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Abstract
We consider the problem of creating a consistent

alignment of multiple 3D submaps containing distinc-
tive visual landmarks in an unmodified environment.
An efficient map alignment algorithm based on land-
mark specificity is proposed to align submaps. This is
followed by a global minimization using the close-the-
loop constraint. Landmark uncertainty is taken into
account in the pair-wise alignment and the global min-
imization process. Experiments show that pair-wise
alignment of submaps with backward correction pro-
duces a consistent global 3D map. Our vision-based
mapping approach using sparse 3D data is different
from other existing approaches which use dense 2D
range data from laser or sonar rangefinders.

1 Introduction
We have proposed a vision-based localization and

mapping algorithm [10] by tracking Scale-Invariant
Feature Transform (SIFT) natural landmarks and
building a 3D map simultaneously on our mobile robot
equipped with Triclops, a trinocular stereo system.

However, our algorithm builds a 3D map continu-
ously without maintaining the local image data, and
hence does not allow backward correction. Therefore,
it may have problems when large slippages or long-
term drifts occur, or when the robot closes the loop,
i.e., returns to a previously mapped area.

In this paper, we consider the map building problem
as alignment of multiple submaps, to avoid drift accu-
mulation. Moreover, we use the close-the-loop con-
straint to backward correct all the submap alignments
and obtain a consistent global map. The novelty of
this work is the 3D mapping using sparse distinctive
visual landmarks in an unmodified environment with
an efficient map alignment algorithm and constrained
optimization.

2 Previous Approaches
The general approach of map building is to incre-

mentally integrate new data to the map. When each
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new frame is obtained, it is aligned to a cumulative
map [1]. The resulting map may become inconsistent
as different parts of the map are updated indepen-
dently. Since the data frames have been integrated but
not maintained, inconsistency is difficult to resolve.

Smith et al. [11] developed an uncertain spatial re-
lationship representation called the stochastic map,
which contains estimates of the spatial relationships,
their uncertainties and their inter-dependencies. The
Kalman Filter is applied with the state vector consist-
ing of the robot position as well as all the features in
the map and the covariance matrix containing all the
cross-covariances between the features.

This approach is similar to bundle adjustment [14]
in photogrammetry and computer vision literature,
which refines a visual reconstruction to produce jointly
optimal structure and viewing parameters.

However, the computational complexity is O(n2)
where n is the number of features in the environment.
Leonard and Feder [6] proposed decoupled stochas-
tic mapping by representing the environment in terms
of multiple globally-referenced submaps, as a compu-
tationally efficient approach to large-scale concurrent
mapping and localization. A real-time implementa-
tion has been proposed in [4] using a compressed filter
which can reduce the computation requirement when
working in local areas.

Thrun et al. [12] proposed a probabilistic approach
to concurrent mapping and localization using the
Expectation-Maximization (EM) algorithm. They fur-
ther developed a real-time algorithm combining the
strengths of EM algorithms and incremental algo-
rithms [13]. Their approach computes the full poste-
rior over robot poses to determine the most likely pose,
instead of just using the most recent laser scan as in
incremental mapping. When closing cycles, backwards
correction is computed from the difference between the
incremental guess and the full posterior guess.

Lu and Milios [8] presented a 2D laser scan align-
ment algorithm which aligns all frames of sensor data
to obtain a consistent map. Spatial relationships be-
tween local frames are obtained by matching pairwise
laser scans and then a procedure based on the maxi-
mum likelihood criterion is applied to optimally com-



bine all the spatial relations.
Gutmann and Konolige [5] proposed a real-time

method to reconstruct consistent global maps from
dense laser range data. The techniques of scan match-
ing, consistent pose estimation and map correlation
are integrated for incrementally building maps, find-
ing topological relations and closing loops.

3 Simultaneous Localization and Map
Building

Our mobile robot localization and mapping system
uses SIFT visual landmarks in unmodified environ-
ments. By keeping the SIFT landmarks in a database
map, we track the landmarks over time and build a 3D
map of the environment, and use these 3D landmarks
for localization at the same time.
3.1 SIFT Stereo

SIFT was developed by Lowe [7] for image feature
generation in object recognition. The features are in-
variant to image translation, scaling, rotation, and
partially invariant to illumination changes and affine
or 3D projection. These characteristics make them
suitable landmarks for robust mapping, since when
mobile robots are moving around in an environment,
landmarks are observed over time, but from different
angles, distances or under different illumination.

SIFT key locations are selected at maxima and min-
ima of a difference of Gaussian function applied in scale
space. Each SIFT feature is annotated with a subpixel
image location and its scale and orientation.

We compute 3D world coordinates for each feature
by matching pairs of images from the Triclops trinoc-
ular cameras. Using the epipolar and disparity con-
straints, we match features by scale and orientation
in the right-left and right-top image pairs. The SIFT
features and their 3D coordinates serve as landmarks
for map building and tracking.
3.2 Map Building

To build a map, we need to know how the robot has
moved between frames. Robot odometry can give a
rough estimate and it is prone to errors such as slip-
ping. It allows us to predict the region to search for
each match more efficiently.

Once the SIFT features are matched, we can use
the matches in a least-squares procedure to compute
a more accurate camera ego-motion and hence better
localization. This will also help adjust the 3D coordi-
nates of the SIFT landmarks for map building.

We build a 3D map when the robot moves around
in our lab environment and a Kalman Filter is used to
track each landmark with a 3x3 covariance matrix [10].
The system currently runs at 2Hz on a Pentium III
700MHz processor.

4 Map Alignment
We would like to build submaps of the environment

and then align them afterwards to obtain a global map.

We consider the alignment of two maps based on the
specificity of SIFT features. The algorithm is also ap-
plicable to multi-robot collaboration. When multiple
robots build up their own maps individually, we need
to combine them together afterwards.

4.1 Local Image Characteristics
Sufficiently distinctive features are required to

match scenes in the map. In order to obtain a fea-
ture vector of high specificity, the local image region is
described in the SIFT feature in a manner invariant to
various image transformations [7], in addition to the
scale and orientation described in Section 3.1.

This feature vector is formed by measuring the local
image gradients at a number of orientations in coordi-
nates relative to the location, scale and orientation of
the feature. The gradient locations are further blurred
to reduce sensitivity to small local image deformations,
such as result from 3D viewpoint change.

The local and multi-scale nature of the features
makes them insensitive to noise, clutter and occlusion,
while the detailed local image properties represented
by the features makes them highly selective for match-
ing to large databases of previously viewed features.

4.2 RANSAC
Given two sets of SIFT landmarks, we would like

to find the coordinate frame translation and rotation
that will result in the most matches between SIFT
landmarks in the first map and SIFT landmarks in
the second map. Since our robot is limited to planar
motion, there are only 3 parameters (2 for translation
and 1 for rotation) for this alignment.

This can be formulated as a hypothesis testing prob-
lem, where multiple alignment hypotheses are consid-
ered and the best one corresponds to the alignment
which can match the most landmarks from the first
map to the second map.

RANSAC [3] has been used in many applications for
model fitting, hypothesis testing and outlier removal.
We employ RANSAC to test the alignment hypotheses
and find the inlier landmarks.

4.3 Algorithm
Firstly, we create a list of tentative matches from

landmarks in the first database map to the landmarks
in the second database map. For each landmark in
the second database, we find the landmark in the first
database which is closest in terms of the local image
characteristics, and has similar height.

Then, we randomly select 2 tentative matches
from the list, and compute the alignment parameters
(X, Z, θ) from them. Two tentative matches are re-
quired in this case, since for each match, we can obtain
2 equations with 3 unknowns:

X = Xi −X ′
i cos θ − Z ′i sin θ (1)

Z = Zi − Z ′i cos θ −X ′
i sin θ (2)



Figure 1: Map built without taking into account slip-
page occurrences.

where (Xi, Yi, Zi) is the landmark position in the first
database and (X ′

i, Y
′
i , Z ′i) is the landmark position in

the second database. Equating two of these, we have:

A cos θ + B sin θ = C (3)
B cos θ −A sin θ = D (4)

where A = X ′
i − X ′

j , B = Z ′i − Z ′j , C = Xi − Xj ,
D = Zi − Zj . If the two tentative matches are cor-
rect, the distance between two landmarks is invari-
ant for this Euclidean transformation, so the follow-
ing constraint is applied to each sample selection:
A2 + B2 ≈ C2 + D2. This efficiently eliminates many
samples containing wrong matches from further con-
sideration.

Solving Equations 3 and 4, we obtain:

θ = tan−1 BC −AD

AC + BD

and substituting this into Equations 1 and 2 gives an
alignment. We then check all the tentative matches
which support this particular alignment (X,Z, θ).

This random selection, alignment computation and
support seeking process is repeated m times. Assum-
ing a contamination ratio of 0.70, to achieve 99% prob-
ability of a good sample, the required m is 50 [3].

The alignment with the most support is our hypoth-
esis. We then proceed with least-squares minimization
for the inliers which support this hypothesis, and ob-
tain a better estimate for the alignment.

5 Building Submaps
The database map has been built using SIFT land-

marks to correct odometry locally, which has been
shown to be effective [10]. However, when there are
large errors due to long-term drifts, the local correc-
tion is not sufficient. Therefore, we would like to detect
the occurrence of drifts.

Figure 1 shows the map built without taking into
account the drifts, where some parts of the map are
skewed. Three rotational slippages of around 5 degrees
clockwise each are intentionally added at 90, 180 and
270 degrees robot orientation.

When a drift occurs, the number of matches at the
current position will be low but significantly higher at
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Figure 2: Separate submaps are built due to slippage
occurrences. (a) Submap 1. (b) Submap 2. (c)
Submap 3. (d) Submap 4.

a nearby position. This allows the detection of drift
occurrences. To cater for the effect of drift in map
building, we can estimate the actual robot pose based
on the current frame, as in global localization [9], to
correct the odometry for subsequent frames.

However, we employ an alternative method which
starts building a new map whenever a drift is detected.
Afterwards, all the submaps are aligned and combined
to obtain a complete global map. This approach is
more robust as the drift estimation is based on submap
to submap alignment rather than frame to map align-
ment and hence more information can be utilized for
the alignment process.

Using this method, we have obtained four submaps
in this case, as shown in Figure 2, due to the three
slippages. They are in different coordinates since the
submap coordinates are the robot coordinates at the
initial position for each submap.

This division can be done on a regular basis even if
no drift is detected, by dividing into submaps every M
frames, as described in Section 7.

5.1 Pair-wise Alignment
Using our map alignment algorithm, we can align

two submaps together, provided there is some overlap.
Since we terminate building the previous submap and
then initiate building the current submap immediately,
some overlapping landmarks do exist.

We employ a pair-wise alignment strategy, i.e., align
each consecutive pair of submaps, and obtain the
transformation from submap 1 to submap 2, from
submap 2 to submap 3, and from submap 3 to submap
4. Figure 3(a) shows the pair-wise alignment results
where the map is much better and unskewed. Submaps
1, 2, 3 and 4 occupy the top right, bottom right, bot-
tom left and top left portions of the map respectively.



(a) (b)
Figure 3: (a) Pair-wise alignment map for submaps in
Figure 2, with the submap composition indicated. (b)
Incremental alignment map for submaps in Figure 2.

5.2 Incremental Alignment
For incremental alignment, we align and combine

submaps 1 and 2 to obtain a new map, and then align
this new map with submap 3 to obtain another new
map, and so on. Figure 3(b) shows the incremental
alignment result and it looks very similar to the pair-
wise alignment result.

In pair-wise alignment, the alignment of the current
submap depends only on the single previous submap,
but in incremental alignment, the alignment of the cur-
rent submap depends on all the previous submaps cov-
ering that region.

When submap 4 is aligned in this case, its land-
marks are matched with those in submap 3 as well as
in submap 1, since we have rotated one revolution and
back to the initial orientation again. On careful com-
parison of Figure 3(a) and (b), we can see that submap
4 has been pulled in a little bit towards submap 1 in
Figure 3(b).

6 Closing the Loop
Pair-wise alignment and incremental alignment re-

sults are the same if each submap overlaps only with
the previous submap, but different if we close the loop.

If we do not go back to a previously observed scene,
we cannot obtain any correction. But when we do, we
should spread out the correction throughout all align-
ments because errors have gathered over time, and not
just attribute it to the last submap alignment.

We employ a global minimization strategy to do
backward correction to all the submap alignments,
when a close-the-loop is detected. Close-the-loop can
be detected by checking if there is significant overlap of
landmarks between the current submap and the initial
submap, based on the SIFT specificity.

For submaps 1, 2, . . . , n where submap n closes the
loop, i.e., submap n goes back to the scene observed by
submap 1 in the beginning, we firstly find the pair-wise
alignment as before. We also do a pair-wise alignment
between submap n and submap 1 too, and obtain n
transformations in total. Let Ti denote the coordi-
nates transformation for aligning submap i to submap
i+1, or submap n to submap 1 when i equals n.

For a perfect alignment, we have the following con-
straint:

T1T2 . . .Tn−1Tn = I (5)

where I is a 3x3 identity matrix.
During the pair-wise alignment, each Ti is obtained

independently from the least-squares minimization of
the inlier matches between submap i and submap i+1.
To enforce the constraint given by Equation 5, we set
up a matrix consisting of this constraint as well as
all the local pair-wise alignments. We then minimize
this to obtain alignments which can best satisfy this
constraint globally but still conform to the local con-
straints due to pair-wise alignments.

Rather than solving directly for all the transforma-
tions, Newton’s method computes a vector of correc-
tions c to be subtracted from the current pair-wise
alignment estimate t: t̂ = t− c.

Given a vector of error measurements e between
the expected position of the SIFT landmarks and the
matched position observed, and the deviation from our
global constraint, we would like to solve for c that
would eliminate this error: J c = e where J is the
Jacobian matrix Ji,j = ∂ei/∂xj .

If there are more error measurements than parame-
ters (3n as there are 3 parameters for each alignment),
this system of equations is overdetermined, and we will
find an c that minimizes |Jc−e|2. It can be shown that
this minimization has the same solution as solving:

J> J c = J> e (6)

assuming the original nonlinear function is locally lin-
ear over the range of typical errors. Then c can be
solved using any standard method for solving linear
equation systems.

To include the constraint in Equation 5 into the
framework, we need to expand the matrix equation
into several scalar equations first:
[

cos θ1 sin θ1 x1

− sin θ1 cos θ1 z1

0 0 1

]
. . .

[
cos θn sin θn xn

− sin θn cos θn zn

0 0 1

]
= I

where (xi, zi, θi) are the alignment parameters from
submap i and submap i+1, or submap n to submap 1
when i equals n. We can then obtain three independent
scalar constraints to minimize:

e1 = sin(θ1 + . . . + θn)

e2 = x1 + x2 cos θ1 + z2 sin θ1 +

x3 cos(θ1 + θ2) + z3 sin(θ1 + θ2) + . . . +

xn cos(θ1 + . . . + θn−1) + zn sin(θ1 + . . . + θn−1)

e3 = z1 − x2 sin θ1 + z2 cos θ1 −
x3 sin(θ1 + θ2) + z3 cos(θ1 + θ2) + . . .−
xn sin(θ1 + . . . + θn−1) + zn cos(θ1 + . . . + θn−1)

These three constraints will correspond to the RHS
of the first three rows of our matrix. Let mi be the



number of matches between submap i and submap i+1
for each of the local pair-wise alignment, we augment
our matrix system with 2mi rows as we need one row
for the X error and one row for the Z error for each
match. Let the jth landmark at (Xi, Zi) of submap i
be matched with (Xi+1, Zi+1) of submap i+1, we have:

eg(i)+2j−1 = Xi+1 cos θi + Zi+1 sin θi + xi −Xi

eg(i)+2j = Zi+1 cos θi −Xi+1 sin θi + zi − Zi

where g(i) = 3 + 2m1 + 2m2 + . . . + 2mi−1.
J is a (3 + 2

∑i=n
i=1 mi) by 3n matrix whose ith row

is
[
∂ei

∂x1

∂ei

∂z1

∂ei

∂θ1
. . .

∂ei

∂xn

∂ei

∂zn

∂ei

∂θn
]

The computation of these partial derivatives is done
analytically based on the e above. Once e and J are
determined, we can compute J> J and J>e and then
can solve Equation 6 for the correction terms. This
correction can be repeated if necessary until it con-
verges, by using the current corrected estimate for the
next iteration.

7 Landmark Uncertainty
While the submaps are built, covariance matrices for

3D landmarks are kept [10]. Therefore, we can incor-
porate this information into the pair-wise alignment as
well as into the backward correction procedure.

During pair-wise alignment, we take into account
the covariances of the matching 3D landmarks and
employ a weighed least-squares minimization instead.
The weighed least-squares equation is given by:

WJ c = We (7)

where W is a diagonal matrix consisting of the inverse
of the standard deviation of the measurements, assum-
ing that landmarks are independent. The covariance
of the alignment estimate is given by (J>W>WJ)−1.

For our global minimization, we can compute the
covariance of the three scalar constraints from the un-
certainty of each pair-wise alignment based on first
order error propagation [2]:

cov(e1) = (cos2
i=n∑
i=1

θi) (

i=n∑
i=1

cov(θi))

cov(e2) = cov(x1) + cos2 θ1cov(x2) + x2
2 sin2 θ1cov(θ1) +

sin2 θ1cov(z2) + z2
2 cos2 θ1cov(θ1) + . . .

cov(e3) = cov(z1) + sin2 θ1cov(x2) + x2
2 cos2 θ1cov(θ1) +

cos2 θ1cov(z2) + z2
2 sin2 θ1cov(θ1) + . . .

Each of these three rows is also multiplied by the
total number of submaps we are aligning, so that they
contribute the appropriate weights. We also have the
covariance matrix information for each landmark for
the rest of the matrix. We can then carry out a
weighed least-squares minimization on the whole ma-
trix, given by Equation 7.

For the experiment above, we compute the product
of all the pair-wise alignments obtained originally, i.e.,

T1T2T3T4 =

[
0.9988 −0.0489 0.0545
0.0489 0.9988 0.0885

0 0 1

]

which corresponds to a (5.45cm,8.85cm) translational
and 2.8 degrees rotational misalignment. The mis-
alignment becomes (3.00cm,5.92cm,0.43deg) for the
weighed least-squares pair-wise alignment.

This is better because, by taking into account the
uncertainty of the matching landmarks, we can trust
the more reliable landmarks more, whereas each land-
mark is trusted equally previously. The misalignment
is further improved to (0.15cm,0.37cm,0.03deg) for the
weighed least-squares alignment with backward cor-
rection. We can now trust the more reliable pair-wise
alignment more since not all the pair-wise alignment
estimates are equally reliable.

The whole process is fast and it only takes 0.12 sec-
ond on our robot equipped with a Pentium III 700MHz
processor, excluding file I/O time. Each RANSAC
pair-wise alignment takes around 0.03 second to align
submaps with several hundred landmarks each, and
the global minimization takes less than 0.01 second.

Even if we do not have the pair-wise alignments as
the initial estimate but start with a zero vector, it still
converges to the same result after several iterations.

Instead of detecting drift, we can build a new
submap every M frames (in this experiment M=30),
and combine the submaps together afterwards to avoid
long-term drifts. Figure 4 shows 4 submaps, each of
them constructed from 30 frames. Figure 5(a) shows
the weighed least-squares pair-wise alignment re-
sult with a misalignment of (0.40cm,7.48cm,7.35deg).
Figure 5(b) shows the weighed least-squares back-
ward correction result with a misalignment of
(0.23cm,1.59cm,0.45deg). On comparison between the
two maps, a slight skew in the top left portion of Fig-
ure 5(a) can be seen.

8 Conclusions
We have proposed a vision-based map building al-

gorithm by efficiently aligning and combining multiple
submaps using highly specific SIFT natural features,
to avoid the effect of drifts. Constrained optimization
is used to find the maximum likelihood registration
for the submaps to produce a globally consistent map,
by attributing errors to all the pair-wise alignments
according to landmark uncertainty.

Our pairwise alignment and backward correction are
similar to the scan alignment and maximum likelihood
optimization in [8] and the scan matching and map
correlation in [5]. However, their algorithms are devel-
oped mainly for dense 2D range data obtained from
laser or sonar and are not applicable to sparse 3D
data from vision. [6] also used submaps which are
maintained separately but not combined together.
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Figure 4: Submaps built every 30 frames.

(a) (b)
Figure 5: (a) Weighed least-squares pair-wise align-
ment for submaps in Figure 4. (b) Weighed least-
squares backward correction for submaps in Figure 4.

Integrating new data to the map incrementally and
bundle adjustment using all image frames are two ex-
tremes of map building. Incremental map building
does not require keeping any information from each
frame and, as a result, it does not allow any backward
correction when we close the loop. It has low storage
and computational cost, but may lead to an incon-
sistent map. On the other hand, bundle adjustment
requires keeping image information from each frame
but it allows backward correction at each frame. It
has high storage and computational cost.

The approach described above is a practical solu-
tion, like a trade-off between these two methods. It
only requires information for each submap and allows
backward correction between each submap. Backward
correction within each submap is not necessary as,
while building each submap, odometry has been cor-
rected locally based on the SIFT landmarks.

The complexity of our approach increases by the
square of the number of submaps, not by the squares
of the number of landmarks, assuming a small number
of overlapping landmarks between submaps. Future
works include experiments in larger environments and

with more complicated close-the-loop scenarios.
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