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Abstract: In recent years, unmanned aerial vehicles (UAVs), commonly known as drones, have
gained increasing interest in both academia and industries. The evolution of UAV technologies,
such as artificial intelligence, component miniaturization, and computer vision, has decreased their
cost and increased availability for diverse applications and services. Remarkably, the integration of
computer vision with UAVs provides cutting-edge technology for visual navigation, localization,
and obstacle avoidance, making them capable of autonomous operations. However, their limited
capacity for autonomous navigation makes them unsuitable for global positioning system (GPS)-
blind environments. Recently, vision-based approaches that use cheaper and more flexible visual
sensors have shown considerable advantages in UAV navigation owing to the rapid development
of computer vision. Visual localization and mapping, obstacle avoidance, and path planning are
essential components of visual navigation. The goal of this study was to provide a comprehensive
review of vision-based UAV navigation techniques. Existing techniques have been categorized and
extensively reviewed with regard to their capabilities and characteristics. Then, they are qualitatively
compared in terms of various aspects. We have also discussed open issues and research challenges in
the design and implementation of vision-based navigation techniques for UAVs.

Keywords: unmanned aerial vehicle; drone; computer vision; navigation; localization; mapping;
obstacle avoidance; path planning

1. Introduction

Owing to the rapid deployment of network technologies, such as radio communica-
tion interfaces, sensors, device miniaturization, global positioning systems (GPSs), and
computer vision techniques, unmanned aerial vehicles (UAVs) have become a potential
application in the domain of military and civil society [1]. UAVs have been utilized in
many civil applications, such as aerial surveillance, parcel delivery, precision agriculture,
intelligent transportation, search and rescue operations, post-disaster operations, wildfire
management, remote sensing, and traffic monitoring [2]. Recently, the UAV application
domain has increased significantly owing to its cost effectiveness, fast mobility, and easy
deployment [3].

UAVs are classified based on their characteristics [4], such as size, payload, coverage
range, battery lifetime, altitude, and flying principle, as listed in Table 1. Compared to
high-altitude UAVs, low-altitude UAVs have smaller battery capacity and fewer computing
resources due to their size constraints. Several high-altitude UAVs have energy manage-
ment capabilities, including wireless charging stations and small solar panels mounted on
the aircraft. In general, UAVs are categorized based on their physical structures, such as
fixed and rotary wings. Fixed-wing UAVs are widely used in military applications, such
as aerial attacks and air cover. They have high-speed motion, high payload capacity, and
long-lasting battery backups; however, most fixed-wing UAVs do not have vertical takeoff
and landing (VTOL) facilities [5]. Recently, rotary-wing UAVs have been widely used in
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various civilian applications owing to their physical characteristics, such as supporting
stationary positions during flight and VTOL facilities. Without human assistance, UAVs
and aircraft exhibit high mobility and flexibility for civilian emergency applications [6].
However, UAVs cannot handle top-level communication and perception in a complex envi-
ronment using traditional sensors. As a result, they still have to overcome challenges, such
as object detection and recognition, to avoid obstacles toward achieving desirable commu-
nication [7]. Therefore, researchers have focused on the development of high-performance
autonomous navigation systems.

Table 1. Classification of UAVs.

UAV
Category Type Weight

(Kg)
Flight

Altitude (m)
Range
(km)

Endurance
(Hour) Applications

Rotary wings

Nano <0.5 100 <1 0.2 to 0.5 Surveying and mapping

Micro <5 250 <5 to 10 1 Environmental
monitoring

Mini <20 to 30 150 to 300 <10 <1 Aerial photography

Fixed wings

Close-range 25 to 150 3000 10 to 30 2 to 4 Surveillance tasks

Short-range 50 to 250 3000 30 to 70 3 to 6 Aerial mapping

Medium-range (MR) 150 to 500 5000 70 to 200 6 to 10 Professional applications

MR endurance 500 to 1500 8000 >500 10 to 18 Civil applications

Low-altitude UAV

Low-altitude
deep-penetration 350 to 2500 50 to 9000 >250 0.5 to 1 Coverage

Low-altitude
long-endurance 15 to 25 3000 >500 >24 Large-scale surveillance

Medium-altitude
long-endurance 1000 to 1500 3000 >500 24 to 48 Weather tracking

High-altitude UAV

High-altitude
long-endurance 2500 to 5000 20,000 >2000 24 to 48 Military surveillance and

espionage

Stratospheric >2500 >2000 >20,000 >48 Carrying advanced
intelligence

Exo-stratospheric 1000 to 1500 2500 >30,000 24 to 48 Data collection

Special task

Unmanned combat UAV >1000 12,000 1500 2 Military combat and
surveillance

Lethal >800 4000 300 3 to 4 Drone strikes and
battlefield intelligence

Decoys 150 to 250 50 to 50,000 0 to 500 >4 Long-range
cruise missiles

In recent years, several approaches aided by vision-based systems have been de-
veloped for UAV navigation. The UAV flies successfully when it avoids obstacles and
minimizes path length. Navigation involves three main processes: localization, mapping,
and path planning [8]. The localization is initially determined. A map is then visually
constructed to refine the search process and avoid obstacles, in addition to allocating
suitable landing sites. Eventually, the planning process aims at determining the shortest
path using a proper optimization algorithm. There are three main categories of navigation
methods: inertial, satellite, and vision-based navigation. Vision-based navigation using
visual sensors provides online information in a dynamic environment because of their high
applicability of perception owing to their remarkable anti-inference ability [9]. Exterocep-
tive and proprioceptive sensors are used for navigation. The dataset is then preprocessed
internally for localization and mapping, obstacle avoidance, and path planning, and finally,
outputs to drive the UAVs to the target location are provided. Several traditional sensors,
such as GPS, axis acceleration, gyroscope, and internal navigation system (INS), are used
for navigation [10]. These sensors are not as accurate as their performance accuracy. For
example, reliability is a significant drawback of GPS, and its location accuracy is positively
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correlated with the number of available satellites [11]. However, INSs suffer a loss of
accuracy owing to the propagation of the bias error caused by the integral drift problem.

Meanwhile, slight acceleration and angular velocity errors cause linear and quadratic
velocity and position errors, respectively. Moreover, the use of novel methods to increase
the accuracy and robustness of UAV position estimation is challenging. Many attempts
have been made to enhance the environmental perception abilities of UAVs, including
multiple-sensor data fusion [12] and many similar approaches. Another critical issue is the
selection of the correct visual sensor. Generally, visual sensors can acquire rich information
about the surroundings, such as color, texture, and other visual information, compared to
graphics processing units (GPU), laser lightning, ultrasonic sensors, and other traditional
sensors. Generally, navigation-based approaches use visual sensors, including monocular,
stereo, red-green-blue-depth (RGB-D), and fisheye cameras. Monocular cameras are the
first option for more compact applications because of their low price and flexibility [13].
However, they cannot obtain a depth map [14]. Stereo cameras are an extended version of
monocular cameras that can estimate depth maps based on the parallax principle without
the aid of infrared sensors. RGD-B can ensure both depth-map estimation and visible
images with the guidance of infrared sensors. However, RGB-D cameras are most suitable
for indoor environments because they require a limited range of areas [15]. Fisheye cameras
can provide a wide viewing angle for long-range areas, which is attractive for obstacle
avoidance in complex environments [16].

UAVs must be capable of handling several challenges, such as routing to remote
locations, handling speed, and controlling the multi-angular direction from the starting
point to the ending point while avoiding obstacles along the way. Moreover, they must track
the invariant features of the moving elements, involving lines and corners [17]. Generally,
vision-based UAVs can be classified into two types: mapping-based methods for visual
localization, object detection, and avoidance [18]. Several vision-based methods use maps
for visual localization. From this perspective, we divided them into three categories: map-
independent, map-dependent, and map-building systems. Following that are two types
of object detection methods: optical flow-based [19] and simultaneous localization and
mapping (SLAM)-based [20] methods. Vision-based approaches use two types of path
planning for avoidance: global and local.

GPS and vision are both commonly used to navigate UAVs, but both of them have their
own advantages and disadvantages. GPS-based navigation systems have the advantages of
global coverage, accuracy, and low cost. Due to its ability to receive GPS signals anywhere
on earth, GPS is suitable for outdoor navigation. GPS receivers are widely available and
relatively inexpensive, and they can provide accuracy of up to sub-meters in the open sky.
However, GPS has the disadvantages of being vulnerable to interference and relying on
satellite signals. Moreover, a clear view of the sky is required for GPS to function, which
may not be possible in certain environments (for example, indoors, in urban areas, and in
areas devoid of GPS signals). On the other hand, vision-based navigation systems have
several advantages, including their robustness to interference, high resolution, and low
cost. When GPS signals are blocked, a vision-based system can estimate the UAV’s position
by using visual information from its surroundings. High-resolution images captured by
cameras are useful for detailed localization and mapping of the environment. There is
a wide range of cameras available at affordable prices. However, vision-based systems
typically have a limited range, and the UAV must remain close to the target in order to
achieve an accurate location. Moreover, a vision-based system can suffer from lighting
conditions such as glare and shadows, which make it difficult to see some features in such
an environment. In certain environments (such as featureless terrain, snow, and deserts),
vision-based methods cannot be used because there are no distinctive visual features in
the environment. Generally, GPS devices are used for outdoor navigation, whereas vision-
based sensors are used indoors or in GPS-denied situations, where GPS signals are blocked
or unavailable. Furthermore, UAV navigation can be improved through the combination of
vision-based methods and GPS.
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1.1. Contributions of This Study

This study primarily contributed to providing a comprehensive review of current
vision-based UAV navigation techniques in a qualitative and comparative manner. After
introducing the basic knowledge of different types of UAVs and their applications, we
present computer vision-based applications and working principles of UAV navigation
systems. The design issues of vison-based UAV navigation systems are also summarized.
Then, we present a taxonomy of all the existing vision-based navigation techniques for
UAVs. Based on this categorization, we review the existing vision-based UAV navigation
techniques in terms of their main features and operational characteristics. The navigation
techniques were qualitatively compared in terms of various features, parameters, advan-
tages, and limitations. We then discuss open issues and challenges for future research
and development.

1.2. Organization of This Paper

This survey is organized into six sections, as shown in Figure 1. Below is an outline of
the remainder of the paper.
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In Section 2, we present various applications of computer vision in UAVs. We also
present a comprehensive overview of UAV navigation systems. The critical design issues
are discussed in this section. In Section 3, we discuss and review various vision-based UAV
navigation systems. We present a taxonomy of the existing vision-based navigation systems.
The working principle of each navigation technique is discussed in detail. In Section 4, we
provide a comparative study of the existing vision-based navigation techniques with respect
to various criteria. The major features, key characteristics, advantages, and limitations are
summarized in a tabular manner and rigorously discussed. In Section 5, we present open
issues and research challenges associated with vision-based UAV navigation techniques.
Finally, the paper is concluded in Section 6.
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2. Preliminaries

Computer vision plays an integral role in most UAV applications. Applications range
from regular aerial photography to more complex operations, such as rescue operations
and aerial refueling. To provide reliable decisions and manage tasks, they require high
levels of accuracy. Computer vision and image processing have proven their efficiency in a
variety of applications for UAVs. The applications of autonomous drones are interesting,
but they also pose challenges.

2.1. Computer Vision-Based Applications in UAVs

A peer-to-peer connection is established between UAVs and, thus, UAVs can coor-
dinate and collaborate with each other [21]. An advantage of using a single cluster is
that it is suitable for homogeneous and small-scale missions. UAVs performing multiple
certain missions require a multi-cluster network. Every cluster head is responsible for
downlink communication and communication with other cluster heads. In addition to
VTOL vehicles, fixed-wing unmanned aerial vehicles also require autonomous takeoff and
landing. To address the issue of vision-based takeoff and landing, different solutions have
been proposed. Lucena et al. described a method that uses a back-stepping controller to
implement autonomous takeoff and landing on a stationary landing pad [22]. The inertial
measurement unit (IMU) and GPS data were fused with a Kalman filter to estimate the po-
sition, attitude, and speed of the quadcopter. To measure the distance between the landing
pad and quadcopter, a light detection and ranging (LIDAR) sensor was used instead of a
spatial device [23]. According to the results, the quadcopter was capable of autonomous
takeoffs and landings. However, this system has the disadvantage of not being accurate
in determining the attitude of the quadcopter, which is caused by errors in IMU and GPS
measurements [24].

Both military and civil applications of UAVs rely on aerial imaging. Surveillance
by UAVs is possible over battlefields, coasts, borders, forests, highways, and outdoor
environments. In order to optimize the solutions in terms of time, the number of UAVs,
autonomy, and other factors, different methods and approaches have been proposed. In an
evaluation approach presented by Hazim et al. [25], the proposed algorithms and methods
were evaluated with respect to their performance in autonomous surveillance tasks.

In recent years, aerial inspection has become one of the most popular applications
for UAVs (primarily rotorcraft). Additionally, for safety and reduction in human risk,
UAVs reduce operational costs and inspection time. Nevertheless, image stability must be
maintained for all types of maneuvers [26]. In a variety of terrains and situations, UAVs
are capable of inspecting buildings, bridges, wind turbines, boilers of power plants, power
lines, and tunnels [27].

Air-to-air refueling, also known as autonomous aerial refueling (AAR) or in-flight
refueling, consists of two main techniques [28]: (1) boom-and-receptacle refueling (BRR),
which involves moving a flying tube (boom) from a tanker aircraft to a receiver aircraft to
connect it to its receptacle; and (2) drogue-and-probe refueling (PDR), in which the receiver
releases a flexible hose (drogue) and the tanker maintains its position to insert a rigid probe
into the drogue. Tanker pilots are responsible for these complex duties and need to be well
trained. Therefore, remote control of AAR operations further complicates UAVs. GPS and
INS are used with various techniques to determine the position of the tanker relative to
the receiver aircraft. Nevertheless, there are two main disadvantages associated with these
techniques. First, GPS data may not be available in certain cases, especially if the receiver
aircraft is larger than the tanker and interferes with the satellites. Another limitation is the
integration drift of the INS measurements. Table 2 illustrates the use of computer vision in
various UAV applications.
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Table 2. Computer vision-based UAV applications.

Application Domain Application Details Application Areas

Autonomous landing UAV takeoff and landing VTOL and Fixed-wing UAVs

Autonomous surveillance Using aerial photography for surveillance
and observation

Smart city traffic monitoring and
smart farming

Mapping Topographical and geospatial data collection 3D Semantic Mapping

Search and rescue operation Information collection in a disaster area Object detection in drone image or video

Aerial refueling Refueling commercial aircraft by tanker
aircraft during flight

Refueling systems: Boom and receptacle, and
probe and drogue

Inspection Public and private property inspection,
remote monitoring, and maintenance

Power lines, wind turbines, and oil/gas
pipelines monitoring

2.2. UAV Navigation Systems

Autonomy and flight stabilization accuracy have gained further importance in today’s
UAVs. Navigation systems and their supporting subsystems are critical components of
autonomous UAVs. Figure 2 demonstrates the use of the information from various sensors
that the navigation system uses to estimate the position, velocity, and orientation of the UAV.
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In addition, support systems perform relevant tasks, in particular, the detection and
tracking (static or dynamic) or avoidance of obstacles. Increased levels of autonomy and
flight stabilization require a robust and efficient navigation system [29]. Monocular cameras
can be used to implement computer vision algorithms to enhance navigation. Navigation
systems can be split into three main subsystems, as shown in Table 3: pose estimation,
which uses two- and three-dimensional (3D) representations to estimate the position and
attitude of the UAV; obstacle detection and avoidance, which detects and feeds back the
position of the obstacles that it encounters; visual servoing (VS), which manages and sends
maneuver commands to keep the UAV stable and following its path throughout its flight;
and finally, the position estimation subsystem.

Table 3. Subsystems of a vision-based UAV navigation system.

Subsystem Description Approach

Pose estimation
(Localization)

Estimate the UAV’s orientation and position
in 2D and 3D

Visual odometry and simultaneous
localization and mapping (SLAM)-based

Obstacle detection
and avoidance

Making the appropriate decisions to avoid
obstacles and collision zones Stereo and monocular camera-based

Visual servoing By using visual data, maintain the stability of
the UAV and its flying maneuvers Visual image-based
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2.2.1. Pose Estimation

Pose estimation includes estimating the position and orientation of UAVs during
motion based on data obtained from several sensors, including GPS, IMU, vision, laser,
and ultrasonic sensors. Information obtained from various sensors can be separated or
combined. Navigation and mapping processes require the estimation of position as a
fundamental component.

GPS

The GPS, also known as a satellite-based navigation system (SNS), is considered one of
the best methods for providing 3D positions to unmanned ground vehicles (UGVs), UAVs,
and autonomous underwater vehicles (AUVs) [30]. GPS is commonly used to determine a
UAV’s location during localization. Hui et al. used GPS to localize UAVs [31]. According
to the authors, differential GPSs (DGPSs) demonstrate the effectiveness of this positioning
method. DGPS reduces errors (satellite clock, satellite position, and delay errors) that
cannot be reduced by the GPS receiver alone. To increase the accuracy of the positioning
information, DGPS was integrated with a single-antenna receiver [26]. The precision of
these systems is directly affected by the number of connected satellites. Buildings, forests,
and mountains can significantly reduce satellite visibility in an urban environment. In
addition, GPS is rendered ineffective in the absence of satellite signals, such as when flying
indoors. An expensive external localization system, such as the Vicon motion capture
system [32], is used to capture the motion of a UAV in an indoor environment.

GPS-Aided Systems

While stand-alone GPS can be useful for estimating vehicle location, it can also cause
errors due to poor reception and jamming of satellite signals, resulting in loss of naviga-
tional data. For the purpose of preventing catastrophic control actions that may be caused
by errors in estimating position, UAVs require a robust positioning system, for which
various approaches are used. GPS-aided systems are an example of these approaches. The
gathered GPS data are fused with data from other sensors. This multisensory fusion can
consist of two or more sensors [33]. One of the most popular configurations is the GPS/INS
approach, where the data from the INS and GPS are merged to compensate for the errors
generated by both sensors and increase the accuracy of localization. Using a linear Kalman
filter, Hao et al. [34] fused the data from a multiple-antenna GPS with the information
from the onboard INS. Although the experiments were conducted on a ground vehicle, this
algorithm was implemented for the UAVs.

Vision-Based Systems

As a result of the limitations and shortcomings of the previous systems, the vision-
based pose estimation approaches have become an important topic in the field of intelligent
vehicles [35]. In particular, visual pose estimation methods are based on information
provided by the visual sensors of cameras. A variety of approaches and methods have
been suggested, regardless of the type of vehicle and the purpose of the task. Different
types of visual information are used in these methods, such as horizon detection, landmark
tracking, and edge detection [36]. A vision system can also be classified by its structure as
monocular, binocular, trinocular, or omnidirectional [37]. To solve the vision-based pose es-
timation problem, two well-known philosophies have been proposed: visual simultaneous
localization and mapping (VSLAM) and visual odometry (VO).

As a general principle, VSLAM algorithms [38] aim at constructing a consistent map
of the environment and simultaneously estimating the position of the UAV within the
map. Different camera-based algorithms have been proposed to perform VSLAM on UAVs,
including parallel tracking and mapping (PTAM) [39] and mono-simultaneous localization
and mapping (MonoSLAM) [40], which were discussed by Michael et al. [41]. The UAV
orientation and position were estimated using the VO algorithms [42]. The estimation
processes are conducted sequentially (frame by frame) to determine the pose of the UAV.
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Monocular cameras or multiple-camera systems can be used to gather visual information.
In contrast to VSLAM, VO algorithms calculate trajectories at each instant in time without
preserving the previous positions. The VO method was first proposed by Nistér [43] using
the traditional wheel odometry approach. A Harris corner [44] was detected in each frame
to incrementally estimate the ground vehicle motion. By implementing a 5-point algorithm
and random sample consensus (RANSAC), image features were matched between two
frames and linked to the image trajectory [45].

2.2.2. Visual Obstacle Detection and Avoidance

Autonomous navigation systems must detect and avoid obstacles. Furthermore,
this process is considered challenging, particularly for vision-based systems. Obstacle
detection and avoidance have been solved using different approaches in vision-based
navigation systems. A 3D model of the obstacle within the environment was constructed
using approaches such as those suggested by Muhovic et al. [46]. The depth (distance)
of obstacles has also been calculated in other studies [47]. Stereo cameras have been
introduced to estimate the proximity of obstacles using techniques based on stereo cameras.
By analyzing the disparity images and viewing angle, the system determines the size and
position of the obstacles. In addition, this method calculates the relationship between the
size of a detected obstacle and its distance from the UAV.

2.2.3. Visual Servoing

In UAV control systems, visual servoing is the process of using visual sensor infor-
mation as feedback [48]. To stabilize UAVs, different inner-loop control systems have
been employed, such as proportional–integral–derivative (PID), optimal control, sliding
mode, fuzzy logic, and cascade control. Chen et al. [49] provided a detailed analysis of
principles and theories related to UAV flight control systems. Altug et al. [50] evaluated
two controllers (mode-based feedback linearizing and backstepping-like control) based on
visual feedback. An external camera and onboard gyroscopes were used to estimate the
UAV angles and positions. According to the simulations, feedback stabilization was less
effective than the backstopping controller.

2.3. Design Issues of Vision-Based UAV Navigation Systems

In this section, we introduce a general framework for evaluating navigation systems.
An ideal navigation system should be highly accurate, accessible, scalable, and cost-effective.
Additionally, the navigation system should be simple to install and maintain and have low
computational complexity.

2.3.1. Accuracy

The accuracy of a navigation system is the most important performance indicator. The
presence of obstacles, multipath effects, dynamic scenes, and other factors may obstruct
precise measurements of an agent in certain application environments. Sensors and appli-
cations play a significant role in determining the accuracy of measurements. Camera-only
systems are more susceptible to featureless or incorrectly tracked features. Although sig-
nificant progress has been made in vision-based navigation, many problems remain to
be solved in order to realize a fully autonomous navigation system. Some of them are
autonomous obstacle avoidance, optimal path discovery in dynamic scenarios, and task
assignment in real time. Furthermore, UAV navigation necessitates a global or local 3D
representation of the environment, and the added dimension requires more computing
and storage. When a UAV navigates a large area for an extended period of time, it faces
significant obstacles. Furthermore, the motion blur generated by rapid movement and
rotation can easily cause tracking and localization failures during flight.



Drones 2023, 7, 89 9 of 41

2.3.2. Availability

To effectively navigate, UAV systems must have access to technologies that do not
require proprietary hardware and are readily available. As a result, navigation systems are
likely to be adopted on a large scale. A wide range of UAVs are equipped with relatively
inexpensive GPS chips. However, GPS chips do not provide high-accuracy navigation
results and exhibit errors of up to several meters. With a partial or complete 3D map, we
should not only find a collision-free path, but also minimize the length of the path and
energy consumed. Although creating a 2D map is a relatively straightforward process,
creating a 3D map becomes increasingly difficult as the dynamic and kinematic restrictions
of UAVs become more complex. The local minimum problem still plagues modern path-
planning algorithms because of this NP-hard problem. Thus, researchers continue to study
and develop robust and effective methods for global optimization.

2.3.3. Complexity and Cost

The complexity of a navigation system is an important consideration in the design
of drone communication systems and is usually associated with greater power require-
ments, infrastructure demands, and computational demands. In the case of an autonomous
mission, a computationally complex system may not be able to operate on a miniature
drone. Ideally, a system does not require any additional infrastructure costs or rare or
unusual devices or systems. Accordingly, cost, accuracy, generalization, and scalability
are determined by the complexity of the system. Even though UAVs and ground mobile
robots have similar navigation systems, UAV navigation needs extensive development. To
fly safely and steadily, the UAV must process a sizable amount of sensor data in real time,
particularly for image processing, which considerably increases computational complex-
ity. Consequently, navigating within the limits of low battery consumption and limited
computational capacity has become a key challenge for UAVs.

2.3.4. Generalization

The degree of generalization is another aspect that should be considered when assess-
ing the applicability of technologies. Practically, we would like to use the same type of
hardware and algorithms for all navigation problems. However, each problem requires
different features, such as size, weight, cost, accuracy, and operating environment. A single
method cannot be applied in all situations. UAVs can be equipped with a variety of sensors
because these sensors are becoming smaller and more precise. However, difficulties are
likely to arise when combining several types of sensor data exhibiting varied noise char-
acteristics and poor synchronization. Despite this, we anticipate superior pose prediction
via multi-sensor data fusion, which will subsequently improve navigation performance.
As IMUs are becoming smaller and less expensive, the integration of IMUs and visual
measurements is gaining considerable traction.

3. Vision-Based UAV Navigation Systems

Two perspectives exist on vision-based UAV navigation systems: mapping-based
methods for visual localization and object detection and avoidance. Several visual lo-
calization methods follow maps. Therefore, we can divide them into three categories:
map-independent, map-dependent, and map-building. A variety of methods can be used
to detect objects, including optical flow and SLAM methods. For avoidance, vision-based
approaches depend on two types of path planning, global and local. Figure 3 shows a
detailed taxonomy of vision-based UAV navigation systems.
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3.1. Map-Based Navigation Systems

The map-based system allows the UAV to navigate with detour behavior and move-
ment planning capabilities based on the predefined map and laid-out environment. Maps
can vary in their level of detailing, from a 3D model of an entire environment to a di-
agram of the interconnection of elements of an environment. Map-oriented navigation
systems can be divided into three categories: map-independent, map-dependent, and
map-building-based.

3.1.1. Map-Independent Navigation System

The map-independent navigation system operates without a known map, whereas
UAVs navigate only by observing and extracting distinct features from their surroundings.
Currently, optical flow and feature tracking methods are the most commonly used methods
in map-independent navigation systems.

Optical Flow-Based Navigation Systems

There are two categories of optical flow techniques: global techniques [51] and local
techniques [52]. The main constraint of the global optical flow is the smooth movement
of the neighboring pixels. However, the local optical flow method follows the method
of differences and recognizes that the flow should be constant for all image pixels. In
early 1993, an optical flow computation was applied for the first time to UAV navigation.
According to Santos-Victor et al. [53], a UAV can estimate the position of an object using
both-side views to mimic a bee’s flight behavior. First, it measures the optical speed of the
two cameras compared to the divider separately. It moves along the focal line if they are
the same; otherwise, it moves at the speed of small places ahead. Despite this, every time it
is explored in a surface-less climate, it tends to exhibit lackluster results. We have seen the
extraordinary improvement in optical streams and have made some leaps in the location
and following fields from that point forward.

Herissé et al. [54] presented a nonlinear regulator for an upward VTOL automated
flying vehicle, such as a UAV, that exploits an optical flow measurement to enable hover
and landing control on a movable stage, such as the deck of a maritime vessel. The VTOL
vehicle is outfitted with a base sensor suite (i.e., a camera and an IMU), which moves over
an objective plane. Herissé et al. identified two particular concerns. To maintain a steady
balance, the UAV should be adjusted according to the moving stage. Second, guidelines
should be followed for vertical landing on a moving stage. Dense optical flow calculations
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can distinguish the movements of all moving objects, which play a significant role in high-
level endeavors, such as surveillance and track shooting. A novel computer vision-based
movement detection algorithm has been presented by Maier and Humenberger [55], which
can be used for applications such as human detection by UAVs. To distinguish between
static and moving scenes, the algorithm measures the deviation between successive images.
This assumption is significant because lone pixels, in comparison with moving articles, can
violate the epipolar geometry. To assess the major network, the authors presented another
strategy for dismissing anomalies that has, in contrast to RANSAC, a predictable runtime
and still delivers reliable results. They presented a novel neighborhood-based edge strategy,
particularly for troublesome regions, a joined worldly smoothing methodology, and further
anomaly disposal procedures.

The fundamental goal of this vision-based UAV route convention was to construct
a better route framework. This issue is defined below, and is resolved using a molecular
channel: to control assessment errors, a sound system investigation of the image grouping
produced by a video recorder mounted on the UAV, rather than a digital elevation map
(DEM) of the area of flight, was used to construct state and perception models of the
molecule channel. The extended Kalman filter (EKF) determines the position of an aircraft
by locking it onto terrain and estimating its velocity. Previously, Zhang et al. [56] utilized the
EKF to develop a navigation system, whereas the EKF was used to obtain the position and
orientation of the UAV by Zang et al. [57]. A DEM is required to solve the error estimation.
The observation model was considerably more robust to stereo analysis. Therefore, ray
tracing was not required, and the DEM calculated errors much better. The EKF was then
replaced by a particle filter. This is much more lenient in that they selected the observation
model and appropriately exploited states. Zang et al. [57] used simulated fly-by video data
to estimate the results. Their use of the augmentation of the state and observation models
makes the models more robust for filtering. Additionally, by combining the models with
the particle filtering algorithm, they provided more latitude to estimate the positions and
range of vehicles. These are the main contributions and strengths of this study. Using this
work, UAVs can navigate through various difficult scenarios, such as disaster areas, natural
calamities, and urban areas, with the use of image processing.

Zang et al. [56] aimed to develop a more robust vision-based UAV navigation protocol
than other protocols to solve the problem of vision-based UAV navigation, classified as
a tracking problem. An EKF was used to determine the position and velocity of a UAV.
The video footage of the UAV camera was used with the help of a 3D DEM to match and
recalibrate the output of the EKF to obtain a precise position and orientation of the vehicle.
Kalman filter removes the noise by calculating the minimum mean square error. However,
it works only for linear models. EKF has more advantages, such as less error in the results
than a regular Kalman filter, and can be applied repeatedly to an algorithm. In addition,
EKF works well with non-linear models. It can obtain the position by combining it with the
Monte Carlo simulation. Zang et al. [56] used simulated fly-by video data from the ESRI
ArcInfo software package [58] and data from the national map seamless server [59]. They
simplified the approach using derivations of the EKF formulae and ignored general losses.
They used an EKF to estimate the position using ray tracing with a 3D digital elevation
map. The main contributions of this study are as follows: the proposed approach can be
used in real-life situations to navigate UAVs in various difficult situations, such as disaster
areas, natural calamities, urban areas, military reconnaissance, and rescue. As the above
situations are independent of the GPS, the proposed approach may not be affected by the
jamming of a signal.

A vision-based navigation system was proposed by Cho et al. [60] to perform co-
ordinated and autonomous missions by UAVs, including formation flyovers and aerial
refueling. They developed a neural network capable of performing AAR in a simulation
with six degrees of freedom. Using the pole placement method, a time-variant tracking
controller was implemented to generate the control command of the aircraft. This method
works for both PDR and BRR in AAR. It considers turbulence, atmospheric disturbances,
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and other factors. The authors used binary images to remove noise and other trivial objects
from images. This was followed by extracting features from these binary images and
detecting the UAVs in front of them. The positioning and orientation of these UAVs were
estimated based on these features.

Feature Tracking-Based Navigation Systems

The feature-tracking method has also become a standard and robust approach for
visualizing localization using maps. These methods are suitable for tracking the invari-
ant features of moving objects. Cho et al. [61] addressed several issues related to robotic
spacecraft using a single calibrated monocular camera. A monocular camera for robotic
spacecraft activities based on a known target configuration, for example, is hindered by
sudden changes in illumination in low-Earth orbits, long-term tracking requirements for
large target images that change in scale, background exceptions, and the requirement for
(semi-)autonomous relative navigation under limited computing resources (fuel, computer
hardware, etc.). Therefore, they proposed an overall navigation scheme in space that
used three unique fixings. Initially, two different feature detectors were used to guarantee
dependable element locations over diverse distances. To identify the fiducial marker’s
visual highlights, a fast feature selection/filtering technique was applied. Then, a feature
pattern matching algorithm using strong relative enlistment was used for a route to accom-
plish hearty mechanized re-obtaining if there should be an occurrence of a lost objective.
Furthermore, a probabilistic graphical model fitted with fixed-slack smoothing based on
factor charts was applied to precisely determine the relative interpretation and direction of
six-degrees-of-freedom (6-DOF) state gauges and their speeds.

Li and Yang [62] built a completely autonomous mobile device based on behavior-
based artificial intelligence (AI). Modules were developed for versatile robots to operate at
different levels of skill and practice, and each module was independently designed. These
modules can be easily integrated into the robot framework to improve their capabilities
without modifying any current modules. The most elevated layer in the design was
realized using a vision-based landmark recognition system. Using genetic algorithms, a
search method for recognizing advanced pictures was proposed and applied to detect
fake milestones by examining all predefined designs. The vision layer can create ideal
practices associated with various landmarks. A combination of eight ultrasonic sensors was
designed to implement obstacle-avoidance behavior through a set of fuzzy rules. During
robot navigation, invariant features were reserved for various perspectives, distances, and
lighting conditions. Szenher [63] created an image-based visual homing algorithm that
works robustly and efficiently in dynamic visual indoor environments. They investigated
environments in which lighting conditions or landmark locations changed between the
capture of snapshots and current images.

Casetti et al. [64] proposed a guidance system with safe-landing capabilities and a
vision-based navigation system. The feature detection algorithm was used to mainly track
landmarks so that large helicopter-sized UAVs could land safely without helipads. This
work is useful in the instance where a UAV that loses its GPS signal before landing is in
flight or returns to the base station. The overall mechanism operates through several steps.
The authors used a feature called the scale-invariant feature transform (SIFT) [65], which
is invariant to image translation, scaling, and rotation. At this point, the camera footage
is captured as an image, and the image is divided into multiple sub-images based on its
resolution. Subsequently, to satisfy the required depth estimation of determining a safe area
for landing, the authors used two different scenarios. The first scenario requires images
to be captured from a constant height and with pure translational motion; however, this
constraint can be overcome because the control system is able to guarantee these flight
conditions during the inspection of the landing area. Using the second approach, the
helicopter moves to maintain its position as it approaches the landing phase and descends
in a pure vertical landing manner. In this situation, the feature-based vision system is
employed to inspect the landing area, using the same set of local features as previously used.
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Subsequently, the authors executed a slope detection algorithm to filter any inconsistent
data and determine feature matches in two adjacent images. The authors used a popular
UAV control structure called a hierarchical control structure with the following two main
aspects: high-level control (strategy and task management) and low-level control (actuator
control behavior), as shown in Figure 4.
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Vetrella and Fasano [66] implemented a sensor output-based vision-based tracking
system. Their primary goal was to apply the method in either a challenging GPS envi-
ronment or for a UAV with nominal GPS coverage. This is because a swarm of UAVs
operates cooperatively for distributed guidance and navigation. The proposed architecture
framework is suitable for GPS-challenging environments. To simplify the working princi-
ple, the authors introduced a father–son formation. Father UAVs have reliable GPS data
and are unaffected by signal absorption, jamming, and multipath phenomena. Thus, the
performance of the father UAV needs no improvement; instead, the improvement of the son
UAV should be emphasized. This study exploits only line-of-sight (LOS) communication
between the son and father obtained by the onboard camera, which provides interactions,
such as information sharing, body reference frame (BRF), and relative sensing between
these two UAVs. Most of the processing occurs on the son UAV. In particular, this vision-
based tracking system generates BRF LOSs that are employed as extra measurements in a
sensor fusion approach based on a tight connection with the INS, magnetic sensor, GPS,
and EKF. Furthermore, for nominal GPS coverage, altitude data were obtained from the
sensors onboard the father UAV to acquire baselines in the northeast down (NED) reference
frame, and DGPS was used among UAVs. Figure 5 shows the overall working mechanism
of the proposed architecture.

3.1.2. Map-Dependent Navigation Systems

A map-dependent approach relies on the spatial layout of the environment to enable
UAVs to navigate with detour behavior and plan their movements. Two different types of
maps are primarily used in these methods: octree and occupancy grid maps. The maps
contain a wide range of information, which includes 3D models of a complete environment
and maps showing the interconnections between the elements of that environment. Fur-
thermore, when the 3D data are directly stored in a 2D map, they can be applied in indoor
environments, such as office areas, wide hall rooms, or plain outdoor fields, where height
information is less critical. However, in more complex environments such as traditional
urban areas, obstacles are irregular, making the use of 2D models more challenging. There-
fore, a 3D occupancy model must be deployed, where the probability distribution for height
is updated, rather than a one-dimensional value. Consequently, rearranging obstacles that
have a non-standard profile, such as tunnels, trees, building walls, and objects arranged in
a distinctive manner, is possible.
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Considering the issues mentioned above, Fournier et al. [67] presented a novel map-
ping approach that demonstrated a unique mapping methodology. Specifically, data from
a volumetric sensor created by the Defense Research and Development Canada (DRDC),
Valcartier, were used to create a 3D representation of the environment. The model was
saved in an octree structure and updated via ray tracing. The columns of the 3D model were
projected onto a 2D plane to create a 2.5D map. They also employed an exploration method
to deploy a modified version of the frontier-based strategy for efficient exploration of the
area. Basic navigation algorithms were also added to build a fully autonomous system.

Gutmann et al. [68] collected and processed data using a stereo vision sensor, which
were then used to create a 3D environment map. The core of this method was an expanded
scan-line grouping technique that properly splits range data into planar pieces. This
efficiently reduced the data noise caused by the stereo vision algorithm while predicting
the depth. To depict 3D settings, a multi-volume occupancy grid, which explicitly stores
information about both barriers and open spaces, was employed by Dryanovski et al. [69].
This grid enabled progressive rectification of previous potentially incorrect sensor readings
by filtering and fusing new positive and negative sensor data.

A vision-based position-estimation technique was presented by Saranya et al. [70].
As a first step, the authors introduced traditional methods, such as GNSS and INS, to
determine the position of the UAV. GPS data are commonly used to measure the signal,
and triangulation is used to estimate the position and velocity. The UAV is navigated
using an INS and various sensors, such as accelerometers, gyroscopes, altimeters, and
magnetometers. However, the authors pointed out that GNSS systems can be easily jammed,
and an INS may encounter errors in the output that increase with time. This error is called
the drift error and can only be minimized and not prevented. Thus, an advanced approach
is required to mitigate the limitations of traditional systems. The authors introduced vision-
based position estimation, which acts as a backup for both methodologies. In this case,
the latitude and longitude values obtained previously can be utilized by integrating with
the Google static map application programming interface (API). Subsequently, matching
techniques, such as normalized cross-correlation with prior edge extraction and a RANSAC
feature detection algorithm, were used to complete the system. In the implementation
setup, the authors used a camera and transmitter that acted as a UAV to transmit video data
to the ground station. At the ground station, another computer processed the transmitted
video footage and GPS data and implemented matching techniques.
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3.1.3. Map-Building-Based Navigation Systems

Navigating an accurate map of any environment is extremely difficult for any UAV,
owing to the complex and rough terrain of the surroundings. Moreover, owing to natural
calamities, such as storms or heavy rain, UAVs cannot easily recognize the target area.
Therefore, generating maps during navigating through a complex environment is an
effective solution. Generally, map-building approaches are widely used in autonomous
and semi-autonomous fields and have become widely accepted and more popular owing
to the rapid development of simultaneous visual localization and mapping [71]. The size
and shape of UAVs have decreased to a certain extent, thereby limiting their payload
capacity. As a result, researchers have become increasingly interested in using basic (single
and multiple) cameras rather than the usual complicated laser radar and sonar. The
Stanford CART robot was one of the first attempts at using a map-building approach
using a single camera [72]. Subsequently, an interest operator technique was developed
to recognize the 3D coordinates of pictures. The system showed the 3D coordinates of
objects that were kept on a 2 m grid. Although this technology can rebuild obstacles in the
environment, it is currently incapable of modeling real large-scale environments. Vision-
based SLAM algorithms, which are based on cameras, have been significantly developed
for simultaneously recovering camera poses and structure of the environment and have
used three types of methods: indirect, direct, and hybrid methods, depending on the visual
sensor image processing.

Indirect Map-Building Approaches

Indirect approaches identify and extract characteristics. Instead of accessing pictures
explicitly, it is used as input for motion estimation and localization methods. Features are
often intended to be rotation and perspective invariant and robust against motion blur and
noise. Various types of feature detectors and descriptors have been developed over the
last three decades as part of a thorough study of feature detection and description [62].
Consequently, most contemporary SLAM algorithms are based on these features.

Davison [73] suggested that the study of real-time mapping, despite being rarely
camera-based, is more significant than the offline structure from motion approaches because
of the primary focus on uncertainty propagation. A factored sampling approach and
motion modeling were used to develop a top-down Bayesian framework for single-camera
localization, which took advantage of information-guided active measurement and tackled
the challenging problem of real-time feature initialization. The development and active
measurement of a sparse map of landmarks in real time allow for resilient localization,
allowing locations to be revisited after periods of neglect and localization to continue even
when few features are visible. SLAM-based visual algorithms have reached a milestone
and greatly influenced future approaches, which essentially separate the SLAM system
into two parallel independent categories: tracking and mapping.

Klein and Murray [74] demonstrated a technique for predicting the camera position
in a novel scenario. They presented a system, which was previously constructed by
modifying SLAM algorithms established for robotic exploration, designed specifically to
follow a handheld camera in a tiny, augmented reality (AR) workspace. They separated
tracking and mapping into two jobs in parallel on a dual-core computer: one thread tracked
irregular handheld motion, while the other created a 3D map of point characteristics from
previously recorded video frames. This enables the application of computationally costly
batch optimization techniques that are not normally associated with real-time operations.
Consequently, a system that generates comprehensive maps with thousands of landmarks
that can be monitored at frame rates with accuracy and resilience has been developed.
Mahon et al. [75] proposed a large-scale visual navigation method that combines SLAM.
An expanded information filter was used in the estimation process based on viewpoint-
augmented navigation (VAN) architecture. Data collected by an autonomous underwater
vehicle, visually surveying sponge beds, illustrated this method. Loop-closure observations
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of a stereo vision system were used to adjust the predicted vehicle trajectory provided by
the dead reckoning sensors.

Celik et al. [76] used a monocular camera to offer a unique indoor navigation and range
approach. They suggested a combined SLAM method that underlines indoor aerial vehicle
applications. They also used a completely self-contained micro aerial vehicle (MAV) with
onboard image processing and SLAM capabilities to test the proposed methods. The range-
measuring approach was based on fundamental adaptive processes for depth perception
and pattern recognition in humans and animals. The navigation approach assumed that
the environment was unknown, GPS was unavailable, and corner-like feature points and
straight architectures could represent it.

Han and Chen [77] presented a multi-camera visual attitude estimation system based
on multi-camera PTAM, which parallelizes the pose estimation and mapping modules
and integrates the ego-motion estimates from many cameras. They also presented a
standardized external parametric calibration method for numerous cameras with non-
overlapping fields of view. Most indirect techniques, however, extract only unique feature
points from images and can only rebuild a limited collection of points (traditionally corners).
This type of approach is known as the sparse direct method because it can recreate only
a sparse scene map. Consequently, researchers have been anticipating the development
of dense indirect techniques for reconstructing dense maps. Valgaerts et al. [78] estimated
the basic matrix and found dense correspondences using a dense energy-based approach.
Ranftl et al. [79] used a segmented optical flow field to develop a high-resolution depth
map from two successive frames. This implies that a picture may be densely reconstructed
based on this framework by optimizing a convex algorithm.

Bavle et al. [80] proposed stereo visual–inertial SLAM. The inputs were synchronized
and then passed to the awareness map, which was updated in two steps. The first was
to use the newest pose for renewing, where the position of each occupied cell in the old
map was detected in the new map. The occupancy state was then updated using the
point cloud and applied ray casting. The occupied and non-occupied lists were sent to the
local–global map, which generated two different maps. The maps were projected in 2D
and local Euclidean signed distance fields (ESDFs) [81]. The distance between the ESDFs
represents the Euclidean distance to the nearest occupied voxel [82]. The path-planning
Fuxi kit consists of two parallel running planners: global and local planners. The kit aims at
determining the shortest path and planning obstacle avoidance strategies. A 2D map was
used as the input for the global planner. It aimed to determine the shortest path using an
improved jump point search algorithm [83]. The outputs were the local set points provided
to the local planner. Locally, the map avoids collisions and plans a dynamic trajectory. All
maps were used for visualization.

Direct Map-Building-Based Approaches

Indirect techniques function well in a normal context, but are prone to being stuck
in a texture-free world. Consequently, direct approaches have become popular over the
past decade. In contrast to indirect techniques, the direct method optimizes the geometry
parameters by utilizing the intensity information of all images, providing resistance to
photometric and geometric aberrations. Furthermore, direct techniques are more likely
to identify dense correspondences, allowing them to reconstruct dense maps at a higher
computational cost. Silveira et al. [84] suggested a novel method for simultaneously
obtaining correspondences, camera posture, scene structure, and lighting changes, using
picture intensities as observations. The use of all available picture data resulted in more
accurate estimations and avoided the inherent challenges of properly associating the
features. In this instance, structural restrictions, such as chirality, stiffness, and those
linked to illumination changes, can be applied to the method. The visual SLAM issue was
reformulated as a nonlinear picture-alignment challenge. Newcombe et al. [85] proposed
dense tracking and mapping (DTAM), a real-time monocular SLAM system that uses direct
techniques to estimate the 6DOF motion of the camera. With current commodity GPU
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hardware, dense surfaces can be built at a frame rate based on predicted detailed textured
depth maps by frame rating the whole picture alignment.

Engel et al. [86] used GPUs and a probability approach to produce a semi-dense map.
Kummerle et al. [87] considered the scale factor and used graph optimization over the Sim3
model, enabling scale drift correction and loop closure detection. A navigation system
based on the known location of landmarks was proposed by Lan and Jianmei [88]. The
process of continuously correcting the noise in the IMU image as a variable state increased
the calculation time.

Hybrid Approaches

Hybrid approaches combine both the direct and indirect approaches. As a first step,
they initialize feature-related maps using indirect approaches. Second, for more accurate
results, they constantly refines the camera poses using direct methods. To estimate the state
of a UAV, Forster et al. [89] presented an innovative semi-direct approach called semi-direct
monocular visual odometry (SVO). Motion estimation and point cloud mapping were
implemented in two threads, similar to PTAM. A more accurate motion estimation was
accomplished by directly using pixel brightness and gradient information, combining them
with feature point alignment, and reducing the reprojection error for motion estimation.
Subsequently, using only smartphone processors as the processing unit [89], they devel-
oped a computationally efficient system for real-time 3D reconstruction and landing-spot
identification for UAVs. In contrast to PTAM, SVO requires a high-frame-rate camera
to achieve real-time performance. The approach was primarily presented for onboard
applications, with minimal computing capabilities.

Multi-Sensor Fusion Approaches

Laser scanners are particularly common in ground mobile robots because they provide
access to high-quality 3D point clouds [90]. As their size decreases, UAVs can also be
equipped with laser scanners. This allows the integration of many types of measurements
from various types of sensors. The fusion of multiple sensors provides a more precise
and robust estimate of UAV status using the timeliness and complementarity of multiple
sensors. Lynen et al. [91] introduced the multi-sensor-fusion EKF (MSF-EKF), a general-
purpose MSF-EKF that can handle various forms of delayed measurement inputs from
many sensors and offer more accurate attitude estimates for UAV control and navigation.
Magree and Johnson [92] presented an integrated navigation system that integrates optical
and laser SLAM with an inertial navigation system based on EKF. The monocular visual
SLAM system identifies data associations and estimates the state of UAVs, whereas the
laser SLAM system uses a Monte Carlo framework for scan-to-map matching.

3.2. Obstacle Detection and Avoidance Approaches

Obstacle avoidance is a critical component of autonomous navigation because it can
identify and transmit critical information about surrounding obstacles, thereby reducing
the risk of collisions and pilot mistakes. Consequently, it has the potential to dramatically
boost the autonomy of UAVs. Obstacle avoidance is based on detecting barriers and
calculating the distances between UAVs and obstacles. When an obstacle approaches, the
UAV is meant to avoid it or turn around, according to the instructions of the obstacle
avoidance module. One method uses range finders, such as radar, ultrasonic, and infrared,
to estimate distance. In addition, their narrow field of view and measuring range prevent
them from gathering sufficient information in a complicated environment. Compared to
this method, visual sensors can collect sizable visual data that can be processed and used
to avoid obstacles. Obstacle avoidance approaches are divided into two categories: optical
flow- and SLAM-based methods. Image processing was used [93] to overcome the obstacles.
The use of optical flow can produce a local information flow and obtain a picture depth.
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3.2.1. Optical Flow-Based Approaches

The study of optical flow discusses avoiding obstacles and collisions by analyzing
images captured by a single camera. An optical flow method based on the Lucas–Kanade
gradient approach was applied to acquire the tested structure in a 3D space environment
(depth extraction). This method can be used to construct local information-flow patterns
from a specific area of nearby sites. The proposed technique for locating obstacles and
estimating their shapes was developed and implemented on a workstation with the µClinux
real-time operating system. This method can be used to build local information flow
patterns from a group of adjacent locations in a specified area. On a workstation with the
µClinux real-time operating system, an approach for finding barriers and estimating their
shapes was developed and implemented. During flight, a change in the barrier size was
identified [94]. This method mimicked the human eye mechanism of items in the field
of view, which enlarges with diminishing distance. It can detect obstacles by comparing
sequential images and determining the distance from the obstacle. This study presented an
innovative algorithm based on the size characteristics of the detected feature points that
change over time. It also used the size ratio of the convexity of the features found from two
consecutive frames in the drone motion.

Optical flow navigation approaches have also been developed for bionic insect vision.
Strübbe et al. [95] suggested a simple non-iterative optical flow approach to measure the
global optical flow and self-motion of the system, which was inspired by bee vision. The
Reichardt model [96] is based on the visual nerve anatomy of insects as a fundamental
local-motion detection unit. The authors investigated the hypothesis that when the signal-
to-noise ratio (SNR) of the stimulus increases, the motion processing technique switches
from Reichardt to the gradient detector. Local signal modulations were expected to diminish
with an increase in the SNR. The authors used two methods to adjust the SNR at the input.
The mean brightness was changed in one scenario. With increasing brightness, the SNR
increases with the square root of the Poisson distribution of photon emission. In the
second scenario, the pattern contrast was adjusted. The signal, and hence the SNR, grows
linearly with contrast in a peak-to-peak comparison. The flow technique and sensor were
developed [97] using the complex fly structure. To apply the theoretical validation to UAVs,
insect vision algorithms were used. The authors created a visually driven autopilot for MAV-
dubbed Octave as part of their research on biologically inspired micro-robotics (optical
altitude control systems for autonomous vehicles). They demonstrated the possibility of
a simultaneous altitude and speed control system based on a low-complexity optronic
velocity sensor that predicts the downward optic flow. This velocity sensor was based on
electrophysiological discoveries of on-the-fly elementary motion detectors (EMDs). They
created a simple, 100-gram tethered helicopter device that can track the terrain above a
randomly patterned surface. The total processing system was sufficiently light and could
be placed on MAVs with only a few grams of avionic payload.

Recently, a physics student named Darius Merk developed a system inspired by
insect vision that uses the speed of light to evaluate the distance between objects [98].
It is simple but effective because many insects in nature can sense nearby obstructions
based on the intensity of light. During flight, the image motion on the retina of an insect
produces a visual flow signal, and this optical flow presents spatial information for visual
navigation. According to the intensity of light passing through the leaf gap, insects can
quickly determine whether barriers can be safely traversed. However, the optical flow-
based technique cannot determine precise distances, which limits its application to some
missions. On the other hand, SLAM-based approaches can offer precise metric maps with
a complex SLAM algorithm, allowing UAVs to navigate and avoid obstacles with more
knowledge of the environment. Moreno-Armendariz and Calvo [99] described a method
using a SLAM system to map previously unknown environments. To avoid static and
dynamic barriers, a novel artificial potential field method was used. The primary goal
of an autonomous vehicle is to travel through unfamiliar areas. Developing a map can
accomplish this goal. The vehicle can establish paths between visited locations on its own
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using a map. Obtaining such a map with no prior knowledge of the surroundings or
the robot’s initial position in the environment is a specific challenge. Avoiding static and
dynamic impediments, on the other hand, necessitates the use of a revolutionary artificial
potential field approach. Novel designs that overcome both difficulties are implemented on
a field-programmable gate array (FPGA). The unique ideas were then tested on differential
traction mobile robots, equipped with a computer vision system that travels through
an unfamiliar controlled environment. The experimental findings revealed acceptable
real-time performance.

Zhihai et al. [100] proposed another vision-based UAV navigation system that can
avoid obstacles with the help of motion field estimation. A UAV is assumed to have a
reasonable understanding of its linear velocity in the inertial frame (based on GPS data).
The UAV gyroscope can provide a basic estimate of its orientation. Additionally, for the
time being, the camera is assumed to have been positioned at the UAV’s center of gravity.
The camera was assumed to have the same orientation as that of the body of the UAV.
The image frame was captured using a video camera mounted on the UAV. As a result
of classifying these image blocks, building edges, corners, road lines, and treetops can be
estimated because each block has its own set of features. The authors applied a discrete
cosine transform (DCT) to identify patterns or edges. In addition, the pixel values of the
image were considered to compute the distance between the UAV and the object.

To address the issue of heavy sensors for obstacle detection, Lin and Peng [101] pro-
posed a vision-based approach using a budget camera for object tracking. Map-based
motion planning is primarily concerned with automatic steering to avoid obstacles during
the mission. This is particularly critical at relatively low flight altitudes [102]. A natural
setting containing many obstructions was used for the studies. The authors combined
offline route planning and online collision-avoidance schemes for autonomous navigation
management. The rapidly exploring random tree (RRT) algorithm was used to construct an
initial path using an offline guiding method. The waypoints of the path were accompanied
by the directions. An integrated camera was used to capture a series of images throughout
the movement to create an optical flow field. During piloting, this was used to identify ob-
structions and establish a relationship between the movement of the UAV and encountered
impediments. It was divided into multiple steps, beginning with image pre-processing
and progressing via optical flow calculation, zone separation, and object recognition to the
final judgment, as shown in Figure 6. Based on the smoothing restriction and illumination
uniformity parameters, the authors proposed an optical flow estimate [103]. The approach
uses a quadratic polynomial expansion to estimate the movement of nearby pixels and thus
produces accurate results in terms of precision and speed. These studies were conducted
in an outside area with different barriers, and the results revealed that the image analysis
duration for a frame on the system was roughly six fps or 150–180 ms. The movement
for every pixel was computed between two successive picture frames in more detail than
sparse optical flow algorithms. However, the application of the collision avoidance algo-
rithm is still limited. A few drawbacks of optical flow include light shift, sluggish camera
shaking, and ambient noise in outdoor settings.

3.2.2. SLAM-Based Approaches

To deal with the inadequate light of interior environments and the reliance on the
number of feature points, Bai et al. [104] developed a method for generating self-adaptive
map feature points based on the PTAM algorithm, which is useful in GPS-deficient areas
with real-time performance. UAVs can fly inside buildings when deployed for counterter-
rorism and disaster relief. GPS signals may be blocked in an enclosed interior environment,
obstructing the determination of UAV whereabouts. Furthermore, the complex interior
environment poses problems for flight safety. Consequently, real-time detection of complex
situations and avoidance of impediments are required. In this study, the PTAM algorithm
was introduced into the UAV ground control module. They modified the algorithm and
built a self-adaptive map feature point generating mechanism to deal with low indoor light,
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fewer feature points, and other challenges, thereby lowering the system’s reliance on the
number of feature points and illumination conditions. This paper presented an obstacle
recognition algorithm and warning mechanism for a ground control module based on
the aforementioned foundation. Finally, the authors tested this approach using a small
quadrotor UAV. The results suggest that when dealing with unknown indoor situations,
the self-localization approach can provide obstacle warnings during flight. The results
show that this approach, which is critical for researching autonomous positioning and
flight safety for UAVs under GPS-less conditions, works well in real time.

Drones 2023, 7, 89  20  of  41 
 

that the image analysis duration for a frame on the system was roughly six fps or 150–180 

ms. The movement for every pixel was computed between two successive picture frames 

in more detail than sparse optical flow algorithms. However, the application of the colli‐

sion avoidance algorithm is still limited. A few drawbacks of optical flow include light 

shift, sluggish camera shaking, and ambient noise in outdoor settings. 

 

Figure 6. Optical flow method for obstacle detection. 

3.2.2. SLAM‐Based Approaches 

To deal with the inadequate light of interior environments and the reliance on the 

number of feature points, Bai et al. [104] developed a method for generating self‐adaptive 

map feature points based on the PTAM algorithm, which is useful in GPS‐deficient areas 

with real‐time performance. UAVs can fly inside buildings when deployed for counter‐

terrorism and disaster relief. GPS signals may be blocked in an enclosed interior environ‐

ment, obstructing the determination of UAV whereabouts. Furthermore, the complex in‐

terior environment poses problems for flight safety. Consequently, real‐time detection of 

complex situations and avoidance of impediments are required. In this study, the PTAM 

algorithm was introduced into the UAV ground control module. They modified the algo‐

rithm and built a self‐adaptive map feature point generating mechanism to deal with low 

indoor  light,  fewer  feature points, and other challenges,  thereby  lowering  the system’s 

reliance on  the number of  feature points and  illumination  conditions. This paper pre‐

sented an obstacle recognition algorithm and warning mechanism for a ground control 

module based on the aforementioned foundation. Finally, the authors tested this approach 

using a small quadrotor UAV. The results suggest that when dealing with unknown in‐

door  situations,  the  self‐localization  approach  can  provide  obstacle warnings  during 

flight. The results show that this approach, which is critical for researching autonomous 

positioning and flight safety for UAVs under GPS‐less conditions, works well in real time. 

Esrafilian and Taghirad [105] proposed an approach based on oriented fast and ro‐

tated brief SLAM (ORB‐SLAM). It begins by processing video data by computing the 3D 

location of the UAV and generating a sparse point‐cloud map. The sparse map was then 
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Esrafilian and Taghirad [105] proposed an approach based on oriented fast and rotated
brief SLAM (ORB-SLAM). It begins by processing video data by computing the 3D location
of the UAV and generating a sparse point-cloud map. The sparse map was then enriched
to increase its density. Finally, using the potential field method and swiftly traversing a
random tree, it produces a collision-free road layout. This paper described a commercial
quadrotor with a monocular vision-based autonomous flight and obstacle avoidance sys-
tem. The video feed of the front camera and the drone’s navigation data were wirelessly
transmitted to a ground station laptop. The received data were processed by ORB-SLAM,
which uses vision to compute the 3D position of the robot and a 3D sparse map of the envi-
ronment in the form of a point cloud. The method was proposed to enrich the reconstructed
map, and a Kalman filter was employed for sensor fusion. A linear feature was used to
calculate the scaling factor of the monocular slam. A PID controller was also developed
to control the 3D position. Finally, a collision-free road map was constructed using the
potential field method and RRT path-planning technique. The proposed algorithms were
also experimentally verified.

Potena et al. [106] used a nonlinear model predictive control (NMPC) controller to
improve vision-based navigation by adding dynamic and static collision avoidance func-
tionalities. The proposed technique illustrated designed obstacles considering their speed
and uncertainty, thus allowing safe operation over the projected trajectory. The authors
proposed a management approach that simultaneously integrated collision avoidance
and perception restrictions. They also used a configurable barrier characterization that
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allows the simulation of various obstructions while also encoding the unpredictability
and velocity of the obstacles. The surrounding environment is full of static barriers, and
dynamic barriers may arise from nowhere and cause disruptions. This approach causes
the UAV to maneuver across a revised safe route to respond to an identified item. Target
recognition, VS, and vision-based guidance are applications that can be leveraged by the
proposed technique. The challenge is expressed as an optimal control problem (OCP) and
addressed in a receding horizon manner. NMPC provides a possible answer to the OCP
at every drive cycle, and only the first input of the most efficient route is used to control
the robot. The OCP is resolved within a few milliseconds using numerical optimization,
ensuring adequate responsiveness to re-plan the course once unexpected obstructions are
recognized, thereby allowing real-time vehicle management. The integration of errors and
object speeding into ellipsoids is also possible with the suggested protocol, enabling it to
cope with dynamic impediments. Yang et al. [107] designed a reliable GPS-denied object
identification approach and an accurate relative position and speed analysis approach to
address the challenges of landing a UAV on a moving platform. A vision-based guidance
system for UAVs was built using these two technologies. Methods such as location estima-
tion, marker identification, and ellipse detection are reliable and rapid, making them ideal
for practical use. With its simplistic design and ease of recognition by UAVs while flying,
the authors employed a black-and-white square ID marker to distinguish the circle. They
chose a circle as the landmark. Owing to the high number of command updates required to
balance the UAV, a comprehensive real-time algorithm was used. The techniques presented
in this study can be used to track and detect targets by UAVs in freight transit situations
and maritime rescue missions.

3.3. Path-Planning-Based Approaches

Path planning is an imperative activity in UAV navigation, which entails determining
the most efficient path from the starting to destination point based on a set of performance
characteristics (such as the lowest cost of work, shortest flight duration, and shortest route).
The UAV must also avoid obstructions throughout the process, as shown in Figure 7.
This problem can be divided into two versions depending on the type of environmental
information used to compute an ideal path: global and local route planning. Global
path planning aims at determining the best possible path based on a global geographical
map. However, it is insufficient for controlling a UAV in real time, particularly when
other activities must be completed quickly or unanticipated impediments arise during
flight. Consequently, local path planning must continuously receive sensor data from the
surrounding environment and compute a collision-free path in real time.
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3.3.1. Global Path-Planning Approaches

A global path planner creates an initial path based on the locations of the starting and
target points. Thus, a global map is referred to as a static map. Two common methods
of planning global paths are the use of heuristic search methods and a succession of
clever algorithms.

Heuristic Searching Methods

The A-star algorithm, which is derived from the basic Dijkstra algorithm, is a common
heuristic search method. The A-star algorithm has been considerably refined in recent years,
and many enhanced heuristic search algorithms have been developed. Vachtsevanos et al. [108]
built a digital map from an orographic database and used a modified A-star algorithm to
select the optimal track. This paper describes a hybrid hardware/software framework, which
supports advanced control and mission-planning algorithms, for autonomous aircraft. To
consider unmodeled dynamics, solve uncertainty issues, and provide a flexible platform for
development and operator interface, the employment of intelligent fuzzy-logic-based and object-
modeling approaches was emphasized. Fuzzy logic is used in various vehicle modules, such as
route planners, fuzzy navigators, fault-tolerant tools, and flight controllers. Rouse [109] used
the heuristic A-star technique to accomplish optimal path planning based on distinct grid-point
value functions along the estimated path.

A prototype route planner was created in the framework of mission planning for air
interdiction. A realistic geographical scenario was partitioned into a rectangular grid, with
nine attributes assigned to each intersection. These features were combined to generate a
pattern vector describing the properties of each intersection. Pilots scored a representative
sample of these vectors based on the desirability of overflying sites with specific attributes.
These data were used to create a minimum distance pattern classifier. Then, using an
“algorithm A” search routine, a route planner was created. The route planner relies on a
heuristic that combines the distance and pattern classifier outputs to determine a low-cost
path for a target. The sparse A-star search (SAS) for path planning was introduced by
Szczerba et al. [110]. This approach effectively reduced the computational complexity by
introducing limitations to space searching during path planning. In both military and
commercial applications, route planning is a challenging task. Routing algorithms use a
predetermined cost function in order to calculate a route that has the lowest cost. Unfortu-
nately, in certain mission scenarios, such a method may not prove effective. The author
described a unique route-planning methodology for quickly and accurately generating
mission-adaptable routes. The routes are calculated in real time and may accommodate
various mission limitations, such as the minimum route leg length, maximum turning
angle, route distance limit, and a fixed approach vector to the objective location.

Stentz [111] created the dynamic A-star method, commonly known as the D-star
algorithm, for partially or unknown dynamic environments. It can update its map of
unfamiliar environments when it detects new barriers along its path. In the scientific
literature, planning trajectories for mobile robots has received much attention. The majority
of research assumes that a robot has a complete and accurate picture of its surroundings
before the beginning of flight; nevertheless, the problem of partially known surroundings
has received less attention. An exploration robot or robot that must proceed to a destination
area without the assistance of a floorplan or terrain map is used in this scenario. An initial
course based on the available information can be designed using existing methods and then
altered locally, or the entire path can be replicated. The robot detects impediments using
its sensors, compromising either optimality or computational efficiency. Stentz presented
D*, a novel algorithm capable of efficiently, optimally, and completely designing courses in
unknown, partially known, and changing situations.

In [112], the authors discussed how UAVs could be used in difficult environments
and how to plan and track an optimal path for optimal performance with minimal energy
and time consumption. To assist the UAV in navigating obstacles, the authors developed a
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hybrid algorithm called Harris hawk optimization (HHO)–gray wolf optimization (GWO),
which was tested against other metaheuristic algorithms.

Intelligence-Based Approaches

Scholars have attempted to address global path-planning problems using intelligent
algorithms and have proposed various intelligent searching strategies in recent years. The
genetic and simulated annealing arithmetic (SAA) algorithms are two of the most common
intelligent algorithms and were used to study path planning [113]. The path adaptation
function was evaluated using the genetic algorithm’s crossover and mutation operations
and metropolis criterion, which improves the path-planning efficiency. This research
introduced SAACO, a novel path-planning methodology that combines framed-quad-
tree representation with hybrid-simulated annealing (SA) and ant colony optimization
(ACO) algorithms to increase path-planning efficiency. The use of a framed-quad-tree
representation enhances the decomposition efficiency of the environment and retains the
representation capacity of the map. SA and ACO have been used for the robot path
planning problem, and there have been numerous accomplishments in the last year. Many
types of SA rely on random starting points, and automatically determining ways to provide
better early estimations of solution sets is still a hot topic in this study.

For the SA runs, we employed ACO to provide a suitable starting solution. It was
found that the proposed SAACO algorithm can successfully handle the robot path-planning
problem, enabling the robot to seek a given destination while avoiding collisions and
thereby increasing the speed of the UAV navigation. The robustness, self-adaptivity, and
other qualities of this approach have also been demonstrated. Enhanced simulated anneal-
ing and conjugate direction approaches were utilized to optimize global path planning [114].
Mission situations with restricted ground control station access or beyond the LOS ne-
cessitate autonomous safe navigation skills and the ongoing extension of existing and
potentially obsolete obstacle knowledge. The proposed method is a novel combination
of 3D perception and global techniques. Sparse obstacles were extracted for incremental
global path plan (GPP) using a locally bound sensor fusion methodology. During flight, a
stereo camera analyzes depth images to assess the field of view along the flight path ahead.
A 3D occupancy grid was constructed in stages. An approximated polygonal globe model
was built to alleviate the high data rate and storage requirements of grid-type maps. Prisms
and ground planes were utilized to create a compressed representation that allows the
system to constantly renew and refresh its obstacle knowledge. To provide a collision-free
path at all times, an incremental heuristic path planner uses both a priori information and
incremental obstacle updates. The mapping results from the flight tests demonstrate the
functionality of the onboard environment modeling using real sensor data. The viability of
path planning is proven in a simulated setting by considering the model changes within
the vehicle’s field of view.

3.3.2. Local Path-Planning Approaches

Local route planning uses local environmental data and UAV’s state estimation to plan
a local path that dynamically avoids collisions. Path planning in a dynamic environment
becomes a highly complex task because of unpredictable factors such as item movements
in a dynamic environment. In this situation, path-planning algorithms must adapt to the
dynamic properties of the environment by gathering information (such as size, shape, and
location) about unknown elements of the environment via a variety of sensors. Spatial
search methods, artificial potential field techniques, fuzzy logic techniques, and neural
network methods are examples of traditional local path-planning methods. In this section,
we describe a few common path-planning approaches. Wang et al. [115] applied a virtual
force approach, in which a UAV was moved from its surroundings into an abstract artificial
gravitational field environment. According to the mobile robot, the target point has both
“attraction” and “repulsion”, and the robot is governed by these two forces and gradually
advances toward the target location. The authors proposed a distributed control system for
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a group of mobile robots. This method was distributed in the sense that all robots, or at
least the majority of robots in some circumstances, planned their movements based on the
group’s assigned aim and the observed positions of other robots. The authors illustrated
the concept by describing an approximation of a very large number of robots in a circle,
simple polygon, or line segment in the plane. They also demonstrated uniform dispersion
of robots within a circle or convex polygon in space. Finally, they demonstrated the division
of robots into two or more groups. Most robots followed a similar, simple algorithm in most
circumstances. A simulation was conducted to demonstrate the effectiveness of the method.

Souza et al. [116] demonstrated a method for calculating the path through obstacles
using the artificial potential field method. Path planning is one of the most critical issues in
UAVs for determining the best route between source and destination. Although numerous
studies exist on UAV path-planning challenges in the literature, target location and identifi-
cation concerns persist owing to the rapid mobility of UAVs. To address these challenges,
the best decisions for various mission-critical functions performed by UAVs must be made.
As part of these decisions, the UAVs must be located relative to a map or graph of the
mission environment. To solve the abovementioned challenges, the authors examined
several UAV path-planning strategies that have been employed throughout the years. The
path-planning approaches were aimed at offering a collision-free environment for UAVs
and determining the best and shortest paths. Having path-planning tools to compute a
safe path to the end destination within the shortest possible time is critical. Representative
techniques, cooperative techniques, and non-cooperative approaches are the three basic
path-planning strategies for UAVs. These methodologies were used to explore and evaluate
the coverage and connection of UAVs’ network communication. The existing suggestions
were comprehensively studied based on each category of UAV path planning. For a better
understanding, the text presents various comparison tables considering parameters, in
particular path length, optimality, completeness, cost efficiency, time efficiency, energy
efficiency, robustness, and collision avoidance. Many open research challenges based on
UAV path planning and network communication have also been investigated to provide
readers with deeper insights.

Genetic algorithms are a general method of solving optimization problems, particu-
larly those that involve determining the best path to follow. They address the inheritance
and evolution of biological phenomena. To achieve an ideal solution, the “survival strategy”
and “survival of the fittest” principles have been used. Chromosome coding, population
size, fitness function, genetic operation, and control parameters are the five main compo-
nents of these principles. The evolutionary algorithm has been widely used in aviation
path planning in several existing studies [117]. To plan 3D routes for multiple air vehicles
across a dense threat environment, a route-planning methodology based on a class of adap-
tive search techniques known as genetic algorithms (GAs) is described. Shen et al. [117]
presented a GA-based route planner that provided efficient vehicle routes while accommo-
dating mission restrictions. This methodology has been demonstrated to be promising in
preliminary experiments on GA-based air vehicle route planners. This study builds on prior
work by incorporating a full hierarchy-based mission-management system. The results
of several experiments are presented and discussed. The main goals of the experiments
were investigating the effective configuration of classes of GA operators, determining GA
operator parameter settings that will produce “near optimal” routes, investigating the use
of a domain-specific mutation operator called “target bias mutation” for expediting conver-
gence, and comparing the results to the well-known dynamic programming algorithm.

A neural network is a computational tool developed to reveal biological activities.
Liu and Xu [118] presented an example of path planning using Hopfield networks. In
ground, air, and autonomous submarine systems, the capacity to plan routes that avoid
barriers and meet mission goals over time is required. The Hopfield model was used to
propose a neural network solution for route planning. The study discussed the translation
of topography information into a Hopfield network representation. Creating an energy
function capable of reflecting the planning and mission limitations common to all three
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operating domains was prioritized. The route planning capability was demonstrated using
genuine terrain database imagery with the energy function based on the goal point distance,
terrain gradients, and feedback from the UAV’s altitude data. The progress in efforts to
integrate the route planner into a larger vehicle planning scheme was highlighted. The
ant colony algorithm [119] is a novel bio-inspired algorithm that replicates ant behavior. It
imitates the behavioral traits of ants as a stochastic optimization approach, allowing it to
reach outcomes by solving a sequence of complex combinatorial optimizations.

Yang et al. [120] initially used a coarse model of the environmental surroundings to
provide initial knowledge and then refined it through local online computation. The model
was updated by processing the image sequences and combining them with sensor data,
and relied on digital elevation models (DEM) [121], which are extensively applied in earth
sciences, to create an initial 3D model of the environment. Finally, the author depended
on conventional optimization techniques, such as the Dijkstra algorithm, to determine the
shortest path for computation, as shown in Figure 8. The cost function used was the sum
of the three factors, which were scaled by the distance to the goal, terrain roughness, and
flight altitude. On the other hand, the principal idea of the refining approach was to divide
the local space into 3D cubic cells and then represent each cell by a grid point. They used
the center of the cell as the point, and then used a depth map algorithm to determine the
depth of each voxel. The voxels were grids of cubic volumes of equal size. Furthermore, the
authors used the voxels to update the volumetric map as occupied or unoccupied. Then, a
map was provided to the path-planning algorithm to avoid obstacles.
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Urban search and rescue (USAR) missions have been proposed by Mittal et al. [122].
No prior environmental knowledge is required for their navigator, unlike some of the
methodologies introduced to date. In addition, they created a novel synthetic dataset [123]
for collapsed buildings in a simulation environment. The navigation system provides
localization, mapping, and collision-free paths. Additionally, it can explore unstructured
environments without prior information. Localization occurs by first exploring the area
and building a map using depth images. Similar to the cost function introduced by
Yang et al. [120], they presented an algorithm for landing based on four evaluation criteria:
the flatness and inclination of the terrain, confidence in the depth information, steepness
of the area, and intensity of the landing. As explained previously, the UAV builds an
occupancy map using depth images acquired by the onboard camera. In their proposed
algorithm, they created two maps. The first was implemented using the open-source
probabilistic 3D mapping framework Octomap [124]. A light voxel-based local map was
used for path planning. The second was the open-source 3D mesh reconstruction tool,
Voxblox [125]. It communicates with the ground station for analysis and rescue planning.
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As such, map visualization can be considered. Finally, landing sites were clustered to avoid
repeatability because the detection was on a frame-to-frame basis. A global list of landing
sites, including the depth information and pose of the UAV, was updated if the new landing
site had no existing neighbors on the list within a small distance. A pose is a combination
of the position and orientation of an object. The authors used a minimum-jerk trajectory
generator [126] with non-linear optimization for path planning.

3.3.3. Deep Learning-Based Approaches

Drones must use the most efficient machine-learning algorithms for perception, plan-
ning, and control to execute their missions as quickly as possible because of the limited
energy storage capacity and low efficiency of rechargeable batteries. Deep reinforcement
learning (DRL) has recently emerged as an effective method for addressing the navigation
problems of unmanned aerial vehicles. However, the significant amount of interactive
data generated by these systems cannot converge when UAVs navigate through dynamic
environments with many rapidly moving obstacles.

Reinforcement Learning (RL)-Based Approaches

Reinforcement learning (RL)-based approaches have recently become popular for
UAVs with limited computational power. Different optimization algorithms are applied
to both local and global path-planning strategies in indoor and outdoor environments.
These RL-based approaches aid in learning a control policy that tends to generalize
over varying power constraints for the UAV navigation system, as shown in Figure 9.
Maciel-Pearson et al. [127] elected to rapidly increase the learning and understanding of a
UAV agent while exploring a partially viewable environment that mimicked real-world ob-
stacles. They employed a two-state input method that combines the knowledge gained from
the raw image with a map that includes positional information. Although the feature map
from the present scene identifies crowded areas that should be avoided, these positional
data enhance the knowledge of the location of the UAV and its distance from the target
point. He et al. [128] suggested a DRL method for solving the problem of UAV navigation in
an unknown environment. However, DRL algorithms are constrained by the data efficiency
problem because they often require a sizable amount of data to achieve a respectable level
of performance. They designed a novel learning framework that blends imitation learning
and an RL-based approach on the twin delayed deep deterministic policy gradient (DDPG)
(TD3) algorithm [129] to speed up the DRL training process. They also discussed training
both policy and Q-value networks using expert demonstrations during the imitation phase.
Both the temporal difference (TD) error and decayed imitation loss were utilized to update
the pre-trained network when interacting with the environment to address the distribution
mismatch problem while shifting from imitation to reinforcement learning.

Theile et al. [130] proposed a novel approach for controlling a camera-equipped UAV
on a coverage path planning (CPP) mission with random start positions and various
landing alternatives in a no-fly zone environment. Many approaches have been developed
to address similar CPP challenges. This study used end-to-end RL to establish a control
policy for UAVs that generalizes over a variety of power restrictions. Despite recent
advances in battery technology, the maximum flying range of small UAVs remains a
significant limitation, exacerbated by unpredictable fluctuations in power consumption.
They trained a double deep Q-network (DDQN) to make control decisions for the UAV,
balancing a restricted power budget and coverage goal using map-like input channels to
transmit spatial information through a convolutional network layer agent. This method
harmonizes complex goal structures with system restrictions and can be adapted to a
wide range of contexts. They also contrasted CPP, in which the UAV aims at surveying a
certain area, with data harvesting (DH), in which the UAV harvests data from distributed
Internet of Things (IoT) sensor devices [131]. DDQNs with identical architectures are
trained in distinctly different mission scenarios that use structured map information from
the surrounding environment to decide movements that balance the mission goal with
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the navigation limitations. The navigation controller generates the control signal solely
based on the current sensor data, with no optimization or configuration space searching,
memory reduction, or computing requirements. The navigation problem is treated as a
Markov decision process and is solved using the DRL approach. Some model explanation
approaches are specifically provided to gain a better understanding of the trained network.
During flight, decision-making conclusions are communicated visually and verbally as a
result of feature attribution. There are still limitations to the feature attribution method
as it provides some insight into deep neural networks. For example, attributions do not
explain the convergence of gradient descent or mixing of the features by network to obtain
an answer.
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Neural Network-Based Approaches

In addition to RL-based learning approaches, neural network-based algorithms have
also been proposed for both indoor [132] and outdoor [133] environments. In some un-
constructed environments, such as forests, automatic trail navigation systems are capable
of generalizing across different image resolutions. Furthermore, they have enabled UAVs
with a wide range of sensor–payload capabilities to operate equally under such challeng-
ing conditions. According to [134], the authors proposed AI technologies such as deep
learning and neural networks for spacecraft systems to resolve the problems related to
their dynamics and navigation. The article discusses different artificial neural network
architectures, their training methods, and the pros and cons of using them for particular
types of problems. Furthermore, it examines how artificial intelligence can be integrated
into spacecraft systems for the purpose of system identification, control synthesis, optical
navigation, etc. On the other hand, a real-time 3D path planner was developed in [135]
to autonomously navigate UAVs through obstacles. To determine collision-free paths, the
proposed path planner uses AI and heuristic algorithms. It is, therefore, an ideal method of
providing real-time guidance.

4. Comparison and Discussion

In this section, we compare the existing vision-based navigation systems. We compared
the reviewed vision-based navigation systems among the groups. Table 4 summarizes the
analysis of the various map-based UAV navigation systems in terms of types, methods
used, the main theme of the article, functions, network environment, advantages, and
limitations of the proposed approach. Similarly, Tables 5 and 6 summarize the comparison
of various approaches to object detection and path planning for UAV navigation based on
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their proposed methods, main ideas, and functions. It can be observed from Tables 5 and 6
that machine-learning-based approaches exhibit high performance but require considerable
computing power. The navigator aims to fly the UAV successfully without an obstacle
collision. Additionally, it determines the shortest path to the destination. Furthermore, it
is used to define the appropriate landing sites for rescue operations. Navigators typically
include three modules: localization, mapping, and path planning.

The map-based navigation approaches, widely used for UAVs, are presented in Table 4.
Due to the requirement for a camera-based navigation system over scenes with uniform
textures, a camera-based navigation system cannot infer geometrical information from
an image. Furthermore, perception algorithms should be resilient to recurrent outlier
measurements generated by low-level image processing, such as optical flow and feature
matching. We also presented the advantages and drawbacks of each navigation technique.
The main advantage of map-based UAV navigation systems is their simplicity. Nevertheless,
several disadvantages, such as limited accuracy, slow motion, no visualization, limited
applications, and limited memory management, are present owing to discarding depth
and relying on sensors for planning. System complexity and computational cost are major
limitations of map-based UAV navigation systems. The complexity and computational
costs of map-based UAV navigation systems are limited.

A comprehensive comparison of the obstacle detection and avoidance approaches
reviewed is presented in Table 5. Localization provides an exploration of the flight area.
Several approaches can be used, including GPS as a reference frame model. The next step
is to analyze the data and create a map that contains details of the obstacle positions. In
the map, each cell was classified as occupied or unoccupied. In other words, it accurately
determined the locations of the obstacles. All path-planning and object-detection-based
navigation techniques produced highly accurate results. A few techniques have several
shortcomings, such as a lack of visualization, limited applications, and limited memory
organization. However, the SLAM-based approach showed excellent accuracy in object
detection, but required a high computational cost.

Finally, in Table 6, we provided a comparison of path-planning approaches for navi-
gation systems concerning various performance parameters. The path-planning module
uses an appropriate search algorithm to determine the shortest route. This process is
known as mapping. Therefore, navigators depend on visual approaches to refine this
process. Various algorithms, such as Octomap, Voxblox, and ESDFs, have been developed
for navigation. Furthermore, the map provides information about factors used as a cost
function in the path-planning module, such as depth, distance, and energy consumption.
Eventually, algorithms such as Dijkstra’s algorithm and jump point search are used for
path optimization. The machine learning (ML)-based approach showed higher accuracy
but required high computational costs.
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Table 4. Comparison of map-based UAV navigation systems.

Ref. Type Method Main Theme Functions Sensing Advantages Limitations

[51] Map-independent Optical flow Brightness constancy, small
motion, and smooth flow

Able to handle
image sequences

Single camera and global
optical flow

The brightness level and
additive noise are also

not affected

Performance can be affected due
to image motion

[52] Map-independent Optical flow Method of differences and
constant flow for all pixels Image registration Single camera and local

optical flow

Less expensive and faster
method with compared

traditional image registration
Can be affected by image noise

[53] Map-independent Optical flow Based on a divergent
stereo approach

Reflex-type control
of motion

Stereo camera and
computation of optical flow

Adjust with forward velocity
control and flexible approach

Sample size have effect
on performance

[54] Map-independent Optical flow Non-linear controller for
optical flow measurement

Scene changes detection
and description

Multi-sensor and spherical
optical flow Higher system stability System complexity can be high

[55] Map-independent Optical flow The deviation of all pixels
from the anticipated geometry Human detection in disaster Multi-sensor and dense

optical Flow
Great performance in

high mobility System complexity can be high

[56] Map-independent Optical flow
UAVs position and

Orientation estimation and
filter date of terrain using EKF

Tracking Multi-camera and extended
Kalman filter Low control estimation error Data of DEM may not extract

during flight

[57] Map-independent Optical flow
UAVs position estimation and
filtered data of terrain using

particle filter
Tracking

Multi-camera and state
vector augmentation for

error control
Low positional error Data of DEM may not extract

during flight

[60] Map-independent Optical flow UAV estimation
and navigation

Flight formation and
aerial refueling

Single camera and
vision-based neural
network algorithm

Great performance in terms of
position accuracy and
orientation estimation

Low data rate to locate
the image

[61] Map-independent Feature tracking
Feature selection/filtering and

a feature-pattern
matching algorithm

Detection of the features
and movements of any

moving object
Single camera Higher location accuracy High computational cost

[62] Map-independent Feature tracking A behavioral
navigation method

A behavioral navigation
method Fuzzy-based
obstacle avoidance

Single camera Local features detection
and descriptor

Poor data quality and high
time complexity

[63] Map-independent Feature tracking Image-based visual homing

Image-based visual homing
observation of the invariant
features of the environment
from different perspectives

Single camera Does not require GPS Topological visual homing has
system complexity

[64] Map-independent Feature tracking

A feature-based
image-matching algorithm is

used to find the
natural landmarks

Guidance and safe landing
of UAV Multi-camera Do not require artificial

landmark during flight
High computational

power required
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Table 4. Cont.

Ref. Type Method Main Theme Functions Sensing Advantages Limitations

[66] Map-independent Feature tracking Can leverage both strong GPS
and nominal GPS UAV navigation and control Single camera Suitable for GPS

challenges situation Requires additional sensors

[67] Map-dependent Octree map Ray tracing technique Mapping and surveillance Depth camera and 3D
volumetric sensor Low cost and easy to use Specular reflections can happen

in 3D systems

[68] Map-dependent Occupancy
grid map

Precise segmentation of
range data

3D mapping and
obstacle detection

Stereo camera and
vision sensor

High accuracy
in segmentation Expensive solution

[69] Map-dependent Octree map

An extended scan line
grouping approach and

precise segmentation of the
range data into

planar segments

Localization and path
planning for mini-UAVs Depth camera Applicable to both indoor and

outdoor environments Costly

[70] Map-dependent Occupancy
grid map

Estimate the position of UAV
using RANSAC feature

detection and normalized
cross correlation with prior

edge detection

Position estimation of UAV Single camera Easy to develop and use Higher computation cost in
terms of iteration number

[73] Map-building Indirect A top-down
Bayesian Network Localization and mapping Single camera Real-time feature

extraction-based localization
Real-time map has
uncertainty effect

[74] Map-building Indirect Parallel tracking and
mapping method Tracking and mapping Single camera Higher accuracy in tracking Need high computational power

[75] Map-building Indirect Cholesky factorization
modification-based method Localization and mapping Single camera High localization accuracy High computational complexity

[76] Map-building Indirect Monocular vision
navigation-based method Indoor navigation for UAV Single camera High accuracy in indoor

environment Data organization is difficult

[77] Map-building Indirect
Contour mapping strategy

and the formation
control utilized

Mapping Single camera Useful for formation control High mobility can
reduce performance

[78] Map-building Indirect Dense energy-based method Estimation of the
fundamental matrix Single camera Automated featured detection High complexity system

[79] Map-building Indirect Segmented optical flow
field method

A dense depth
map estimation Single camera Useful for complex situation Error may happen on

depth estimation

[80] Map-building Indirect Lightweight and real-time
visual semantic SLAM Indoor navigation Multi-camera High accuracy in navigation Very high computational cost

[84] Map-building Direct Based on image alignment
or registration Object position estimation Single camera Less computational time and

easy to use
Require large amount of

image data
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Table 4. Cont.

Ref. Type Method Main Theme Functions Sensing Advantages Limitations

[85] Map-building Direct Dense tracking and
mapping-based method Tracking and mapping Single camera High tracking accuracy in

high dynamic mobility System complexity high

[86] Map-building Direct Large-scale direct monocular
SLAM method Map optimization Single camera Higher tracking accuracy Scale independent

[89] Map-building Hybrid Semi-direct monocular visual
odometry method Motion estimation Single camera Useful in

GPS-denied environment
Feature attraction may face
difficulties in high mobility

[91] Map-building Multi-sensor
fusion

Dubbed multi-sensor fusion
EKF method UAV outdoor navigation Multi-sensors Fast and easy to use Expensive and requires

additional sensors

[92] Map-building Multi-sensor
fusion Laser-based SLAM method UAV indoor navigation Multi-sensors Useful in indoor environment Expensive

Table 5. Comparison of obstacle-detection-based UAV navigation systems.

Ref. Type Method Main Theme Functions Advantages Limitations

[95] Optical flow Matched filter approach Koenderink and van Doorn (KvD)
method Motion estimation Adaptive approach in high motion Not suitable for complex environment

[96] Optical flow Bionic insect vision SNR level detection Motion control and estimation Can operate in noisy environment Additional sensor required

[97] Optical flow Bionic insect vision Fly elementary motion
detection-based UAV controlling UAV altitude control Visual motion system removes motion

ambiguity High complexity

[98] Optical flow Bionic insect vision Geometrically determined optic flow
for UAV collision detection UAV collision avoidance Avoid collision during flight Higher computational complexity

[99] Optical flow Artificial potential field Artificial potential field method for
obstacle detection UAV obstacle detection Fast response Unreachable near obstacles

[100] Optical flow Motion field estimation Motion field information method Flight control and obstacle avoidance Less computation cost Unreachable near obstacles

[101] Optical flow Map-based offline path-planning method

Optical flow is used for obstacle
detection and avoidance, and

map-based offline path planning is
used for navigation

Obstacle avoidance and path planning Easy to operate and deploy Expensive

[103] Optical flow Polynomial expansion transform method Two frame-based motion estimation Motion estimation Effective and reduce the estimation error High computation cost

[104] SLAM An improved PTAM method Author used PTAM algorithm for
UAV ground control Indoor environment Provide self-localization and works in

indoor environment
PTAM algorithm more suitable for

large environment

[105] SLAM ORB-SLAM and potential field Reconstructed map with Kalman filter
for UAV flight control UAV obstacle avoidance High accuracy in obstacle detection High iteration is required for

algorithm convergence

[106] SLAM Coupling vision-based navigation systems
Utilized NMPC controller to improve

the navigation performance with static
and dynamic obstacle avoidance

UAV navigation, flight control, and
obstacle avoidance High accuracy in obstacle detection High iteration is required for

algorithm convergence
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Table 6. Comparison of path-planning-based UAV navigation systems.

Ref. Type Method Main Theme Functions Advantages Limitations

[108] Global Fuzzy logic approach
Created an orographic database to

make a digital map and then applied
heuristic A-star algorithm

UAV navigation and route planner User friendly and flexible May face problems in processing
the imprecise data

[109] Global A-star algorithm on square grid Apply pattern classifier to obtain the
low-cost optimal path UAV route planning Able to find low-cost path High computation cost

[110] Global A-star search (SAS) algorithm Reduces the complexity by applying
constraints UAV real-time route planning Minimize route path High complexity

[111] Global Dynamic A-star search Created dynamic A-star algorithm for
partially or unknown environment Path optimization Optimize the path in

unknown environment Complex search algorithm

[112] Global Hybrid algorithm based on HHO
and GWO

Avoid failure when no prior
information is provided

Path planning and
obstacle avoidance

Optimal path with minimal
energy and time consumption

Using UAVs in difficult
environments without exploring

other possible applications

[113] Global Simulate anneal arithmetic Genetic algorithm and simulate anneal
arithmetic (SAA) algorithm

Using the crossover and mutation
operations in the genetic algorithm

with the Metropolis criteria to
enhance path planning efficiency

Suitable for
multi-object optimization Long search time

[114] Global Simulated annealing
The improved simulated annealing

algorithm and the conjugate
direction method

Keep its knowledge of obstacles
up-to-date and constantly renew it

Able to work for 3D
environment perception High complexity system

[115] Local Artificial potential force
field method

A novel molecular force
field-based method UAV swarm coverage Suitable for real-time

obstacle avoidance Unable to avoid trap area

[116] Local Artificial potential field Using force field to avoid collision
during flight UAV path planning More accurate result Expensive system

[118] Local Hopfield neural network

A-star algorithm is applied to choose
the nodes in the search area then

Hopfield network is used for
network stability

UAV path planning Ability to parallel computing High computation cost

[120] Local Sampling-based Sampling-based 3D path planning UAV path planning Energy efficient path planning
Complex collision-detection

geometries may not possibly use
sampling-based approach

[127] RL-based Double state-input strategy
Extended double deep Q-network for
the unknown environment including

harsh environment
UAV navigation Able to solve very

complex problems
High computation cost and higher

power required

[128] RL-based DRL-based DRL-based obstacle detection for
unknown environment UAV obstacle avoidance Higher performance High computation cost and higher

power required
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Table 6. Cont.

Ref. Type Method Main Theme Functions Advantages Limitations

[130] RL-based DDQN-based
DDQN-based coverage path planning

for the unknown environment
including harsh environment

UAV path planning Proposed approach is useful for
complex environment

Extremely expensive to train
dataset

[132]
Neural

network-
based

Convolutional neural network
with genetic algorithms

Genetic algorithm is used with neural
network for hyperparameters tuning UAV indoor navigation Able to work in both indoor and

outdoor environment
High computation cost and higher

power required
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5. Open Issues and Research Challenges

In this section, we summarize and discuss important open issues and research chal-
lenges that motivate further research in this emerging domain. As crucial challenges
are introduced by the increasing demand, we discuss the four major issues of scalability,
computational power, reliability, and robustness in vision-based UAV navigation systems.

5.1. Scalability

In this article, the major contributions in each category of vision-based navigation,
perception, and control for unmanned aerial systems are discussed. Visual sensor inte-
gration in UAVs is an area of research that attracts enormous resources but lacks solid
experimental evaluation. Compared with conventional robots, UAVs can provide a chal-
lenging testbed for computer vision applications for a variety of reasons. Typically, the
dimensions of an aircraft are larger than those of a mobile robot. Thus, image-processing
algorithms must be capable of robustly providing visual information in real time and have
the ability to compensate for rough changes in the image sequence and changes in 3D
information. However, SLAM algorithms, for visual applications, have been developed by
the computer-vision society. However, most of them cannot be directly utilized in UAVs
because of the computational power and energy limitations of UAVs. More specifically,
aircraft have a limited ability to generate thrust to maintain their airborne status, which
limits their capacity for sensing and computing. To avoid instabilities associated with the
fast dynamics of aerial platforms, minimizing delays and compensating for noise in state
computations is essential. Unlike ground vehicles, UAVs cannot simply cease operations in
the presence of considerable uncertainty in state estimation, resulting in incoherent control
commands to the aerial vehicle.

5.2. Computational Power

The UAV may possibly exhibit unpredictable behavior, such as an increase or decrease
in speed or oscillation, and may ultimately crash if the computational power is insufficient
to update the velocity and attitude in time. UAVs have the ability to operate at a variety
of altitudes and orientations, resulting in a sudden appearance and disappearance of
obstacles and targets; therefore, computer vision algorithms must be able to respond very
quickly to changes in the scene (dynamic scenery). Notably, the majority of the presented
contributions assume that UAVs will fly at low speeds to compensate for the rapid changes
in the scene. Consequently, dynamic scenes pose a significant challenge. Considering the
large area of aerial platforms, resulting in large maps containing more information than
ground vehicles, which is another challenge in SLAM frameworks, is important. When
pursuing a target, object tracking methods must be robust to occlusions, image noise,
vehicle disturbances, and illumination variations. When the target remains within the
field of view but is obscured by another object or not clearly visible from the sensor, the
tracker must continue to function to estimate the target’s trajectory, recover the process,
and work in harmony with the UAV controller. As a result, highly sophisticated and robust
control schemes are required for optimally closing the loop using visual data. Computer
vision applications have undeniably moved beyond their infancy and have made great
strides toward understanding and approaching autonomous aircraft. Because various
positions, attitudes, and rate controllers have been proposed for UAVs, this topic has
attracted considerable attention from the research community. Therefore, to achieve greater
levels of autonomy, a reliable link must be established between vision algorithms and
control theory.

5.3. Reliability

To increase the reliability of a vision system, the camera exposure time can be au-
tomatically adjusted by software. Batteries are the primary source of power for UAVs,
allowing them to perform all their functions; however, their capacity is limited for lengthy
missions. Furthermore, marker and ellipse detection techniques may be further enhanced
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by merging them with the Hough transform and machine learning approaches. For move-
ment analysis of possible impediments, the optical flow approach must be combined with
additional methods. Optical flow calculation can be used for real-time scene analysis, when
ground truth for evaluating the design is nonexistent. In recent years, more sophisticated
image-based techniques have been studied because most of the work does not consider
dynamic impediments.

5.4. Robustness

With the rapid advancement of computer vision and the growing popularity of mini-
UAVs, their combination has become a hot topic of research. This study focused on three
areas of vision-based UAV navigation. The key to autonomous navigation is localization
and mapping, which also provides position and environmental information to UAVs.
Obstacle avoidance and path planning are critical for safe and swift UAV arrival at a target
area. The topic of vision-based UAV navigation, which relies solely on visual sensors
to navigate in dynamic, complex, and large-scale settings, is yet to be solved and is a
burgeoning field of study. We also discovered that the limited power and perceptual
capabilities of a single UAV make it impossible for it to perform certain tasks. With
the advancement of autonomous navigation, many UAVs can simultaneously perform
similar tasks. Several RL-based approaches have been proposed for both indoor and
outdoor environments, based on known targets. This remains undecipherable for unknown
destination targets. Moreover, multiple targets were identified. In other words, finding
an optimal path-based algorithm for multiple unknown targets is an open issue. Energy
consumption is also an open issue in this sector. For optimal path selection, applying
the least-squares or K-means algorithm is worthwhile. The sensor nodes used in the
architecture may be dead or have hidden node problems.

6. Conclusions

Recently, UAVs have gained increasing attention in this research field. The navigator
aims at successfully flying the UAV without colliding with obstacles. Navigation techniques
for UAVs are imperative issues that have drawn significant attention from researchers. Over
the past few years, several UAV navigation techniques have been proposed. A navigator
typically consists of three modules: localization, mapping, and path planning. Localization
provides an exploration of the flight area. Several navigation approaches can be used for
navigation, including GPS, reference frames, and models. The next step is analyzing the
data and creating a map that contains details of the obstacle positions. In this map, each
cell is classified as occupied or unoccupied. In other words, it accurately determines the
position of the obstacles. Then, it feeds the path-planning module with the details for
determining the shortest path by applying a proper search algorithm, a process known
as mapping. Recently, the advantages and improvements of computer vision algorithms
have been demonstrated through real-world results in challenging conditions, such as pose
estimation, aerial obstacle avoidance, and navigation. In this paper, we presented a brief
overview of vision-based UAV navigation systems and a taxonomy of existing vision-based
navigation techniques. Various vision-based navigation techniques have been thoroughly
reviewed and analyzed based on their capabilities and potential utility. Moreover, we
provided a list of open issues and future research challenges at the end of the survey.

Multiple potential research directions can be provided for further research into vision-
based UAV navigation systems. Currently, UAVs possess several powerful characteristics
that could lead to their use as pioneering elements in a wide variety of applications in
the near future. Special features, such as lightweight chassis and versatile movement, are
combined with certain characteristics, such as versatile movement. Therefore, there is
a potential that could be tapped using onboard sensors; therefore, UAVs have received
considerable research attention. Today, the scientific community focuses on developing
more effective schemes for using visual servoing technologies and SLAM algorithms.
Furthermore, many resources are now devoted to visual–inertial state estimation to combine
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the advantages of both areas. Developing a reliable visual–inertial state estimation system
will be a standard procedure and fundamental element of every aerial agent. UAV position
and orientation are estimated using visual cues from cameras and inertial measurements
from an IMU. Furthermore, elaborate schemes for online mapping will be investigated
and refined for dynamic environments. The development of robotic arms and tools for
UAVs, which can be used for aerial manipulation and maintenance, is currently underway.
Multi-sensor fusion improves localization performance by combining information from
multiple sensors, such as cameras, LIDAR, and GPS. Future research will examine floating-
base manipulators for either single or cooperative task completion. Because of the varying
center of gravity and external disturbances caused by the interaction, operating an aerial
vehicle with a manipulator is not a straightforward process, and many challenges must
be overcome. This capability entails challenging vision-based tasks and is expected to
revolutionize the use of UAVs. Further research in this area is necessary to overcome these
challenges and reduce the limitations of the current approaches.
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