been applied. In the
first phase,TZC, roll andpitchare estimated using the non-
linear fitting method proposed by Levenberg-Marquardt.
In the second phase,TXC, TXC and yaw are estimated
using a linear least square technique. Finally, the position
and orientation calculated for the camera are recalculated
for the vehicle. Fig. 5f shows the vehicle position in the
water tank marked with a triangle. Also the detected dots
are marked on the pattern.
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E. Filtering

Main sources of error that affect the system are the
imperfections of the pattern, the simplification on the
camera model, the intrinsic parameters of the camera,
the accuracy in detecting the centers of the dots and, the
error of least-square and Levenberg-Marquardt algorithms
on its estimations. These errors cause small oscillations
on the vehicle position and orientation even when the
vehicle is not moving. To eliminate these oscillations, a
first order Savitzky-Golay [7] filter was used. Fig. 6 shows
the estimated three-dimensional position and orientation
with and without filtering. Finally, the velocity of the robot
respect the onboard coordinate system is also estimated
applying a first order Savitzky-Golay filter with a first
order derivative included on it. Refer to section IV to show
results about the estimated velocities.

IV. RESULTS

The vision based localization system, that has been
presented in this paper, offers a very accurate estimation
of the position and orientation of URIS inside the water
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Fig. 7. Histogram of the estimated position and orientation

tank1. After studying the nature of the source of errors
(refer to Section III-E), it has been assumed that the
localization system behaves as an aleatory process in
which the mean of the estimates coincides with the real
position of the robot. It is important to note that the system
estimates the position knowing the global position of the
dots seen by the camera. In normal conditions, the tracking
of dots and the detection of global marks never fails, what
means that there is not drift in the estimates. By normal
conditions we mean, when the water and bottom of the
pool are clean, and there is indirect light of the Sun.

To find out the standard deviation of the estimates, the
robot has been placed in 5 different locations. In each
location, the robot was completely static and a set of
2000 samples was taken. Normalizing the mean of each
set to zero and grouping all the samples, a histogram can
be plotted, see Fig. 7. From this data set, the standard
deviation was calculated obtaining these values: 0.006[m]
in X and Y, 0.003[m] in Z, 0.2[◦] in roll , 0.5[◦] in pitch
and 0.2[◦] in yaw.

The only drawback of the system is the pattern detection
when direct light of the Sun causes shadows to appear in
the image. In this case, the algorithm fails in detecting the
dots. Any software improvement to have a robust system
in front of shadows would increase the computational
time, and the frequency of the algorithm would be too
slow. However, the algorithm is able to detect these kind
of situations, and the vehicle is stopped.

The system is fully integrated on the vehicle’s con-
troller, giving new measures 12.5 times per second. Due
to the high accuracy of the system, other measures like
the heading from a compass sensor, or the depth from a
pressure sensor, are not needed. An example of a trajectory
measured by the localization system can be seen in Fig. 8.

1Some videos showing the performance of the system can be seen at:
http://eia.udg.es/∼marcc/research
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system. Three views are shown

The accuracy on the velocity estimations is also very
high. These measurements are used by the low level
controller of the vehicle which controls thesurge, heave
andyawvelocities. In Fig. 9 the performance of thesurge
andyaw controllers is shown.

V. CONCLUSIONS

This paper has presented a vision-based localization
system for an underwater robot in a structured envi-
ronment. The paper has detailed the experimental set-
up, as well as, the different phases of the algorithm.
Main feature of the system is its high-accuracy drift-
free estimations. The system is fully integrated on the
vehicle’s controller, giving new measures 12.5 times per
second. Due to the high accuracy of the system, other
measures like the heading from a compass sensor, or the
depth from a pressure sensor, are not needed. In addition,
the localization system can also be used to evaluate the
performance of the video mosaicking system, designed to
work in unstructured environments.
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