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Two (somewhat unlikely) conditions will cause errors in the IPEC
system. These are as follows.

1) If sufficiently strong external forces are applied onto the
OmniMate so that either the front or rear truck slip laterally,
then this will cause an error in the measured orientation error
��m (see Fig. 3).

2) If both wheels of truck A slipped by the same amount, then this
slippage would not be detected. However, the result would only
be a translational error, which has usually less impact than an
orientation error.

V. CONCLUSION

This paper presents results of odometric accuracy tests performed
with a new, commercially available mobile robot called “OmniMate.”
The OmniMate provides true omnidirectional (i.e., holonomous)
motion and its kinematic design eliminates the excessive wheel-
slippage often associated with omnidirectional platforms. One of the
OmniMate’s most unique features is its ability to employ internal
position error correction (IPEC) to dramatically improve its odometric
accuracy.

Using rigorous test procedures called “UMBmark” and “extended
UMBmark,” the OmniMate and its implementation of IPEC were
carefully tested at our lab. The results show an improvement of one
order of magnitude in odometric accuracy over the accuracy of a
conventional odometry system.

The foremost strength of the IPEC method is its ability to reliably
and accurately detect and correct nonsystematic odometry errors such
as those caused by bumps, cracks, or other objects on the floor.
In conventional mobile robots the encounter of one or more such
irregularities could have a catastrophic effect on the performance
of the robot, i.e., cause the mission to fail completely. With the
OmniMate and IPEC, on the other hand, floor irregularities have
virtually no detrimental effect on the odometric accuracy of the
vehicle at all.
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Vision-Based Navigation by a Mobile Robot with
Obstacle Avoidance Using Single-Camera

Vision and Ultrasonic Sensing

Akihisa Ohya, Akio Kosaka, and Avinash Kak

Abstract—This paper describes a vision-based navigation method in
an indoor environment for an autonomous mobile robot which can
avoid obstacles. In this method, the self-localization of the robot is done
with a model-based vision system, and nonstop navigation is realized
by a retroactive position correction system. Stationary obstacles are
avoided with single-camera vision and moving obstacles are detected with
ultrasonic sensors. We will report on experiments in a hallway using the
YAMABICO robot.

Index Terms—Mobile robot, non-stop navigation, obstacle avoidance,
self-localization, ultrasonic sensing, vision.

I. INTRODUCTION

In what has become a fairly well-researched approach to vision
based navigation for mobile robots, a robot is provided with an
environmental map and a path to follow. The important function
of vision-based processing in this case consists of “self-localization.”
For literature on this approach, the reader is referred to [6], [13], [18],
and [19]. In a different approach, as reported on by [11] and [15], a
robot is provided with a sequences of images of the interior space.
By comparing these prerecorded images with the camera images
taken during navigation, the robot is able to determine its location.
Other previous research contributions that are relevant to mobile robot
localization include [4], [5], [8], [12], [14], [16], and [17].
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Fig. 1. Flow of computations in the self-localization procedure.

An important adjunct to the problem of navigation is the problem
of obstacle avoidance, another well-researched problem in the past
[1], [2]. In the vision-based navigation work reported in the past,
such as in [6], obstacle avoidance is carried out using ultrasonic
sensors. These sensors take over the control of the robot as long
as obstacles are detected in the vicinity. The control is then handed
back to vision-based processing once the obstacles are no longer
a factor. While it is expedient to use ultrasonic sensors in such a
manner, we believe it is empirically more interesting to use vision-
based processing for obstacle avoidance also. Since a primary focus
of machine intelligence and advanced robotics is to capture human
faculties in a computer and since humans use vision for obstacle
avoidance while navigating, we are evidently interested in doing the
same in a robot.

In this paper, we will present an integrated vision-based process
for mobile robots that is capable of simultaneously navigating and
avoiding stationary obstacles using monocular camera images. While
the self-localization part of the process is the same as the FINALE
system of [6], what distinguishes the work reported in this paper is
that we are now able to give to the robot a vision-based obstacle
avoidance capability at the same time. In the current implementation,
this obstacle-avoidance capability is limited to the detection and
avoidance of stationary obstacles. This is owing to the limitations
of the computing hardware available to the robot. Therefore, moving
obstacles must still be detected with ultrasonic sensors.

What is particularly noteworthy about our approach is that the
self-localization and the obstacle avoidance are both carried out by
processing the same image, thus eliminating what would otherwise be
a redundancy in sensor data collection. While a model-based approach
is used for self-localization, obstacles are detected by computing the
difference between the edges estimated from the 3D environment
model and the edges detected from the actual camera image. We
should mention that is not the only approach to vision-based detection
of obstacles. As reported by [3], an alternative approach consists of
computing optical-flows from the images.

In the rest of this paper, in Section II we briefly explain the
method used for self-localization and show also the concept of
retroactive position correction for nonstop navigation. The method
used for obstacle avoidance is presented in Section III. The system
architecture is presented in Section IV and the experimental results
obtained are presented in Section V. Finally the conclusions and the
discussions are given in Section VI.

II. V ISION-BASED NAVIGATION

A. Self-Localization

As mentioned earlier, the self-localization part of the overall
navigation scheme is the same as the FINALE system of Kosaka
and Kak [6]. However, the manner in which self-localization is used
in the current system is different from that in [6]. Self-localization
in FINALE kicks in whenever the variances associated with the
positional parameters exceed a certain predetermined threshold.1 In
our current system, self-localization is carried out on a continuous
basis. However, before we elaborate on what we mean by “self-
localization on a continuous basis,” we’d like to review briefly the
computations that go into self-localization.

Fig. 1 shows the flow of the self-localization procedure. First, the
robot renders an expectation image using its current best estimate of
where its present location is. Next, the model edges extracted from
the expectation image are compared and matched with the edges
extracted from the camera image through an extended Kalman filter.
The Kalman filter automatically then yields updated values for the
location and the orientation of the robot.

To illustrate the process of self-localization, Fig. 2(a) shows a
typical camera image. Shown in Fig. 2(b) is an expectation image
rendered from the wire-frame model of the environment; this ex-
pectation map is overlaid on the camera image. As the reader can
see, the discrepancy between the various edges in the underlying
camera image and the highlighted edges in the expectation map is
caused by the error between where the robot actually is and where
the robot thinks it is. Shown in Fig. 2(c) are the edges extracted
from the camera image. Note in particular that not all gray level
variations in the camera image translate into edges. As explained
in [6], this is due to the fact that the system only looks for those
edges in the camera image that are in proximity—both spatially and
in the Hough space—to the edges in the expectation map. Shown in
Fig. 2(d) is a reprojection into the camera frame of those model edges
that were successfully used for self-localization. The fact that these
reprojected edges fall exactly where they should is a testimony to the
accuracy of the result produced by the Kalman filter. Although not
discernible, shown in Fig. 2(e) are two small icons, in close proximity
to each other, the bright one corresponding to the updated position and
orientation of the robot and the somewhat darkened corresponding to
the old position and orientation. To help the reader discern these
two icons, shown in Fig. 2(f) is an enlarged version of the image in
Fig. 2(e).

By repeating the self-localization, the robot can correct its position
error and navigate autonomously toward its destination.

B. Nonstop Navigation by Retroactive Position Correction

We now need to explain to the reader how the self-localization
process described above fits into the overall framework for nav-
igation. What we really want to do—and this has actually been
implemented—is to navigate with dead-reckoning, meaning that we
want the robot to update its position continuously on the basis of the
information supplied by the wheel encoders. Unfortunately, there is
always some differential slippage in the wheels that causes a purely
dead-reckoning based approach to go awry if navigation is attempted
over significant distances. So we want the robot to use vision-
based self-localization to eliminate the errors accumulated during

1The uncertainty in positional parameters is caused primarily by differential
slippage in the wheels of the robot, especially when the robot is engaged in
collision-avoidance maneuvers. The two contributors to positional uncertainty
are the translational uncertainty and the rotational uncertainty, the latter being
the larger of the two.
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Sample images from the self-localization process: (a) camera image, (b) expectation map overlaid on the camera image, (c) edges extracted from
the camera image, (d) matched model edges reprojected into the camera frame, (e) two small icons showing the robot’s old and the updated positions in the
hallway, and (f) enlarged version of (e). The gray icon is for the old position and the white icon is for the updated position.

dead-reckoning. Due to the time delays associated with vision-based
processing, this turns out to be a fortuitous combination of dead-
reckoning and vision-based position updating. Since we do not want
the robot to come to a halt as the camera image is being processed,
what is really needed is a retroactive approach to position correction,
along the lines originally proposed in [7]. As explained below, in
the current system we have implemented a slight variation on the
retroactive updating idea reported in [10].

Fig. 3 shows the timing diagram used for retroactive position
correction. At timet0, an image is taken and the self-localization
process started. The computations for self-localization come to an
end at timet0 + n�t where�t is the sampling interval for dead
reckoning, meaning that at the end of each�t interval the position
of the robot is recalculated based on the wheel encoder readings.

Since the self-localization results correspond to the image taken at
time t0, the dead-reckoning based estimate of robot’s position at the
current time (the time instantt0 + n�t) must be recalculated.

Since this recalculation is done within a sampling interval for dead
reckoning, the robot is able to proceed in a nonstop manner without
having to stop for processing the camera image.

III. OBSTACLE AVOIDANCE

Obstacle avoidance is carried out using both vision and ultrasonic
sensing. While our ultimate goal is to use only vision for obstacle
avoidance, due to the limitations of the computing hardware available
to the mobile robot, at this time vision can only be used for the
detection of stationary obstacles. So, in the current implementation,
the detection of moving obstacles is left to ultrasonic sensors. Another
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Fig. 3. The timing diagram for retroactive position correction. At timet0,
an image is taken and self-localization process starts. Self-localization results
become available at timet0 + n�t where �t is sampling interval for
dead reckoning. The corrected current robot’s position corresponding to time
t0 + n�t is recalculated.

reason for using a combination of these two sensing modalities is
that the ultrasonic sensors on the YAMABICO robot possess low
directivity. Therefore, while they are able to discern the presence of
an obstacle, they cannot be used to determine the direction of free
passage. As we will show, the direction of free passage can be easily
determined from the vision data.

A. Stationary Obstacle Avoidance

The detection of stationary obstacles is based on the premise that
the camera image and the expectation map must be in near-perfect
registrationimmediately after self-localization.So, any discrepancy
between these two images can only be caused by the presence of
obstacles in the environment, assuming of course that the edge-
detection process does not result in any artifact edges in the camera
image. Fortunately, as will be shown presently, the artifact edges,
caused mostly by glare and other illumination dependent phenomena,
can be eliminated by using adaptive thresholding.

1) Adaptive Thresholding:We will now explain how the adaptive
thresholds are found for the edge detection operator. Recall, the
edge-detection thresholds at the different locations of the robot must
be such that when an edge detector is applied to a camera image
immediately after self-localization, it should not yield any artifact
edges. For a particular hallway with given illumination conditions,
these thresholds are found through a learning procedure prior to any
navigation in that hallway. The learning procedure consists of

1) clear the hallways of all obstacles;
2) manually drive the robot through the different sections of the

hallway;
3) render expectation maps from the hallway model at regular

intervals during these manual traversals by the robot;
4) record the camera images at the same locations where the

expectation maps are rendered;
5) apply an edge detection operator to the camera images using a

thresholdT for the edge detection operator;
6) construct a difference image between the model edge map from

Step 3 and the edge map from the previous step;
7) divide the difference image of Step 6 into five vertical regions

and count the numbers of pixels,N1 throughN5, in each
region;

8) compute maxNm of these five numbersN1 throughN5;
9) go back to Step 5 and by iterating Steps 5–8, construct a graph

of the number of pixelsNm in Step 8 versus the thresholdT ;
10) choose the thresholdT0 for which the number of difference

pixelsNm is a minimum. Designate this value ofNm byN0.

Fig. 4. Determination of the optimum edge detection thresholds.

The reason why the indexNm is not just a total number of pixels in
the whole difference image and is calculated in the manner mentioned
above, is that it will also be used as another adaptive threshold
value for determining the direction of safe passage. Fig. 4 is a
pictorial depiction of these steps for the determination of the optimum
thresholdT0 at each location of the robot.

To appreciate why there would be a thresholdT0 that would
minimize the number of difference pixels, note that for high values
of T both the real hallway edges and the artifact edges will be
suppressed. As the threshold is increased, there will come a point
where no edges will be extracted from a camera image. So large
values ofT will yield a high count for the number of pixels in
the difference image. At the other extreme, whenT is too small,
the camera image will yield an excessively large number of edges,
most corresponding to random gray level fluctuations in the camera
image. So the number of difference pixels will again be large. In
between these two extremes, there will be a value forT , designated
T0, for which the number of difference pixelsNm will be a minimum
denoted byN0. Note again thatNm is the maximum of the number
of pixelsN1 throughN5 counted in the five vertical regions of the
difference image. Shown in Fig. 5(a) is a camera image taken from
a position where the rendered expectation map looks like what is
shown by the overlaid white lines in Fig. 5(b).2 Shown in Fig. 5(c)
is a plot of the difference pixelsNm obtained in Step 8 above for
different values of the thresholdT . Also marked in this figure are
the thresholdT0 and the numberN0 of pixels that corresponds to
the thresholdT0.

2Only the vertical edges of the rendered expectation map are displayed as
overlaid white lines. That’s because we have found it sufficient to use just
the vertical lines for the detection of stationary obstacles. However, the entire
procedure can be readily extended to edges of arbitrary orientation, albeit at
a higher computational cost.
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(a) (b)

(c)

Fig. 5. (a) Camera image, (b) vertical lines in the rendered expectation map overlaid on the camera image, and (c) plot showing the number of difference
pixels Nm versus the thresholdT .

Fig. 6. The robot’s trajectory for the learning of adaptive thresholds.

To illustrate a result of the ten-step procedure for determining the
adaptive thresholds for an entire section of a hallway, shown in Fig. 6
is a section of the hallway immediately outside our laboratory. The
robot was manually driven along the trajectory marked by x’s. Along
this trajectory, expectation maps were rendered at regular intervals
and the corresponding camera images recorded. (In order not to
jumble up the display in Fig. 6, only every fourth position where
images were rendered and recorded is shown in the figure.) The edge
detection thresholdsT0 and the numbers of pixelsN0 corresponding
to T0 are shown in Fig. 7. This graph constitutes the table used in
the adaptive thresholding process during autonomous navigation.

2) Obstacle Detection:Fig. 8 shows the flow of computations
for the obstacle detection procedure by vision. During autonomous

Fig. 7. The edge detection thresholdsT0 and the minimum number of
difference pixelsN0 for each reference point.

navigation, in accord with the statements made at the beginning of
Section III-A, obstacles are found from the difference of vertical
edges in the camera image and the expectation map immediately
after each exercise in self-localization. As shown in Fig. 8, model
vertical edges in the scene are estimated from the 3-D edge model
of the environment using the robot’s position corrected by the self-
localization first. Next, vertical edges are extracted from the camera
image using for the detection threshold a value that corresponds to
the nearest position in the table lookup. The vertical edges thus found
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Fig. 8. The obstacle detection procedure using vision during autonomous
navigation.

are compared with the model vertical edges. Any extraneous vertical
edges must come from any obstacles in the environment.

Fig. 9 shows sample images for a typical exercise in obstacle
detection by vision. Displayed by overlaid white lines in Fig. 9(a)
are the model vertical edges as obtained from the expectation map
rendered from the environment model. The tall dark object on the
left is a wooden box that serves as an obstacle. Shown in Fig. 9(b)
are the vertical edges extracted from the camera image using the
nearest optimum edge-detection thresholdT0 from the table of such
thresholds for the hallway in question. It is interesting to note that a
part of vertical edge on the right edge of the obstacle has disappeared
because of the low contrast between the door and the obstacle.
Shown in Fig. 9(c) is the difference edge image for the vertical edges
extracted from the camera image and the model vertical edges. Shown
in Fig. 9(d) are robot’s position, obstacle information and passage
space in the hallway. The robot is shown as an inverted “T” icon, the
obstacle by a small white rectangle, and the safe-passage direction by
two closely spaced parallel lines. How the direction of safe passage
is computed will be explained next.

3) Determining the Direction of Safe Passage:To find a direction
for safe passage in the presence of obstacles, as pointed out in the ten-
step procedure outlined in the previous subsection, the difference edge
image [an example of which is Fig. 9(c)] is divided into five vertical
regions, as shown in Fig. 10(a) where a tall dark obstacle is present
in the left. Number of pixels in each of the five regions is summed. If
this sum exceeds the thresholdN0 for this location of the robot, the
directions corresponding to that vertical region in the camera image
are considered to be unsafe.3 Recall from our previous discussion,
N0 is the smallest number ofNm which is the maximum of the pixel
numbersN1 throughN5 counted in the five vertical regions of the
difference edge image, andN0 results from the application of the
optimum thresholdT0. Of course, as with the application of the edge
detection thresholdsT0, the location for whichN0 is available will
often not coincide exactly with the current location of the robot. So,
as was the case for edge detection,N0 for the nearest entry in the
table is used. Shown in Fig. 10(b) are the summed values for each
of the five regions marked in Fig. 10(a).

The view-space in front of the robot is given one of three labels:

1) obstacles;
2) unknown;
3) open space.

3The threshold that is actually used for detecting obstacles is (1+�) �N0

where a nonnegative� accounts for the nearly always-present discrepancy
between the nearest location of the robot whereN0 is available and the
location of the robot where it is needed during navigation. A value of� =

0.5 has worked for us in almost all our experiments.

Initially, the directions corresponding to “obstacles” are made to
correspond to those of the five vertical regions in the camera image
whose difference pixel sum exceedsN0, as explained above. By the
same token, initially the directions corresponding to “unknown” are
all those that are outside the view cone corresponding to the camera
image. Both the “obstacles” and the “unknown” are expanded by
half the width of the robot to ensure safe clearance. The rest of the
directions then yield us the directions of the safe passage for the
robot. Since the width of the YAMABICO robot is assumed to be
twice as large as one of the vertical regions in Fig. 10 at a distance
of one meter in front of the camera, free passage space is narrowed
to the size of one vertical region on the right of the obstacle in
Fig. 10(c). Distance to obstacles cannot be computed from the visual
information, since only a single camera is used in this method. It is for
this reason we make the conservative assumption that all obstacles
and unknown regions are situated 1 m in front of the robot. After
obstacle avoidance, the robot seeks to approach its originally planned
path to the destination.

B. Moving Obstacle Detection

As mentioned before, the currently implemented vision system is
effective only for detecting stationary obstacles because of limitations
on the computing power available to the robot. The ultrasonic sensors,
which can measure the distance to the object in almost real time by
the pulse-echo technique, are therefore used for detecting moving
obstacles. Of course, since the ultrasonic sensors have no intrinsic
way of distinguishing between moving and stationary obstacles, the
interaction between the two sensor systems—the vision sensor and the
ultrasonic sensors—becomes important. How the robot is controlled
by the two sensor systems is predicated on the following attributes
of the sensors:

1) view angles of the two sensor systems are nearly identical
(60�);

2) by using appropriate time gating of the received echoes, the
ultrasonic sensors do not detect an obstacle if it is farther than
50 cm from the robot;

3) vision sensor is capable of detecting stationary obstacles at
ranges far exceeding 50 cm.

Shown in Fig. 11 are the view angles for the two sensor systems.
Note that the ability of an ultrasonic sensor to detect an obstacle
depends on many factors, such as the orientation, reflectively, cur-
vature, etc., of the surface of the obstacle toward the sensor and on
the threshold used for the detection of the received echoes. The view
angle for the ultrasonic sensor system shown in Fig. 11 corresponds
to the case of a unit area metallic surface (of nearly unit reflectivity)
perpendicular to the line of the sight from the center of the sensor
system and the same detection threshold used for all directions.

IV. SYSTEM ARCHITECTURE

The navigational system described in this paper was implemented
on the YAMABICO robot [20] shown in Fig. 12. Because this robot
doesn’t have a powerful image processing module, a workstation
is used as an off-board image processing unit at this time. The
robot communicates with the workstation over two links, a video
link for the transmission of images and a two-way RF link for data.
YAMABICO has an ultrasonic sensing module and can use several
pairs of ultrasonic transmitters and receivers that can independently
measure distances up to 5 m to an obstacle. The directivity of each
sensor pair spans 30�. Three pairs of transducers can monitor about
60� of the view-space in front of the robot, in accordance with
Fig. 11. Since we wanted to predominantly use vision for collision
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(a) (b)

(c) (d)

Fig. 9. Sample images for obstacle detection by vision: (a) model vertical edges overlaid on the camera image, (b) detected vertical edges from the camera
image, (c) the difference edge image, and (d) robot’s position, obstacle information and passage space in the hallway.

avoidance, time gating was used to limit the range of ultrasonic
collision avoidance to 50 cm.

Fig. 13 shows the system hardware configuration. An image is
taken by the camera mounted on the robot and it’s sent to the
workstation through a wireless video transmitter and receiver. The
received image is processed on the workstation and the resulting data
sent to the robot over the RF link. The camera used here is XC-999
(Sony). As was shown previously in Fig. 11, the horizontal angle
of viewing field is 60� approximately. The image is digitized into
256 � 240 pixels.

Fig. 14 shows the system software configuration. On the mobile
robot side, the robot is basically navigated on the planned path by
a “route-runner” process. For self-localization, the “route-runner”
process gets the robot’s current position from the “retroactive position
correction” process and sends it to the “self-localization” process
on the workstation. The “self-localization” process analyzes the
image received from the camera on board the robot and calculates
the robot’s position. The calculated position, corresponding to the
instant when the camera image was taken, is sent to the “retroactive
position correction” process that updates and corrects the odometry

information for the latest position of the robot. For obstacle detection
by vision, “obstacle detection” process on the workstation generates
the obstacle information from the camera image and the corrected
robot’s position calculated by the “self-localization” process. The
obstacle information is sent to the “route-runner” process and is used
for the calculation of the direction of safe passage. For obstacle
detection by ultrasonic sensing, the “US-checker” process checks
the distance measured by the ultrasonic sensors and sends obstacle
information to the “route-runner” process in order to stop the robot
when it detects an obstacle.

We will now explain how the two sensor systems interact for
collision avoidance. When the robot faces a stationary obstacle, the
obstacle is first detected by vision since the range of ultrasonic sensors
is limited to 50 cm. In the manner explained previously, the vision
data is used for the calculation of the direction of safe passage and the
robot turns toward this direction. For those obstacles that are avoided
on the basis of vision data, the ultrasonic sensors will usually not
record any echoes for the simple reason that the robot has already
steered away from them. If per chance one or more of the ultrasonic
sensors do receive echoes from such an obstacle, the robot comes to
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(a) (b)

(c)

Fig. 10. Determining the direction of safe passage in the presence of obstacles: (a) division of the difference edge image into five vertical segments,(b)
total number of pixels in each of the five vertical segments of the difference edge image, and (c) direction of the safe passage obtained by excluding
“obstacles” and “unknown” regions.

a halt and uses its vision again for calculating afresh the direction
of safe passage. In case of a moving obstacle, of course, it could
be detected by vision if the obstacle makes its appearance just at
the moment the camera image is recorded. Such an obstacle would
be treated in the same manner as a stationary obstacle. Of course,
the obstacle such as this would have moved to a different location
by the time the robot arrives in its vicinity. In such cases, the robot
would seem to be avoiding phantom obstacles, but not to any great
detriment of the overall navigational performance. Note that after
each exercise in collision avoidance, the robot seeks to go back to its
planned path to the destination. If the moving obstacle gets too close
to the robot, the ultrasonic sensors take over and bring the robot
to a momentary halt. Subsequently, the vision based processing is
reinitiated for further navigation.

V. EXPERIMENTAL RESULTS IN AUTONOMOUS NAVIGATION

Using the system presented in the previous section, several exper-
iments were performed in the hallway shown in Fig. 15. The size of
the grid shown by the dotted lines is 1 m on each side.

An example of autonomous navigation on the planned path, as dis-
played by the black line in Fig. 15, is shown in Fig. 16. In this figure,
the robot’s positions corrected by each self-localization exercise are
shown as x’s. The total length of the path is approximately 12.5 m.
During this experiment, a moving obstacle “A” (a human) suddenly
crossed the path just in front of the robot. The ultrasonic sensors
brought the robot to a halt, followed by the invocation of vision
sensors for determining the direction of safe passage. The robot also

Fig. 11. View angle of the camera and detection area of the ultrasonic sensor.
In the next section, we will explain how the two sensor systems interact.

successfully avoided a stationary obstacle “B” (a wooden box) by
using vision.

The speed of the robot was set at 10 cm/s for this experiment.
The processing time for one image was approximately 10 s on the
workstation (a SUN SPARCstation 20).

VI. CONCLUSION

We presented in this paper a vision-based navigational system for
mobile robots that is also capable of avoiding at least the stationary
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Fig. 12. Autonomous mobile robot YAMABICO.

Fig. 13. System hardware configuration.

obstacles using vision data. By using a combination of model-based
vision for self-localization; retroactive position updating to cope with
the time delays associated with image processing; using vision data
for not only self-localization but also for the calculation of directions
of safe passage in the presence of obstacles; and ultrasonic sensors
for the detection of close-range moving obstacles; we have created
a navigational system that makes optimum use of all the sensors for
smooth and continuous navigation in indoor environments.

As with all such systems dealing with higher-level robotic intel-
ligence, the performance can never be expected to be completely
foolproof. The best that one can do is to devise appropriate automatic
error correction and detection strategies. To briefly discuss the various
failure modes of our system, the vision-based collision avoidance
capability depends obviously on the visual contrast between the
obstacle and the interior of the hallway. The size of an obstacle will
also play an important role in its detectability by vision. To gain an

Fig. 14. System software configuration.

Fig. 15. Map of the hallway. The dark line denotes the planned path.

Fig. 16. An example of autonomous navigation. The robot’s actual trajectory
is shown as x’s. A moving obstacle “A” crossed the path and there was a
stationary obstacle “B” to deal with.

understanding of these limitations, we performed experiments using
two small cardboard boxes of two different colors, brown and white,
each of height 35 cm and width 24 cm, as test obstacles. As for the
results, the robot was able to detect the white box in all cases, but in
50% of the cases failed to detect the brown box. When the robot did
fail to detect the brown box, in some cases it was because it could
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extract edges for only one side of the box. It is entirely possible that
superior image processing strategies would enhance the performance
of vision-based collision avoidance. Our future research will address
this issue.

Another interesting limitation of our system arises if the number of
obstacles in the environment is such that they fill the camera image
and make it difficult for the robot to compute a direction for safe
passage. This can happen even when the obstacles are situated in
such a manner that the robot could meander through the obstacles and
get to its destination. Since at this time we are using only a single
camera, the range to the obstacles cannot be computed using just
vision data. So, too many obstacles, even when situated sufficiently
apart to permit navigation, can make it impossible for the robot to
proceed.
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A Phase Management Framework for
Event-Driven Dextrous Manipulation

James M. Hyde and Mark R. Cutkosky

Abstract—Multifingered robotic hands have not yet made significant in-
roads into practical applications, partly due to the complexity of dextrous
manipulation tasks, and also due to control software shortcomings. High
level task controllers exist, as do low level grasp controllers, but neither
of these fully address the problems of changing kinematic and dynamic
constraints that arise during a grasping and manipulation task. This
paper develops a framework, utilizing phases, events, and transitions,
that bridges the gap between high- and low-level control. Results from
constraint handling and transition experiments conducted with a two-
fingered hand are included.

Index Terms—Dextrous manipulation, events, phases, task planning,
transitions.

I. INTRODUCTION

Although multifingered robotic hands have been available for over
a decade, their use has been largely confined to a few research
laboratories. One reason for the slow progress in putting such hands
to work is the overall complexity of dextrous manipulation, as viewed
from the standpoints of kinematics, dynamics, sensing, control, and
planning.

It has been observed by a number of robotics researchers (e.g.,
Allen [1], Brock [2], Howe [8], Ricker [23], and Speeter [28]), as
well as by physiologists studying human manipulation (Johansson
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