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Abstract. Most driver-monitoring systems have attempted to detect ei-
ther driver drowsiness or distraction, although both factors should be
considered for accident prevention. Therefore, we propose a new driver-
monitoring method considering both factors. We make the following
contributions. First, if the driver is looking ahead, drowsiness detection
is performed; otherwise, distraction detection is performed. Thus, the
computational cost and eye-detection error can be reduced. Second, we
propose a new eye-detection algorithm that combines adaptive boost-
ing, adaptive template matching, and blob detection with eye validation,
thereby reducing the eye-detection error and processing time significantly,
which is hardly achievable using a single method. Third, to enhance eye-
detection accuracy, eye validation is applied after initial eye detection,
using a support vector machine based on appearance features obtained
by principal component analysis (PCA) and linear discriminant analysis
(LDA). Fourth, we propose a novel eye state–detection algorithm that
combines appearance features obtained using PCA and LDA, with sta-
tistical features such as the sparseness and kurtosis of the histogram
from the horizontal edge image of the eye. Experimental results showed
that the detection accuracies of the eye region and eye states were 99
and 97%, respectively. Both driver drowsiness and distraction were de-
tected with a success rate of 98%. C©2011 Society of Photo-Optical Instrumentation

Engineers (SPIE). [DOI: 10.1117/1.3657506]
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1 Introduction

Driver inattention is one of the major causes of highway car
accidents. According to the U.S. National Highway Traffic
Safety Administration (NHTSA), in the U.S. in 2007, ∼6100
fatalities occurred as a result of car accidents related to driver
inattention, such as distraction, fatigue, and lack of sleep.1–3

Consequently, safe-driving assistant systems, which measure
the level of driver inattention and provide a warning when
a potential hazard exists, have received a great deal of at-
tention as a measure to prevent accidents caused by driver
inattention.

Generally, driver inattention relates to the degree of non-
concentration when driving; it is usually a result of drowsi-
ness and distraction.4 Drowsiness involves a driver closing
his eyes because of fatigue, and distraction involves a driver
not paying sufficient attention to the road despite the presence
of obstacles or people. Previous driver-inattention monitor-
ing systems (DIMSs) have detected driver drowsiness or dis-
traction but not both.5–23 Although these systems can detect
drowsiness or distraction, a car accident can occur if it cannot
detect both. Because driver distraction and drowsiness are the
main factors in vehicle crashes, both should be considered
when measuring driver-inattention level.24 In this context,
we propose a new DIMS that can detect both drowsiness and
distraction. By measuring both causes of inattention, the pro-
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posed system can improve the security level of the previous
DIMSs, which detected either drowsiness or distraction.

Many inattention-monitoring systems have been devel-
oped to prevent highway car accidents. These systems can
be divided into two categories, as shown in Tables 1 and 2.
The first is to detect driving behavior by monitoring vehi-
cle speed, steering movements, lane keeping, acceleration,
braking, and gear changing.25 The other is to detect driver
behavior, which includes two approaches, such as a visual
feature–based approach26 and a physiological feature–based
approach.27 The former is based on tracking the driver’s head
and eye movements and recognizing the torso and arm/leg
motion. The latter measures the heart and pulse rate as well
as the brain activity.

Driving-behavior information–based methods are af-
fected by the vehicle type and the individual variation in driv-
ing behavior. Physiological feature–based approaches are in-
trusive because the measuring equipment must be attached
to the driver. Thus, visual feature–based approaches have re-
cently become preferred because they are nonintrusive to the
driver. In this work, we also focus on the visual feature–based
approach to monitor driver inattention.

A great deal of previous visual feature–based research
has been studied to monitor driver inattention. These can be
divided into two systems: drowsiness detection systems and
distraction detection systems. The drowsiness detection sys-
tem detects drowsiness using features such as eyelid move-
ment, facial expression, yawning, nodding, etc. Many at-
tempts to develop a drowsiness detection system have been
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Table 1 Summary of previous research for detecting driver inattention.

Category Method Strength Weakness

Driving behavior informationa Monitoring vehicle speed,
steering movement, lane
keeping, acceleration,
braking, and gear
changing

It does not require an
additional camera or
biosensors.

It is affected by vehicle
type and the individual
variation in driver driving
behavior.

Physiological
feature–based
approachesb

Measuring the heart and
pulse rate and brain
activity

It is possible to accurately
measure the inattention
level

It is intrusive because
measurement equipment
must be attached to the
driver

Driver behavior
information

Visual
feature–based
approachesc

Tracking head and eye
movements, recognizing
the facial expression as
well as torso, arm, and leg
motion

It is nonintrusive to the
driver

It requires an additional
camera device

aReference 25.
bReference 26.
cReference 27.

reported in the literature.5–17, 28–31 For example, Ueno et al.
described a system for drowsiness detection that recognizes
whether a driver’s eyes are open or closed; if open, the de-
gree of openness is measured.6 D’Orazio et al. introduced
a system to detect driver fatigue using eyelid movement in-
formation, including new drowsiness parameters [frequency
of eye closure (FEC) and eye-closure duration (ECD)].17

The main contribution of their work was the introduction
of a reliable eye-detection approach that does not impose
any constraints on the driver and does not require any pre-
processing to segment eye regions. They demonstrated that
the performance of their system is comparable to those
that utilize physiological signals. Vural et al. introduced
a system to characterize a driver’s state from his/her fa-
cial expression information.28 Saradadevi and Bajaj pro-

posed a method for monitoring driver fatigue using yawning
information.29

Some studies detect more than one of these pieces of
information and combine them to improve robustness.30, 31

However, because the aforementioned methods only detect
driver drowsiness, they cannot prevent car accidents caused
by distraction. This is because car accidents that result from
driver distraction can occur when a driver does not look
straight ahead. That is, even though the driver’s eyes are not
closed because of fatigue, a car accident can still occur if
he or she is distracted. To develop a safer driver-monitoring
system, these two risks should be monitored simultaneously.

The distraction-detection system uses head pose or gaze
information to detect if a driver is paying sufficient attention
to the road when obstacles or people on the road are detected.

Table 2 Summary of previous “visual feature based approaches” to monitor driver inattention.

Category Method Strength Weakness

Drowsiness
detection system

Eyelid movement,a

facial expression,b yawning,c

nodding,d more than one of the
abovee

Nonintrusive to the driver Cannot detect the distraction of
the driver

Distraction
detection system

Head orientation,f

eye orientation,g

head and eye orientationh

Nonintrusive to the driver Cannot detect the drowsiness of
the driver

Hybrid method
(proposed method)

This method detects both the
distraction and drowsiness of the
driver.

Able to detect both the
drowsiness and distraction
of the driver

Processing time increases slightly
compared to the drowsiness
detection system or the
distraction detection system.

aReferences 6 and 17.
bReference 28.
cReference 29.
dReference 64.
eReferences 30 and 31.
fReferences 18, 20, 21, and 65–68.
gReferences 22, 61, and 69.
hReference 23.
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Recent surveys on head orientation and gaze from image
sequences can be found in Refs. 18 and 19.

Among various methods, we focused on the previous
driver’s gaze and head orientation methods developed for
vehicular environments. For example, Hattori et al. intro-
duced a forward warning system that employs driver behav-
ioral information.20 Their system determines driver distrac-
tion when it detects that the driver is not looking straight
ahead. Trivedi et al. recognized driver awareness using head
pose information obtained by a localized gradient orientation
histogram and support vector regressors (SVRs).21 Smith
et al. analyzed global motion and color statistics to robustly
track a driver’s facial features.22 Using these features, they
estimated continuous gaze direction. However, this method
cannot always localize facial features when the driver wears
eyeglasses, makes conversation, closes his eyes, or rotates
his head. It also failed to work at night. Kaminski et al. in-
troduced a system to compute both head orientation based
on a geometrical model of the human face and eye-gaze de-
tection based on a geometrical model of the human eye.23

They estimated continuous head orientation and gaze direc-
tion. However, the above-mentioned systems for automotive
applications did not deal with the problem of driver drowsi-
ness. That is, although the driver is looking ahead, he or
she can drive while drowsy. Therefore, a method that moni-
tors both visual distractions and drowsiness is needed for the
driver-monitoring system.

Although a technical study32 has reported an intelligent
vehicle safety system that detects distraction and drowsiness
in real road test conditions, such a system differs from our
system in the following aspects.

First, it independently detects driver drowsiness and dis-
traction using commercialized products, Smart Eye Pro and
3D head model, respectively. These two products are simul-
taneously operated in all cases. On the other hand, our system
divides the driver’s state into two cases, and then, if the driver
is looking ahead, the system operates the drowsiness detector.
However, if the driver is not looking ahead, the system op-
erates the distraction detector. Therefore, the computational
cost of the system can be decreased. The other advantage of
the proposed method is that the eye-detection errors and the
consequent false alarms for drowsiness are decreased in the
case of large head rotation. In general, eye detection during
large head rotation is difficult because the texture and shape of
the eyes change markedly as a result of head rotation. There-
fore, in the proposed method, eye detection is performed only
in the case of drowsiness detection (when the driver is looking
ahead). Both facial border lines and nose center lines are used
in the case of distraction detection (when the driver is not
looking ahead) without eye detection. Thus, eye-detection
errors and the consequent false alarms for drowsiness can be
decreased.

Second, experimental results for blink detection have not
been provided in the technical study, whereas they have been
included in our paper. Third, the study reports that Smart Eye
Pro does not work well when the driver wears eyeglasses or
sunglasses; the drivers who were tested did not wear glasses.
In contrast, our system exhibits good performance regardless
of the use of glasses.

Fourth, Sec. 3.3.3 of the technical study32 states that
3-D head model estimation requires initial calibration,
which causes inconvenience to the driver and requires a
longer processing time. On the other hand, the proposed

method does not require initial calibration. Fifth, because
two 8-mm IDS uEye USB-cameras were used in that
study,32 the system was bulky and economically infeasi-
ble. In contrast, only one camera is used in the proposed
system.

In order to measure both drowsiness and distraction in the
proposed method, we first detect the face region and estimate
the driver’s head orientation to determine the gaze direc-
tion of driver. Accordingly, the proposed system determines
whether the driver is looking ahead. If the estimated head ori-
entation indicates that the driver is not looking ahead, then
the system monitors the driver-distraction level and sounds
an alarm when the level is dangerously high. If the esti-
mated head orientation indicates that the driver is looking
ahead, then the system detects the driver’s eyes to determine
the drowsiness level. In this case, the system focuses solely
on driver drowsiness. The driver-drowsiness level is mea-
sured as PERCLOS, which is the percentage of eye closure
time during a certain time interval.12 Similarly, the distrac-
tion level is measured as PERLOOK, which is the percent-
age of time spent not looking ahead during a certain time
interval.

The contributions of the proposed composite method are
as follows. First, the computational cost of system can be
decreased. Second, eye-detection errors and the consequent
false alarms for drowsiness are decreased in the case of
large head rotation. Third, we developed a hardware unit
capable of eliminating specular reflection due to sunlight
reflected by a driver’s glasses. This unit is essential to
the system because the specular reflection makes it diffi-
cult to detect the eyes. The unit comprises near-infrared
(NIR) illuminators, a camera, and a narrow bandpass fil-
ter whose pass band matches the wavelength of the illu-
minator. The detailed configuration of the unit is described
in Sec. 2.2. Fourth, we propose an eye-detection algorithm
that combines adaptive boosting (adaboost), adaptive tem-
plate matching, and blob detection with eye validation. This
facilitates accurate eye detection, even when the driver’s
head is slightly rotated or the eyes are closed. Fifth, we
introduce a novel eye-state–detection algorithm that com-
bines appearance features obtained using PCA and LDA,
with statistical features such as the sparseness and kurto-
sis of the histogram from the horizontal edge image of the
eye.

The remainder of the paper is organized as follows. In
Sec. 2, we describe the proposed DIMS, which comprises eye
detection, eye-state detection, and inattention determination.
In Sec. 3, we present experimental results with a database
collected from a vehicle under various conditions. Finally,
the conclusion is provided in Sec. 4.

2 Proposed Driver-Monitoring Method

2.1 Overview of Proposed Method

The proposed method consists of face-detection, head-
orientation–estimation, eye-detection, eye-state–detection,
drowsiness-detection, and distraction-detection steps, as
shown in Fig. 1. In this work, we used the methods
for face detection and head-pose estimation proposed in
Ref. 33. In the face-detection step, the face region is found
within the driver’s entire facial image to remove unnecessary
background and to set the regions of interest (ROIs) used in
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Fig. 1 Flowchart of the proposed driver-monitoring system.

the yaw angle–estimation step. In the yaw angle–estimation
step, the left and right borders and center of the driver’s
face are extracted to estimate the driver’s yaw. In addition,
the normalized mean and standard deviation of the horizon-
tal edge-projection histogram are extracted to estimate the
driver’s pitch. In the estimation step of the driver’s head ori-
entation, using the extracted features, the driver’s yaw and
pitch angles are determined by the ellipsoidal face model and
SVR, respectively.33

The distraction and drowsiness are determined from the
head pose of a driver. First, the proposed system monitors
whether the driver is paying adequate attention to the road
ahead based on the estimated head pose. If the frequency
of time in which the driver does not see the road ahead
over a certain period of time is greater than a predetermined
threshold, then a warning signal is produced by the distraction
detection. Even if the driver is looking straight ahead, if the
percentage of time that the driver closes his/her eyes during
a certain period of time exceeds a predetermined threshold, a
warning signal is also generated by the drowsiness-detection

system. A detailed description of each stage can be found in
Sec. 2.3.

2.2 Image Acquisition Method

The proposed system consists of two 850-nm illuminators
(LED 850-66-60),34 a camera (EC650) (Ref. 35) having a
lens (ML 0614) of 6-mm focal length,36 a laboratory-made
device for controlling the illuminators, and a narrow band-
pass filter (NT43-148) (Ref. 37) placed in front of the camera.
Except for the device that controls the illuminators, all the
other components are commercially available. In our experi-
ments, we also used two types of vehicles, a sedan (Grandeur,
Hyundai Motors) (Ref. 38) and a sport-utility vehicle [(SUV);
Sportage, KIA motors].39

To test the applicability of the system, images were ac-
quired for the two types of vehicles; these images were nearly
similar. When the driver wears eyeglasses, glint may be gen-
erated by NIR light, which may hide the entire eye region. To
resolve this issue, in the proposed system the camera tilting
angle is constrained to ∼45 deg below the driver’s face. In
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Fig. 2 Images obtained in various wavelengths using sunglasses:
(a) 700 nm, (b) 750 nm, (c) 850 nm, and (d) 950 nm.

addition, the installation height of the proposed device is set
to ∼70 cm from the driver’s feet.

A system that can operate in various vehicle environments
should satisfy the following three conditions:

1. The system should work during both daytime and
nighttime. Because there is no sunlight at night, we
provide additional NIR illumination to capture the
driver’s facial image. Because visible lights can daz-
zle drivers when driving, NIR illuminators were used
to capture images. We also adjusted the shutter speed
of the camera automatically to prevent image satura-
tion.

2. The system should be operative for drivers who wear
sunglasses. We performed experiments to identify the
proper wavelength of NIR illumination. To observe
the transmittance of various colors of sunglasses ac-
cording to various wavelengths of NIR illuminators,
we conducted tests with black, brown, blue, yellow,
and pink semitransparent sunglasses. As an experi-
ment, we used an electronically tunable liquid-crystal
filter that has 10-nm bandwidth and a pass-band range
from 650 to 1100 nm to capture the images of users
wearing sunglasses in the range of 700–950 nm.
Figure 2 depicts the captured face images of a user
wearing black sunglasses at 700-, 850-, and 950-nm
wavelengths. From this, it is evident that the black
sunglasses can be transmitted by the NIR illumina-
tion, which has a longer wavelength than 750 nm.
In the experiments with various wavelengths, we
found that the transmission increased from 700 to
∼850 nm and then decreased after ∼900 nm. We
can confirm in Fig. 2 that the light in 700 nm is
not transmitted but that the light in 850 nm is well
transmitted into the sunglasses. In Fig. 2(d), we can
confirm that the brightness in 950 nm is decreased
because the sensor response of the camera is de-
creased in accordance with the increase in wave-
length. Thus, we selected 850 nm as the wavelength of
the NIR illuminator, considering the good transmis-
sion, camera-sensor response, and lack of dazzling
effect.

3. The system should be operative when drivers wear
eyeglasses on which reflected sunlight is generated.
This problem is often encountered in a real automotive
environment, as shown in Fig. 3. A method was report
that utilized a polarizing filter to remove the reflected
sunlight.40 However, because sunlight includes vari-
ous directional lights, it is unknown which direction of
these lights caused the reflection. Thus, a polarizing
filter, which eliminates the reflection by only pene-

Fig. 3 Images of reflected sunlight on eyeglasses.

trating specific directional light, has limits. In the ex-
periment with a polarizing filter, the reflection could
be removed only when the directions of the polarizing
filter and the light causing the reflection matched. Be-
cause the directions of light that causes the reflections
can be changed, but the direction of the polarizing
filter cannot be changed in real time when driving,
the polarizing filter is unsuitable for vehicle appli-
cation. Moreover, because only specific light passes
through the polarizing filter, the image brightness was
decreased.

To overcome these problems and remove the reflected sun-
light, we use a NIR illuminator and a narrow bandpass filter
whose pass band matches the illuminator. First, the narrow
bandpass filter is installed in front of the camera and restricts
the incoming wavelength of light to 850 nm, with a central
wavelength tolerance of 2 nm.37 In the various wavelengths
of sunlight, only sunlight with a wavelength of 850 nm passes
through the narrow bandpass filter and lights of most wave-
lengths that caused the reflection are diminished. Two high-
power light-emitting diode (LED) illuminators34 cast a light
with 850 nm on the driver’s face. Because the driver sits in-
side a car in which the amount of sunlight is not greater than
that on the outside, we can make the effect of the high-power
LED illuminators greater than the sunlight. Consequently,
the reflections on glasses can be eliminated. A configuration
of our system is shown in Fig. 4, and the experimental results
for removing reflected sunlight using a NIR illuminator and
a narrow bandpass filter are shown in Fig. 5.

The VTI report32 for driver monitoring briefly mentions
the use of NIR illuminators and a bandpass filter; commercial
products are used, and details, such as the wavelengths of NIR
illuminators and the filter, are not provided. Although NIR
illuminators and a bandpass filter have been used previously
for eye detection, in our study, we experimentally determined
the optimal wavelengths of these components. To the best
of our knowledge, the details of the NIR illuminators and
bandpass filter have been reported for the first time in our
study.
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Fig. 4 Developed driver-monitoring device (Ref. 33).

2.3 Eye-Detection Method Considering Driver’s
Head Pose

2.3.1 Determination of the range of eye detection
considering head pose

The face-detection and head-pose estimation process is per-
formed before detecting the driver’s eyes.33 Through the esti-
mated head pose, if it is determined that the driver is looking
ahead, the system detects the eyes to determine drowsiness.
Otherwise, the system does not detect the eyes but does mon-
itor the driver’s distraction level, which is the percentage of
areas viewed other than the front for a certain time interval.
The reasons why the proposed system does not detect the
eyes when the driver is not looking ahead are as follows.
For driver monitoring, the information regarding eye blink-
ing is required to detect driver drowsiness. However, an early
symptom of drowsy driving is that drivers begin to fall asleep
when looking ahead, but not to the side. In light of this phe-
nomenon, the proposed system does not detect the eyes when
the driver is not looking ahead. This can also solve the prob-
lem of high computational cost and low accuracy of driver-
monitoring systems for detecting rotated eyes. Moreover, if
drivers look at a nonfrontal area when driving, this is as haz-

Fig. 5 Experimental results for removing a reflected sunlight
with/without NIR illuminators and a narrow bandpass filter: (a) without
a filter and illuminators (b) with a filter and illuminators.

ardous as drowsy driving. Thus, it should be detected by the
distraction-detection method and an alarm signal should be
set off. Therefore, we propose a driver-monitoring system
that detects the eyes only when the driver looks ahead and
monitors driver distraction when the driver does not look
ahead.

Before the system detects the eyes, it is necessary to de-
termine whether the driver is facing the front of the vehicle.
In normal straight-road driving, when drivers are paying at-
tention to the road ahead, their facial direction is within
approximately ±15 deg from the straight normal. From this
fact, the range of facial directions spanning ±15 deg is desig-
nated “front,” and facial directions greater than ±15 deg are
designated “nonfront.” The validity of this figure has been
proven in our real-driving test and also in the experiments
conducted by Toyota.41 In the experiments by Toyota, they
suggested ±15 deg as the yaw-angle condition for the front
angle of a driver. The same result is obtained in our real-
driving experiments. In order to measure the ground-truth
data for a head orientation, we used an electromagnetic sen-
sor called Patriot, as shown in Fig. 6.42 The experimental
result is shown in Fig. 7.

From the above real-driving test, we can confirm that the
yaw angle of a driver facing the front of a vehicle is within
±15 deg. In the graph, the angles are greater or less than this
yaw-angle range when the driver views the side mirror or
side windows. Except for these cases, the head-pose range
of driver is included in the above-mentioned range of front
viewing, within ±15 deg.

Fig. 6 Patriot sensor attached behind the driver’s head (Ref. 33).
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Fig. 7 Facial yaw angle distribution in a real driving test: (a) driver 1,
(b) driver 2, and (c) driver 3.

The proposed system only detects eyes within this yaw
angle range. If the estimated facial yaw angle is within
±15 deg, then the eye ROI is set by using the left and right
border line, centerline, and statistical position of the eye in
the face. The system then detects the eyes only in this re-

gion. The proposed eye-detection algorithm is presented in
Sec. 2.3.2.

2.3.2 Eye-detection method

In a previous study, Scheirer et al.43 proposed two dif-
ferent approaches—a machine learning approach and a
correlation filter approach—for eye detection under un-
favorable acquisition circumstances, such as low illumi-
nation, distance variation, pose variation, and blur. This
eye-detection method is inconvenient because visible light
is required at nighttime, which distracts the driver or causes
pupil contraction. In another study, Whitelam et al.44 an-
alyzed eye detection across three different bands (i.e.,
the visible, multispectral, and short-wave–infrared (SWIR)
bands), in order to illustrate the advantages and limitations
of multiband eye localization. However, they did not use
a narrow bandpass filter for the NIR camera; hence, the
captured eye image may contain a large amount of sunlight,
which can make it difficult to locate the eye region. More-
over, eye validation is not conducted, which may result in
false eye detection. Our system adopts a narrow bandpass
filter and eye validation in order to improve eye-detection
performance.

Our eye-detection algorithm is developed by combin-
ing eye adaboost,45 adaptive template matching,46 blob
detection,47 and eye validation. The adaboost method has
been widely adopted for detecting various facial compo-
nents, such as the face, nose, mouth, and eyes, where weak
classifiers are combined in a cascade; this yields a stronger
classifier.45 In our system, we used the standard OpenCV
Haar cascade to detect the face and eyes.

The adaptive template-matching method is a digital
image-processing technique for identifying the correspond-
ing parts that match a template in an input image. The tem-
plate and eye candidate images are compared to determine
whether the two images have a matching region. One method
for template is given by

R(x, y) =
∑

x,′ y′ [T (x ′, y′) − I (x + x ′, y + y′)]2

√

∑

x ′,y′ T (x ′, y′)2·
∑

x ′,y′ I (x + x ′, y + y′)2
,

(1)

where I denotes the input image, T denotes the template, and
R(x, y) denotes the matching result at position (x, y). The
ranges of x′ and y′ are [0, w – 1] and [0, h – 1], respectively.
w and h are the width and height of the template image,
respectively. If the matching value R(x, y) is small, then it
indicates higher similarity; if it is large, then it indicates lower
similarity. Among all the calculated R(x, y), the position
(x, y) where R(x, y) is minimized is selected as the final
matching position. The shape of the eye slightly changes in
every frame; hence, it is impossible to detect all possible eye
shapes with one fixed template. Thus, the template is updated
in every frame by the eye image that is successfully detected
in the previous frame.

Blob detection is explained as follows. From the origi-
nal eye image, a binary image is obtained on the basis of the
adaptive threshold that is set with the mean value of the block;
then, it is subjected to the morphology step. In the morphol-
ogy step, there are two phases, erosion and dilation.48 First,
the white pixels are expanded and the black pixels are dimin-
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Fig. 8 Flowchart of proposed eye-detection algorithm.

ished by an erosion operator. Because the remaining blobs of
the eyeglass frame may be wrongly detected as eyes, the eye-
glass frame should be removed by an erosion operator. Next,
the black pixels of the eye region diminished by the erosion
operator are expanded by a dilation operator. This process
of sequentially erosion and dilation is defined as the opening
process, and it has the effect of noise elimination.48 After the
opening process is applied twice, a large blob is generated
for an eye and small blobs are generated for noise. The label-
ing process is performed with all the remaining blobs. Thus,
the remaining blobs are grouped with neighboring blobs and
labeled according to their connectivity.48 Therefore, all the
blobs are represented as being isolated. After that, all the
pixel “positions” of each isolated blob can be obtained. Ac-
cordingly, the “size” of the blob is calculated as the number
of the pixels of the blob. In addition, the width and height
of the outermost rectangular box including the blob can be
obtained. Then, the ratio of the height to the width can be
calculated as the “shape” of the blob. The position, size, and
shape are finally used to determine the location of the eye.
Open source is used for blob detection.47

These methods are combined to detect the eyes quickly
and accurately. If adaboost alone is used for eye detection,
then it has a great deal of computational cost and cannot de-
tect closed eyes. To resolve these problems, in the first frame,
eye adaboost is used in the eye-detection step and, after the
eye verifier checks that the eyes are correctly detected, the
detected eye image is saved as a template. In the next frame,
the eyes are detected by adaptive template matching using the
previously saved template and the template is then updated
by the newly detected eye image. This is better than only
using eye adaboost in every frame in terms of computational
cost and performance of closed-eye detection. However, eye
shapes are changeable from an open shape to a closed shape.
If the shape of an opened eye is saved as the template and the

closed eye appears at the next frame, then the eyes cannot be
detected by the adaptive template-matching method. Thus,
when the adaptive template-matching method fails to detect
eyes, adaboost is used again to detect the eyes. If adaboost
also fails to detect the eyes, then the blob-detection method is
applied to do so. When the eyes cannot be detected by these
three eye detectors, the previous position of the eye is kept.
Figure 8 depicts a flowchart of the eye-detection algorithm
(a detailed explanation for eye detection will be provided).

The system attempts to realize eye detection using the
adaboost eye detector.45 The eye adaboost has good per-
formance for detecting eyes when the driver’s head pose is
frontward. However, as shown in Fig. 9, it has the disadvan-
tage of missing eyes when the driver’s head pose is rotated or
when the driver’s eyes are closed. It also takes a long time to
detect the eyes if the eye adaboost is applied in every frame.

To resolve these problems with adaboost, the adaptive
template-matching method was combined with adaboost. In
the first frame, the system detects eyes by using adaboost
and then saves the detected eye images to a template. In
the next frame, adaptive template matching is applied to
locate the eyes. As such, even the rotated or closed eyes
that were not detected by adaboost can be detected. The
advantage of adaptive template matching is that it requires
less computational cost than adaboost. The adaboost needs
30 times more computational cost than the adaptive template
method. As such, the eye-detection method combined with
adaboost and adaptive template matching is more efficient
than using adaboost alone. This combination is robust to
head-pose variation and can detect a closed eye, as shown in
Fig. 10.

However, because the eye detector using these combina-
tions may still fail to find eyes, the blob-detection method
is additionally supplemented to the combination to improve
the performance of eye detection. In particular, blob detection
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Fig. 9 Eye-detection results obtained using adaboost: (a) Frontal face (success), (b) rotated face (fail), and (c) closed eye (fail).

improves the detection rate of closed eyes that are not de-
tected by adaboost and template matching and saves process-
ing time. Figure 11 shows a flowchart of the blob-detection
method.

From the original eye image, a binary image is obtained
by the adaptive threshold that is set with the mean value of the
block and then passes through the morphology step. In the
morphology step, there are two phases: erosion and dilation.
First, the white pixels are expanded and the black pixels are
diminished by an erosion operator. Because the remaining
blobs of the eyeglass frame can be misrecognized as eyes,
the eyeglass frame should be removed by an erosion operator
to prevent this from happening. Next, the diminished black
pixels of the eye region by the erosion operator are expanded
by a dilation operator. This process of sequentially passing
through erosion and dilation is defined as the opening process
and has an effect of noise elimination.48 After the opening
process is applied twice, a large blob for an eye and small
blobs for noise are finally generated. All remaining blobs
are grouped with neighbor blobs into individual groups, and
a labeling process ensues. To apply the labeling process,
we used an open source of blob detection (this source code
is available in Ref. 47). The location of the eye is finally
determined by considering the size, shape, and position of
blobs.

In the eye-detection step, the eye-validation process plays
an important role in checking whether the detected eye
region actually contains eyes. As shown in Fig. 12, this is
an eye-validation process that validates the eye detected by
adaboost, adaptive template matching, and blob detection.
If a noneye region is falsely found by the eye detector and
saved in the template without any further validation pro-
cess, the region containing no eye will be continuously de-
tected by the adaptive template matching in the next frame.
Thus, an eye-validation process is needed to prevent error
propagation.

In the eye-validation process, we used two classical
feature-extraction methods, namely, principal component
(PC) analysis49–52 (PCA) and linear discriminant analysis
(LDA),49–51 which were used in a different application in
(Refs. 51 and 53). In this paper, we use the PCA + LDA
methods to extract features for eye validation.

PCA is a well-known unsupervised algorithm for linear
feature extraction; it is a linear mapping that uses the eigen-
vectors with the largest eigenvalues. In the PCA method,
the pixels of an eye image are ranked as a column vector
xi = (x1i, x2i, . . . , xni)

T ∈ Rn and then by the l matrix X
= {x1, x2, . . . , xl} denotes the training sample set that con-
sists of l eye images. After the mean vector of X is calculated,
centered data are obtained by subtracting the mean from all
samples. The PCA can be used to find a linear transformation
orthonormal matrix WPCA[m × n(m ≪ n)], mapping the orig-
inal n-dimensional feature space into m-dimensional feature
subspaces. The reduced feature vector yi is defined by

yi = W T
PCAxi (i = 1, 2, . . . , l). (2)

The columns of WPCA are the m eigenvectors associated
with the m largest eigenvalues of the scatter matrix S, which
is defined as

S =
l

∑

i=1

(xi − µ)(xi − µ)T , (3)

where µ is the mean of all images in the training set.
LDA is a supervised learning method that utilizes the cat-

egory information associated with each sample. The goal of
LDA is to maximize the between-class scatter while minimiz-
ing the within-class scatter. The within-class scatter matrix
SW and between-class scatter matrix SB are defined as

SB =
c

∑

j=1

(µ j − µ)(µ j − µ)T , (4)

Fig. 10 Eye-detection results obtained by combining with adaptive template matching and adaboost: (a) Frontal face (success), (b) rotated face
(success), and (c) closed eye (success).
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Fig. 11 Flowchart of the blob-detection method: (a) open eye and (b) closed eye.

SW =
c

∑

j=1

N j
∑

i=1

(

x
j

i − µ j

)(

x
j

i − µ j

)T
, (5)

where x
j

i is the i’th sample of class j, µj is the mean of class
j, µ is the mean image of all classes, Nj is the number of
samples of class j, and c is the number of classes.

In order to guarantee that SW does not become singular, we
require at least n + c samples. In practice, it is difficult to ob-
tain so many samples when the dimension of feature n is very
high. PCA + LDA is proposed to solve this problem.51, 52

Let the output of PCA be the input of LDA, and finally, the
feature vectors of eye images are given by

zi = W T
LDAW T

PCAxi (i = 1, 2, . . . , l). (6)

Now, let us return to our eye-validation process. Eye val-
idation is composed of a training and testing process, as
shown in Fig. 12. In the training step, the eye-template im-
age of 40×26 pixels in the training database is defined as
the column vector of 1040×1 pixels. The column vector is
then reduced to an eigenvector with 13 dimensions by us-
ing PCA, which seeks a projection that best represents the
original data in a least-squares sense. The eigenvector is re-
duced to 11 dimensional spaces (features) by using LDA,
which seeks a projection that best separates the data in a
least-squares sense. After the features that best separate eye
and noneye are normalized, they are entered into a support
vector machine (SVM) and trained to classify eye and non-
eye well. An SVM is a classifier that finds the maximum

Fig. 12 Eye-validation process.
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margin hyperplane that optimally separates the data into two
categories for the given training set. In general, an SVM can
be represented by54

f (x) = sgn

(

k
∑

i=1

αi yi K (x, xi ) + b

)

, (7)

where k is the number of data points and yi ∈ {–1, 1} is
the class label of training point xi. The coefficients αi are
found by solving a quadratic programming problem with lin-
ear constraints, and b is a bias. To obtain a good classification
performance, a SVM needs to choose a “good” kernel func-
tion, K(x, xi). In this paper, we used a radial basis function
(RBF) kernel, as shown in Eq. (8), because it generally has
fewer numerical difficulties55

KRBF(x, x ′) = exp(−γ ||x − x ′||2). (8)

In the testing step, after features are extracted from the
eye image in the testing set by PCA + LDA in the same way
as the training step, the extracted features are entered into the
SVM to learn the classification of eye and noneye. Figure 12
depicts this eye-validation process for training and testing.
When the eye validation was added to the eye-detection al-
gorithm, the accuracy of eye detection was improved. This
result will be shown in the Sec. 3 experiment.

2.4 Eye-State Detection (Determination of Open
or Closed Eye)

Drivers that are sleepy exhibit several visual behaviors that
are easily observable from the changes in their facial fea-
tures, such as the eyes, head, and face. There are many pa-
rameters of drowsiness that reflect the vigilance level of a
driver, such as eye-closure duration (ECD), frequency of eye
closure (FEC), average eye-closure speed (AECS), and per-
centage of eye closure over time (PERCLOS).56, 57 For all of
them, the determination of eye state, open or closed eye, is
a necessary step. In this section, we introduce the novel fea-
tures for eye-state analysis. The performance of determining
eye status (opening and closing) is enhanced by combining
the appearance features by PCA and LDA, and the statistical
features, such as the sparseness and kurtosis of the histogram,
from the eye-edge image.

2.4.1 Feature extraction

Principal component and linear discriminant analyses. The
features used to determine open or closed eye are 12 dimen-
sional features obtained by PCA + LDA. This method is
the same as the eye-validation process explained in Fig. 12.
PCA + LDA exhibits better performance than PCA alone
when there are few samples in each class.51

Sparseness and kurtosis. Other features for determining
open or closed eyes are the sparseness and kurtosis of the
histogram from the eye-edge image. These features are ex-
tracted to classify open and closed eyes by using horizontal
edge image processing. Here, we briefly explain how these
features are extracted. The Sobel operator performs a 2-D
spatial gradient measurement on the detected eye image.
Typically, this is calculated by the absolute gradient mag-
nitude at each point in an input gray-scale image. The Sobel
edge detector uses a pair of 3×3 convolution masks, one es-
timating the gradient in the horizontal direction (columns)
and the other estimating the gradient in the vertical direction

(rows). A horizontal edge image is obtained using a horizon-
tal Sobel convolution mask. By applying a p-tile threshold
method to the horizontal edge image, it is transformed into
a binary image.58 From the training data, we experimen-
tally obtained 7% by the p-tile method. The p-tile threshold
method uses the size and area of eye to obtain a binary im-
age. For example, if eye occupy p% of total area, gray-value
histogram of input image is divided by the percentage, and
then a threshold is selected considering the p% pixel for eye.
The binarized image is projected onto the horizontal axis
(x-axis), and a vertical projection histogram is then acquired,
as shown in Fig. 13. The histogram of the open eye exhibits
a peak that is concentrated into vertical lines. This peak is
caused by the brightness difference of the pupil, specular
reflection, and iris. In contrast, the histogram of the closed
eye exhibits a flat distribution on the x-axis. Sparseness is
a parameter that measures how much energy of a vector is
concentrated on a few components.59 This implies that most
values are close to zero and that only a few take significantly
nonzero values. Kurtosis is a measure of whether the data
are peaked or flat relative to a normal distribution.60 That is,
data sets with high kurtosis tend to have a distinct peak near
the mean, decline rather rapidly, and have heavy tails. Data
sets with low kurtosis tend to have a flat top near the mean
rather than a sharp peak. A uniform distribution would be an
extreme case. Therefore, there is similarity between the two
parameters. The equations of sparseness and kurtosis are as
follows.

Sparseness(x) =
√

d −
(
∑

|x j |
)/√

∑

|x j |2√
d − 1

, (9)

where d represents the dimensionality of the vector x whose
j’th component is xj.

Kurtosis =
(1/N )

∑N−1
n=0 (xn − µ)4

σ 4
, (10)

where µ is the mean of x and σ is the standard deviation of
x.

Figure 13 shows that open/closed eye can be classified by
the sparseness and kurtosis of the histogram. As shown in
Fig. 13, it can easily be predicted that an open eye has larger
values of sparseness and kurtosis than a closed eye because
the open eye has greater bulginess than a closed eye. We
can confirm that the distribution of the open-eye histogram is
concentrated in the center of the x-axis when the histogram of
the closed eye exhibits a relatively flat distribution. Therefore,
open and closed eyes are classified in terms of whether the
sparseness and kurtosis of the projected histogram exceed a
certain threshold value.

2.4.2 Combination of features

The features that are used to classify open or closed eyes
were first extracted from the appearance features of 12
dimensions by PCA + LDA and were then extracted from
the statistical features of two dimensions by sparseness and
kurtosis. These extracted features were applied to the SVM
classifier. We used a SVM with RBF kernels because the
classification ability of the SVM with radial basis function
kernels was superior to that of the SVM with polynomial and
linear kernels. Figure 14 shows these processes that combine
features and classify open or closed eyes.
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Fig. 13 Horizontal edge-image process for classification of open and closed eye.

2.5 Detection of Drowsiness and Distraction

After classifying open or closed eyes and estimating the head
pose of a driver, the inattention of the driver is determined
by PECLOS, which represents the drowsiness level, and
PERLOOK, which represents the distraction level. PERC-
LOS is a parameter of drowsiness that is widely used to
monitor the drowsiness of a driver. It is defined as the por-
tion of time that the driver’s eyes are closed over a certain
period.57, 61–63 This parameter can be obtained from

PERCLOS[k] =
∑k

i=k−n+1 Blink[i]

n
×100 (%), (11)

where PERCLOS[k] means PERCLOS figure in the k’th
frame and n is a period measuring PERCLOS. Blink[i] rep-
resents that the eye is opened or closed in the i’th frame. It
has “0” if the eye is opened and “1” if the eye is closed. The
higher the PERCLOS is, the higher the level of driver fatigue.
When PERCLOS exceeds the predetermined threshold, the

proposed system generates a warning of inattention. The pre-
determined threshold was experimentally determined as 0.2
by our experiments with training data.

When a driver cannot look at the road ahead because the
head is rotated, it causes the same accident hazard as when
a driver cannot look ahead because their eyes are closed. As
such, we propose a parameter, PERLOOK, which measures
the driver-distraction level in the same way as PERCLOS.
PERLOOK is defined as the proportion of time that a driver’s
head is rotated and the driver does not look at the road ahead.
This parameter can be obtained from

PERLOOK[k] =
∑k

i=k−n+1 Nonfront[i]

n
×100 (%), (12)

where PERLOOK[k] indicates the PERLOOK figure in the
k’th frame and n is a period measuring PERLOOK. Non-
front[i] indicates that the driver is looking at the frontal or
nonfrontal area in the i’th frame. It is 1 if the driver is look-

Fig. 14 Process of combining features and classifying open or closed eyes using an SVM.
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Table 3 Specification of Database 1 for training.

Daytime No. subjects 12 persons (Male: 9, Female: 3, without glasses: 2, with glasses: 10)

No. images 44,197 images from 216 image sequences (12 persons×18 gaze zones)

Nighttime No. subjects 11 persons (Male: 8, Female: 3, without glasses: 3, with glass: 8)

No. images 41,155 images from 198 image sequences (11 persons×18 gaze zones)

ing at the non-frontal area and 0 if the driver is looking at
the frontal area. The higher the PERLOOK is, the higher
the driver-distraction level is. When PERLOOK is greater
than a predetermined threshold, the proposed system gener-
ates a warning of inattention. The predetermined threshold
was experimentally determined as 0.35 by our experiments
with training data. From Sec. 2.3.1, if the yaw angle of a
driver is greater than +15 deg or less than –15 deg (based on
the frontal direction), and if the corresponding accumulative
time is longer than 3.5 s during the unit interval of 10 s, our
system determines it as a “distraction.” For example, if the
yaw angle and accumulative time when a driver looks at a
GPS device or changes a CD is satisfied by this condition, it
is determined as a distraction.

3 Experiments

3.1 Database

In order to evaluate the proposed method, we attached the
developed system in front of a dashboard, as shown in Fig. 4,
and we collected 162,772 frames from 22 subjects. Several
experiments were carried out using images of subjects of both
sexes, some of whom wore sunglasses and eyeglasses, during
both daytime and nighttime. The databases were acquired in
a car using an NIR camera with a resolution of 640 × 480
pixels and a frame rate of 25 fps.

In our databases, there are two data sets for training and
testing. 12 subjects were categorized into a training group,
and the remaining 10 subjects were categorized into a test-
ing group. The images from the training group were stored
in database 1, whereas those from the testing group were
recorded in database 2. Database 1, which is shown in
Table 3, has also been used in a previous study.33 It con-
tains 85,352 images (6700–7500 images per subject). 1090
images from database 1 were used to train the eye validation
process, as shown in Fig. 12 and Table 4; 703 images were
used for the classification process for open and closed eyes,
as shown in Fig. 14 and Table 5. The 85,352 training images
include numerous overlapped data, which can cause overfit-
ting of the classification hyperplane of the SVM. In order to
solve this problem, 1090 samples from 12 subjects were ran-
domly selected and used in SVM training for eye validation.
The training set for the SVM classifier in the eye-validation
process contains 860 positive samples (eye images) and 230
negative samples (noneye images), as shown in Figs. 15(a)
and 15(b). In addition, 703 samples from 12 subjects were
randomly selected and used in SVM training for eye-state
detection. The training set for the SVM classifier in the eye-
state–detection process contains 530 positive samples (open-
eye images) and 173 negative samples (closed-eye images),
as shown in Figs. 15(c) and 15(d).

The remaining images in database 1 were heuristically
used for parameter optimization in eye detection (Sec. 2.3.2).
In conclusion, the training data were only used for parameter
optimization and SVM training.

Database 2 contains 77,420 images (7500–8000 images
per subject) from the testing group. In database 2, longer
image sequences were captured for each subject in order
to test the proposed inattention-detection method. The sub-
jects were requested to look frontally for 5 s and to then
drive normally, drowsily, or distractedly for the remaining
period. Thus, for each subject, we obtained three types of
sequences: a normal driving video, a drowsy driving video,
and a distracted driving video. In addition, the subjects who
did not wear glasses were asked to wear sunglasses in order
to capture a new sequence. Similarly, the subjects who wore
glasses were asked to remove their glasses or wear sunglasses
in order to capture a new sequence.

As compared to the number of drowsy driving videos, the
number of distracted driving videos is relatively large. The
reason is as follows. A driver can gaze at the 12 different
positions (1–5, 8, 11, 14–18) described in Fig. 16; hence, we
need to test the performance of distraction detection for the
various gaze directions. Thus, for each subject, we obtained
multiple distracted videos in which the subject gazed at the
12 different positions.

Table 4 Train database for eye validation.

Number of eye images used

as training data in eye validation

Glass type Left eyes Right eyes

Eye
(positive
samples)

Not wearing
glasses

627 473

Eyeglasses 128 208

Sunglasses 105 189

Subtotal 860 870

Noneye
(negative
samples)

Not wearing
glasses

78 123

Eyeglasses 103 108

Sunglasses 49 79

Subtotal 230 310

Total 1090 1180
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Table 5 Train database for eye state detection.

Number of eye images used as training
data for blink detection

Glass type Left eyes Right eyes

Open eye
(positive
samples)

Not wearing
glasses

420 440

Eyeglasses 50 70

Sunglasses 60 50

Subtotal 530 560

Closed
eye
(negative
samples)

Not wearing
glasses

102 105

Eyeglasses 33 40

Sunglasses 38 40

Subtotal 173 185

Total 703 745

In the case of distraction, a driver is not looking ahead.
Thus, the videos in which a driver gazed at 12 different posi-
tions among the 18 positions shown in Fig. 16 were used for
the performance evaluation of distraction detection. Unlike
distraction detection, only two states [i.e., drowsy and normal
(awake)] can be considered in the case of drowsiness detec-
tion. Hence, the number of drowsy videos obtained from each

Fig. 16 Discrete gaze zones in a vehicle.

subject is less than that of distracted videos. The duration of
each distracted video is ∼1 min, whereas that of each drowsy
video is around 5–10 min. Table 6 shows database 2 in detail.

3.2 Experimental Results

The experimental phase consists of three parts. First, the
eye-detection algorithm was tested using image sequences
of different people obtained in a vehicle under different
times and light conditions. Then, the algorithm for eye-
state detection was tested. The features used to classify
eye states were extracted from a long image sequence. Fi-
nally, the algorithm measuring the inattention level of a
driver was tested. The inattention level is composed of the
drowsiness and distraction levels. Drowsiness level was mea-
sured by PERCLOS and distraction level was calculated by
PERLOOK.

3.2.1 Eye-detection results

In order to evaluate the performance of our eye-detection
algorithm, three experiments were carried out and compared
to each other. The first was performed using only the eye
adaboost with our database 2. When it is applied to every

Fig. 15 Positive and negative samples provided to the SVM classifier in the training phase: (a) Eye images, (b) noneye images, (c) open-eye
images, and (d) closed-eye images.
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Table 6 Specification of Database 2 for testing.

No. subjects 9 persons (Male: 6, Female: 3, without glasses: 9, with glasses: 4,
with sunglasses: 5)

No. images for eye detection and eye state detection 40,256 images from 36 image sequences

No. images used for eye detection evaluation 32,365 images from 36 image sequences (7891 images were
excluded because the subject was looking away from the road
ahead.)

Daytime No. images used for eye state detection evaluation 30,483 images from 36 image sequences (9773 images were
excluded because the subject was looking away from the road
ahead (7891) or because the eyes could not be classified as open
or closed (e.g., narrow eyes) (1882).

No. sequences used to measure inattention level 189 video sequences driving normally

36 video sequences driving drowsily

189 video sequences driving distractedly (Total number of images:
about 239,200 images from 414 image sequences.)

No. subjects 10 persons (Male: 7, Female: 3, without glasses: 5, with glasses: 5)

No. images for eye detection and eye state detection 37,164 images from 20 image sequences

No. images used for eye detection evaluation 28,608 images from 20 image sequences (8556 images were
excluded because the subject was looking away from the road
ahead.)

Nighttime No. images used for eye state detection evaluation 26,672 images from 20 image sequences (10,492 images were
excluded because the subject was looking away from the road
ahead (8556) and because the eyes could not be classified as being
open or closed (e.g., narrow eyes) (1936)).

No. sequences used to measure inattention level 120 video sequences driving normally

20 video sequences driving drowsily

120 video sequences driving distractedly (Total number of images:
about 105,800 images from 260 image sequences.)

sequence frame, it requires a long processing time and fails
to detect eyes when the head is rotated or the eyes are closed.
Thus, it resulted in unsatisfactory eye-detection performance
and a slow processing time, as shown in Table 7. In the second
experiment, we combined eye-detecting methods, including
adaboost, adaptive template matching, and blob detection,
and this improved both the detection accuracy of the closed-
eye and the computational performance. The third experi-
ment was performed by adding the eye validation to those
used in the second experiment. When the eye validation was
added to the eye-detection algorithm, the accuracy of eye
detection was improved. Without any eye verifier to check
whether the detected eye region truly contains an eye, the
falsely detected noneye image may be stored in the template

and the falsely detected eye could be repeatedly detected by
the adaptive template matching from the next frame. Con-
sequently, in the second experiment, propagation error was
generated and the error rate was 7.56% in eye detection.
However, after applying the eye-validation process, the error
rate was decreased from 7.56 to 1.04%.

The eye-detection rate is calculated as follows. First, im-
ages looking at the frontal area are extracted from total
images in database 2 (Table 6) and then manually divided
into eye images [as in Fig. 15(a)] and noneye images [as in
Fig. 15(b)]. Then, the eye-detection rate is calculated by the
number of images that successfully detect eyes over the total
number of images. Table 7 presents the eye-detection rate
results and also shows that the eyes can be ∼98.9% success-

Fig. 17 Excluded narrow eye samples.
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Table 7 Results obtained after eye detection algorithms on images in Database 2.

Conditions Eye-detection rate

Time Glass type Sequences Frames Adaboost

Proposed method
(without the eye

validation process)

Proposed method
(with the eye

validation process)

Not
wearing
glasses

18 19,994 76.52% 92.54% 98.55%

Day Eyeglasses 8 8,012 67.35% 92.35% 98.88%

Sunglasses 10 4,359 63.53% 92.02% 98.91%

Subtotal 36 32,365 72.50% 92.42% 98.68%

Not
wearing
glasses

10 16,860 73.98% 92.58% 98.85%

Night Eyeglasses 10 11,748 70.12% 92.05% 97.89%

subtotal 20 28,608 72.39% 92.36% 98.46%

Total 68 60,973 72.45% 92.39% 98.58%

Processing time 23.1 ms 11.5 ms 14.5 ms

fully detected by the proposed eye-detection method regard-
less of time, gender, and glass type. Detection error is caused
by misrecognition of eyeglass frames, eyebrows, and eyes
that are partially visible in Fig. 15(b) as true eyes. However,
this detection error is not continuous in the video sequences
because the eye template is reset by the eye-validation pro-
cess in the next frame when the eye detector detected a
noneye.

3.2.2 Eye-states–detection results

In order to evaluate the performance of determining eye sta-
tus, eye images from database 2 in Table 6 were manually
divided into two classes, open and closed eyes, and they were
used as ground-truth data. Two experiments were then per-
formed. The first experiment is designed to test the effect
of PCA + LDA features compared to PCA features. The
second experiment is designed to compare and analyze the
classification performance of multiple features combining
PCA + LDA, sparseness, and kurtosis.

It is of note that narrow eyes, such as those in Fig. 17, were
excluded from the performance measurement in the testing
data. Because human eyes change smoothly from an open eye
to a narrow eye and then a closed eye, it is difficult to classify
crisply whether a narrow eye is an open eye or a closed eye in
the middle of the change. However, although a narrow eye is
judged as either an open or a closed eye, it does not affect the
total performance of determining drowsy behavior because
it is a temporary and transitional state between an open and
closed eye. Therefore, narrow eyes were excluded from the
testing data.

The performance in eye-states detection is measured by
considering two errors. For convenience, when an open eye is
falsely accepted as a closed eye, we define it as a type I error.
In addition, when a closed eye is falsely rejected as an open
eye, we define it as a type II error. Thus, the performance of

eye-states detection was measured by type I error and type II
error.

In the first experiment, in order to detect eye states, fea-
tures are extracted by PCA or PCA + LDA and the features
are then entered into SVM and finally classified into open and
closed eyes. This process is the same as the eye-validation
process explained in Fig. 12. As shown in Table 8, 530 frames
of open eyes and 173 frames of closed eyes were used in the
training and some of the eye images in database 2 were tested.
Then, 12 dimensional features for the best performance were
selected. The method using the PCA + LDA exhibits better
performance in classifying eye states than the method using
only PCA in our experiment. In particular, the PCA + LDA
feature is more effective than the PCA or LDA feature when
there are fewer training samples in each class. The combined
features of PCA + LDA are less sensitive to different illu-
minations, whereas the PCA feature is sensitive to changing
illumination.51, 53

Table 9 shows the eye-states–detection results by PCA
+ LDA for each dimension. First, in order to find the proper
feature dimension yielding the best recognition rate when
features were extracted solely by PCA, we tested for each
dimension and obtained the 15 dimensions as the best number

Table 8 Training and testing data sets for eye states detection.

Eye states included

Data set Open eye Closed eye

Train 530 173

Test 7250 800
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Table 9 Recognition error rates by eliminating the first one to six principal components.

No. eliminated principal components

1 (14 dim.) 2 (13 dim.) 3 (12 dim.) 4 (11 dim.) 5 (10 dim.) 6 (9 dim.)

Input
feature

Type I
error

Type II
error

Type I
error

Type II
error

Type I
error

Type II
error

Type I
error

Type II
error

Type I
error

Type II
error

Type I
error

Type II
error

PCA +
LDA

3.52% 3.50% 3.43% 3.38% 3.26% 3.25% 3.48% 3.50% 3.39% 3.38% 4.15% 4.13%

(

255
7250

) (

28
800

) (

249
7250

) (

27
800

) (

236
7250

) (

26
800

) (

252
7250

) (

28
800

) (

246
7250

) (

27
800

) (

301
7250

) (

33
800

)

of feature dimensions. The recognition rates of PCA features
are 96.12 and 96.15% for open and closed states, respectively.

Previous works in face recognition50–52 reported that elim-
inating the first one to three PCs improved performance. Be-
cause these PCs are sensitive to various illuminations, they
should be removed. In this study, we eliminate the first one
to six PCs to analyze the recognition effect for eye-states
detection. The experiment results are presented in Table 9.

Table 9 demonstrates that eliminating the first one to three
PCs will achieve the best performance rates in our data. The
best performances for the PCA + LDA feature, 3.26 and
3.25%, were obtained by eliminating the first three PCs.
When removing more than four PCs, the results grew worse.

In the second experiment, in order to evaluate the clas-
sification performances of several features, features are
extracted by feature extraction methods, their combined fea-
tures are entered into an SVM, and their classification perfor-
mances are then measured. There are two kinds of features
used in the second experiment. First, appearance features are
extracted by PCA + LDA and statistical features are also
extracted by sparseness and kurtosis. The classification per-
formances resulted from combining these features are shown
in Table 10. We can confirm that the performance was im-
proved by combining the appearance features by PCA +

LDA and the statistical features such as the sparseness and
kurtosis of the histogram from the eye-edge image.

Table 11 shows the total performance of the proposed
eye-states–detection method with database 2, the total test-
ing data. As shown in Table 11, our proposed eye-states–
detection method works well in both daytime and nighttime,
and also for drivers wearing eyeglasses or sunglasses. Fi-
nally, we obtained results that are 1.45 and 2.91% for type I
and type II errors, respectively.

Some qualitative results of the proposed eye-detection
and eye-states–detection method are shown in Figs. 18 and
19. The proposed method was robust to image variations
caused by sunlight, eyeglasses, sunglasses, blinking, mouth
movement, and specular reflection on glasses. Here, the open
eye was marked as a circle and the closed eye was marked as
a rectangle. The eye region is set in proportion to the detected
face region and the average size of the eye region is 40×26
pixels.

3.2.3 Results of measuring the inattention level

In the driver-monitoring system, it is very important to ensure
that a driver is paying adequate attention to the road ahead, a
must-see position when driving. We can consider two situa-

Table 10 Accuracy of the eye states detection method when using each feature or combining multiple features.

Input features

Type I error (Error rate for
when an open eye is falsely
accepted as a closed eye)

Type II error (Error rate for when a
closed eye is falsely rejected as

an open eye)

Kurtosis 8.74 (634/7250) 8.75% (70/800)

Sparseness 7.86 (570/7250) 7.88% (63/800)

Sparseness,
kurtosis

6.97 (505/7250) 7.00% (56/800)

PCA 3.93% (285/7250) 4.00% (32/800)

PCA + LDA 3.26% (236/7250) 3.25% (26/800)

PCA + LDA,
sparseness

2.80% (203/7250) 2.75% (22/800)

PCA + LDA,
kurtosis

2.97% (215/7250) 3.00% (24/800)

PCA + LDA,
sparseness,
kurtosis

2.23% (162/7250) 2.25% (18/800)
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Table 11 Performance of our proposed method for eye states detection in Database 2.

Time Glass type

Type I error (Error rate for
when an open eye is
falsely accepted as a

closed eye)

Type II error (Error rate for
when a closed eye is

falsely rejected as an open
eye)

Not wearing glasses 1.20% (198/16451) 3.54% (72/2032)

Eyeglasses 3.05% (204/6699) 1.56% (16/1024)

Day Sunglasses 0.73% (28/3830) 1.12% (5/447)

Subtotal 1.59% (430/26980) 2.65% (93/3503)

Not wearing glasses 0.49% (64/13185) 3.15% (62/1967)

Night Eyeglasses 2.30% (241/10465) 3.32% (35/1055)

Subtotal 1.29% (305/23650) 3.21% (97/3022)

Total 1.45% (735/50630) 2.91% (190/6525)

tions when a driver does not see the road ahead when driving.
First, it is a situation when the driver closes his or her eyes
during driving while drowsy. The second situation is when
the driver’s head is rotated when driving distractedly. Both
of these situations are dangerous because the driver does not
pay adequate attention to the road ahead. In this paper, we
proposed a system to monitor these hazards simultaneously.
Two measures, PERCLOS and PERLOOK, are used to detect
the drowsiness and distraction level, respectively.

Figure 20 shows the result of PERCLOS measurement
for drowsy sequences: the state of a driver is alert for the
first 100 s, and during the remaining time, the driver exhibits
drowsy driving behavior. In Fig. 20, we were able to confirm
that the driver drowsiness was well detected by PERCLOS.
However, if the driver exhibits distracted driving behavior,
the distracted behavior cannot be detected using the PERC-
LOS measurement. In Fig. 21, the driver was requested to

Fig. 18 Results of the proposed eye-detection and eye-states–
detection method on images captured during the daytime for a driver
who: (a) did not wear any glasses and (b) wore sunglasses. (Three
vertical lines refer to the left, right, and center of the face.)

drive normally for the first 160 s and then distractedly for
the remaining time. Figure 21(a) shows the result of PER-
CLOS measurement for distracted sequences. In Figs. 21(a)
and 21(b), it is evident that distracted behaviors cannot be
detected using the PERCLOS measure alone. Figure 21(a)
measured by PERCLOS shows the false determination of a
distracted behavior as a normal behavior. Figure 21(b) mea-
sured by PERLOOK shows that the driver distraction was
well detected at ∼160 s.

The experiments to measure the drowsiness and distrac-
tion levels were executed on the image sequences in database
2. For each of the subjects, 36 drowsy video sequences and
189 distracted video sequences were recorded during the day-
time and 20 drowsy video sequences and 120 distracted video
sequences were recorded during the nighttime. For each of
the drowsy video sequences, about 5–10 min of observation
was recorded. The subjects were requested to look frontally

Fig. 19 Results of the proposed eye-detection and eye-states–
detection method on images captured during the nighttime for a driver
who: (a) did not wear any glasses and (b) wore eyeglasses.
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Fig. 20 PERCLOS measurement for drowsy sequences.

for 5 s and then drive normally or to drowsily drive for the
remaining period. For each of the distracted video sequences,
∼1 min of observation was recorded. The subjects were re-
quested to look frontally for 5 s and then drive normally
or to distractively drive for the remaining period. Thus, for
each subject, we obtained three kinds of sequences, normal,
drowsy, and distracted driving video sequences. The experi-
mental results using these video sequences are presented in

Table 13. In this experiment, we achieved satisfying results.
As shown in Table 13, the error rate of falsely recognizing
a drowsy state or a distracted state as a normal state is 0%,
while the error rate (false alarm) of falsely recognizing a
normal state as a drowsy state or a distracted state is ∼2%.
That is, there was no error in detecting drowsiness or dis-
traction when the driver was actually drowsy or distracted.
On the other hand, six cases of a false alarm occurred in nor-

Fig. 21 PERCLOS and PERLOOK measurements for a distracted video sequence: (a) PERCLOS and (b) PERLOOK.
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Fig. 22 ROC curves for drowsiness and distraction detection accuracy: (a) drowsiness detection and (b) distraction detection.

mal driving videos of ∼4 h, which corresponds to 1–2 false
alarms per hour; these can be regarded as small errors. Failure
analysis revealed that a normal state was falsely recognized
as a drowsy state because the eyes were recognized as closed
eyes when the driver laughed for a certain amount of time.
Errors related to the driver’s habit of blinking his/her eyes
occur frequently. Thus, the measured PERCLOS was larger
than that for normal drivers. Because a false alarm can annoy
the driver, we focused on the detection of dangerous inatten-
tion. By changing the decision threshold value, the number

of false alarms can be reduced at the expense of increasing
the error of missing true detections.

Also, the false alarm can be reduced using the other
methods, such as facial expression recognition, user-specific
driver monitoring, or driving behavior information, such as
monitoring vehicle speed, steering movement, lane keeping,
acceleration, braking, and gear changing. These works would
be considered in the future.

Figure 22 shows the ROC curve for drowsiness and dis-
traction detection accuracy by thresholds, PERCLOS and
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Fig. 23 One screen shot of actual drowsy video.

PERLOOK. ROC curve is a graphical plot of the sensitivity,
or true acceptance rate, versus false acceptance rate, for a
binary classifier system because its discrimination threshold
is varied.70 For convenience, when the inattentive state is
falsely accepted as the normal state, we define it as false-
acceptance rate (FAR) in this paper. In addition, when the
normal state is falsely accepted as the inattentive state, we de-
fine it as false-rejection rate (FRR). When the FAR and FRR
are equal, the common value is referred to as the equal-error
rate. The true-acceptance rate indicates a value subtracting
FRR from 100%.

We describe a comparative experiment for measuring
drowsy parameters in each actual and virtual drowsiness
video. In our test, the drowsy driver–detection performance
was measured using the virtual drowsiness video that was
obtained when 10 people simulated drowsy driving behavior.
We used a virtual drowsiness video because it is dangerous
and difficult to obtain an actual drowsiness video; moreover,
an open database of actual drowsiness videos is not available.
Thus, it was necessary to compare the values of PERCLOS in
the virtual drowsiness video with those in the actual drowsi-

Table 12 Testing data to detect the drowsiness and distraction of a
driver in a vehicle.

Time Driver state No. test videos

Normal state 189

Day Drowsy state 36

Distracted state 189

Normal state 120

Night Drowsy state 20

Distracted state 120

Total 674

ness video. The actual drowsiness video shown in Fig. 23
was obtained when a subject was actually drowsy at dawn (at
around 4:00 or 5:00 A.M.). Although this video was obtained
in the laboratory, the acquisition environment (the positions
of a user and the proposed device, the viewing angle of the
camera, etc.) was similar to that in a car. Figure 24 shows
graphs for PERCLOS in the actual and virtual drowsiness
videos. It is easy to identify that these features of PERC-
LOS are similar. In the actual drowsiness video, the driver
begins to falls asleep after 300 frames, and the average value
of PERCLOS is ∼0.5254. In the virtual drowsiness video,
the driver begins to falls asleep after 400 frames and the
average value of PERCLOS is ∼0.5024. Therefore, we can
predict that the drowsy driver–detection performance in the
virtual drowsiness video will be similar to that in the actual
drowsiness video.

Because it is difficult and dangerous to obtain drowsy
or distracted videos in real conditions, they were not ob-
tained. However, the 189 videos [in (daytime) normal state of
Table 12] include five videos that were obtained when users
were actually driving on an expressway. In the future, we
believe that it would be possible to obtain a greater number

Fig. 24 Comparison between the PERCLOS values in the actual and virtual drowsiness video: (a) actual drowsiness and (b) virtual drowsiness.
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Table 13 Drowsiness and distraction detection results measured from video sequences in a vehicle.

Error rates (%)

Misrecognizing a
drowsy state as
a normal state

Misrecognizing a
normal state as
a drowsy state

Misrecognizing a
distracted state

as a normal
state

Misrecognizing a
normal state as

a distracted
state

Misrecognizing a
drowsy state as

a distracted
state

Misrecognizing a
distracted state

as a drowsy
state

0% (0/56) 1.62% (5/309) 0% (0/309) 0.64% (2/309) 1.79% (1/56) 0% (0/309)

of drowsy or distracted videos in real conditions with the
support of car manufacturers.

3.2.4 Processing time

The proposed driver-monitoring system was efficient and
worked in real time. The software was implemented using
Visual C + + on an Intel Pentium M processor, 1.60 GHz,
500 MB RAM. Although not all the code optimizations
were completed, the processing times are encouraging for
a real-time implementation. The total processing time was
31 ms/frame, and the processing times of each step are shown
in Table 14.

4 Conclusion

In this study, we proposed a driver-monitoring system that
can be used for warning against driver inattention, includ-
ing drowsiness and distraction. We proposed an algorithm
that automatically localizes the eyes, determines whether
they are opened or closed, and finally judges whether the
driver is driving drowsily or distractedly. This constitutes a
nonintrusive approach to detecting driver inattention without
annoyance or interference in both daytime and nighttime.

The framework consists of three steps. The first step
involves eye detection and tracking. In driving sequence
images, adaboost, adaptive template-matching, and blob-
detection methods are combined to detect the eyes automat-
ically. Eye detection is verified using an eye-validation tech-
nique based on PCA + LDA and SVM. The proposed eye
detector works well when the driver closes his or her eyes or
wears eyeglasses and sunglasses. High detection rates were
achieved in tests carried out on 12 people in the database

Table 14 Processing time of proposed driver monitoring system.

Process Processing time (ms/frame)

Eye adaboost 23.1

Adaptive template matching 0.7

Blob detector 1.2

Eye validation by using SVM 2.2

Total eye detection 14.5

Eye states detection 2.4

Head pose estimationa 14.1

Total processing time 31

aReference 39.

during both daytime and nighttime, as well as when wearing
sunglasses or eyeglasses.

The second step is a process for classifying eyes as opened
or closed. For this purpose, appearance-based features are ex-
tracted from the detected eye image by PCA + LDA, and
edge-based features are obtained on the basis of sparseness
and kurtosis. The detected eyes are then classified as open
or closed by an SVM using the combined features. We con-
firmed that performance of the combined system is better
than that of a single system. Experimental results revealed
that the classification error rate in the databases was <3%,
during both daytime and nighttime, as well as when wearing
sunglasses or eyeglasses.

The third step is a process for measuring the drowsiness
and distraction levels of the driver. In this process, we pro-
posed a method for checking these two conditions simultane-
ously. Two measures, PERCLOS and PERLOOK, are used to
calculate the drowsiness and distraction levels, respectively,
and they yield satisfactory results.

In the future, we plan to conduct tests with a greater num-
ber of users and over longer periods of time in order to obtain
actual drowsy and distracted behaviors. From the viewpoint
of gaze estimation, we need to develop a precise gaze-
estimation method using both head-pose and eye-movement
information. In the drowsy driver–detection method, facial
expression recognition must be employed to distinguish
eyes closed due to fatigue from those closed due to vigorous
laughter. Moreover, because eye size, eye blinking frequency,
and driving habits vary among drivers, we need to develop
a driver-specific monitoring system using an online training
method. This system will exhibit better performance if it is
integrated with other sensors, such as the accelerator, steering
wheel, and lane-position sensor. Finally, an integrated driv-
ing safety system will be more effective when combined with
a pedestrian-recognition system and a lane-keeping support
system.
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