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Abstract— This paper presents the results of the first large-
scale field tests on vision-based pedestrian protection from a
moving vehicle. Our PROTECTOR system combines pedes-
trian detection, trajectory estimation, risk assessment and
driver warning.

The paper pursues a “system approach” related to the
detection component. An optimization scheme models the
system as a succession of individual modules and finds a
good overall parameter setting by combining individual ROCs
using a convex-hull technique. On the experimental side, we
present a methodology for the validation of the pedestrian
detection performance in an actual vehicle setting. We hope
this test methodology to contribute towards the establishment
of benchmark testing, enabling this application to mature.
We validate the PROTECTOR system using the proposed
methodology and present interesting quantitative results based
on tens of thousands of images from hours of driving. Although
results are promising, more research is needed before such
systems can be placed at the hands of ordinary vehicle drivers.

I. INTRODUCTION

Initiatives have been started to improve the safety of vul-
nerable road users, namely pedestrians and bicyclists. Eu-
ropean Commission-funded research projects PROTECTOR
(“Preventive Safety for Unprotected Road User”, 2000-
2003) and SAVE-U (“Sensors and System Architecture for
VulnerablE road Users protection”, 2002-2005 [9]) are two
examples. Both projects are aimed towards the development
of sensor-based solutions for the detection of vulnerable
road users, in order to facilitate the use of warning or
preventive measures to avoid or minimize the impact of
collisions. This paper describes the vision-based pedestrian
system developed within PROTECTOR and the progress
made since within SAVE-U.

Many interesting approaches for the visual recognition
of pedestrians can be found in the literature (e.g. [1],
[2], [6], [7], [11]). For a recent survey, see [4]. However,
meaningful quantitative data on overall system performance
is virtually non-existent. Most previous work illustrate their
approach by means of a few pictures. A few [6], [7], [11]
do show quantitative results, but only related to system
sub-components (i.e. classification) and not to overall ob-
stacle detection and object classification. Few if any, list
performance after temporal integration, i.e. on the trajectory
level. Finally, many important test criteria remain nebulous
(e.g. intended coverage area, localization tolerances, data
assignment rule, processing cost at the preferred ROC
point).

In this paper, we pursue a “system approach” to pedes-
trian detection. We first describe the modules of our current
system (Section II). A system optimization scheme finds
an overall good parameter setting by combining the ROCs
of the individual modules (Section III). We furthermore
introduce a test methodology for the evaluation of overall
detection performance in an actual vehicle setting (Section
IV); this methodology can facilitate benchmark testing.
Finally, we validate the PROTECTOR system using the pro-
posed methodology and present quantitative results based on
tens of thousands of images, derived from hours of driving
on the test track and in real urban traffic (Section V).

II. THE PROTECTOR SYSTEM

For an overview of the modules of our system, see Figure
1. Stereo pre-processing performs obstacle detection and
provides an initial area of interest. A depth map is computed
in real-time by hierarchical feature-based stereo [3]. The
depth map is multiplexed into � different discrete depth
ranges, which are subsequently scanned with windows
related to minimum and maximum extents of pedestrians,
taking into account the ground plane location at a particular
depth range and appropriate tolerances. The locations where
the number of depth features exceeds a percentage of the
window area are added to the ROI point list of the template
hierarchy of the Chamfer System.

The Chamfer System [5] performs shape-based pedestrian
detection: a hierarchy of pedestrian templates is matched
with distance-transformed images in a tree traversal process.
This method efficiently “locks onto” desired objects in
a coarse-to-fine manner. A maximum chamfer distance
is given as a threshold for each hierarchy level which
determines whether child nodes are to be traversed, or
whether a detection was made at the leaf level. We only
consider the leaf level threshold for system optimization.

Texture classification involves a neural network with
local receptive fields [10] to verify the Chamfer System
detections. An image patch extracted from the bounding box
of a detection is scaled to a standard width and height and
fed into the neural network. Detections for which the output
of the neural network is below a user-defined confidence are
discarded.

Stereo verification is a second verification approach to
filter out false detections onto the background. The shape
template masks out background pixels for a dense cross-
correlation between both stereo images within a certain
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disparity search range. A threshold is enforced on both
height and spread of the resulting correlation function.

Tracking consolidates detection results over time, dis-
carding spurious detections; a rudimentary � -

�
tracker is

used based on a 2.5 D bounding box object representation.
Finally, the Risk assessment and driver warning module
computes a risk level for each detected pedestrian based on
its position and time-to-collision and issues an acoustical
driver warning if it exceeds a certain limit.

Fig. 1. System modules with parameters to be optimized

III. SYSTEM OPTIMIZATION

System parameters are typically tuned by optimizing an
objective function using gradient descent. In our case, such
an approach is inappropriate for two reasons. Firstly, we
prefer to remain flexible regarding the ROC point used
in a particular application, so we choose as optimization
objective an entire ROC curve; this non-scalar entity lacks
a straightforward ordering criterion. Secondly, if � pa-
rameters are involved, gradient descent requires iterative
computation of ����� runs over the image database, which
exceeds our computing resources. Instead, a sequential
approach inspired by Dynamic Programming is employed
that successively optimizes each module of the system by
computing its optimal ROC curve and recording the “path”,
i.e. parameter vector, to get to each point of this curve. See
Figure 1 for an overview of the system modules along with
their parameters due for optimization.

One optimization step, which optimizes module number� ��� under the assumption that optimization is completed
up to module number � , is done as follows. Let�

ROC 	�
������
 FP 	 
� 	 � ��� TP 	 
� 	 � �����
����������� � , denote the already optimized ROC curve up
to module � consisting of � pairs of false positive (FP 	 )
and true positive rates (TP 	 ) obtained for � corresponding
optimized parameter vectors � 	 � covering parameters for
modules ������� � . A number of (yet non-optimal) ROC
curves

ROC 	�!#"� 
%$%���'& FP 	(!)" 
� 	 � �+* 	(!)", ��� TP 	(!)" 
-� 	 � ��* 	�!#", ��.
$)�/�������0 , for module � �1� is determined by selecting a
(fixed) parameter vector � 	 � and varying the parameters of
module � �2� , denoted by * 	(!)", . Instead of all � possible,
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Fig. 2. Convex hull of ROC points taken for different thresholds on
Chamfer distance and neural net output.
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Fig. 3. Combination of ROC curves. Classification denotes the curve
derived in the previous step (Figure 2), from which 4 ROC curves for
Stereo Verification are computed and combined to an optimized one.

only 3546� such curves are computed for processing time
reasons.

These 3 curves are combined to an optimal ROC curve by
means of a ROC Convex Hull technique [8]. When regarded
as a set of points 7 ROC 	(!)"� 
8$��9 �5�:���������;�<$��:�������%0�= in
ROC space, those that span their convex hull are selected;
let the indices selected be denoted by 
%�?>���$>@� , AB����������C .
The optimized ROC curve is then given by

�
ROC 	�!#" 
AD����
 FP 	�!#" 
-� 	(!)"> ��� TP 	(!)" 
-� 	(!)"> ���(�

AE�'��������C , where � 	�!#"> �F
� 	�+G ��* 	(!)", G � are the concate-
nated parameter vectors that lead to the optimized ROC
curve. See Figure 2 and Figure 3 for an example.

The number 3 is successively increased until no signifi-
cant performance gain is achieved any longer; in practice,
3 or 4 are sufficient. In order to compute a single ROC
curve, ROC 	(!)"� 
%$%� , $)�/�������0 , it is not normally necessary
to run 0 times over the image database. If intermediate
results are recorded during processing, then a ROC curve
can be determined from one run only. For example, the
texture classification module records the output of the neural
network for each sample processed, so that the threshold
parameter can be applied afterwards. This leads to a total of
13 runs over the image database only: 1 for the first module



and about 4 for each of the three remaining modules under
consideration.

IV. TEST METHODOLOGY

The proposed test methodology is illustrated in Figure
5. At the core, our aim is to compare entries from ground
truth and from system output, related to 3D object position
relative to the vehicle (we prefer to evaluate the system
in 3D rather than in image space, because it is in 3D
where we can more easily incorporate application-specific
considerations).

There are two possibilities for obtaining 3D ground truth
data. The first involves designing a test set-up where by
means of auxiliary measurement equipment vehicle- and ob-
ject position over time is determined in a world coordinate
system. Synchronization and transformation into the vehicle
coordinate system leads to the desired 3D ground truth data.
This procedure was followed for the PROTECTOR field
tests on the test track. The other possibility is for a human
operator to label objects in monocular images and using
some world knowledge to back-project into 3D. For the
case of pedestrians, the latter means making the “flat world”
assumption coupled with the reasonable conjecture that the
pedestrian feet stand on the ground plane. This option had
to be taken for the PROTECTOR field tests in real traffic.

When comparing ground truth and system entries, the
following items need to be specified.

Sensor Coverage Area. The sensor coverage area repre-
sents the space surrounding the vehicle where the defined
object detection capability is required. Outside the sensor
coverage area, we consider detection capability optional
in the sense that the system is not rewarded/penalized for
correct/false/missing detections. The PROTECTOR sensor
coverage area is shown in Figure 4.

Fig. 4. PROTECTOR system coverage area

Localization Tolerance. Given an object detected by the
system at a certain location (“alarm”), and given a true
object location (“event”), the localization tolerance is the

maximum positional deviation that still allows us to count
the alarm as a match. This localization tolerance is the sum
of an application-specific component (how precise does the
object localization have to be for the application) and a
component related to measurement error (how exact can
we determine true object location).

For the PROTECTOR field tests, we define object lo-
calization tolerance as percentage of distance, for lateral
and longitudinal direction ( � and � ), with respect to
the vehicle. Regarding the application-specific component,
values of ��� ����� and ��� ���	�
� appear reasonable; for
example, this means that, at 20m distance, we tolerate a
localization error of � � m and �� m in the position of the
pedestrian, lateral and longitudinal to the vehicle driving
direction, respectively. Regarding the measurement-specific
component, � 	 ����� and � 	 � �	�
� appear necessary
(with the larger � 	 value to account for non-flat road
surface and/or vehicle pitch in case of ground truth by
monocular image labeling). For the PROTECTOR field
tests, we then use overall tolerances of � � ����� and
�6�����
� .

Data Assignment. For the PROTECTOR application we
allow many-to-many correspondences. An event is consid-
ered matched if there is at least one alarm matching it. In
practice, this means that in the case a group of pedestrians
walking sufficiently close together in front of the vehicle,
the system does not necessarily have to detect all of them
in isolation, it suffices if each true pedestrian is within the
localization tolerance of a detected pedestrian.

Finally, having established rules for matching ground
truth and system entries, we need to specify what statistics
to collect to describe detection performance. We consider
performance at two levels, at individual frame level and at
the trajectory level. Among the latter, we distinguish two
trajectory types: “class-B” and the higher quality “class-A”
trajectories that have at least one entry or at least 50% of
their entries matched, respectively. We consider established
performance ratios such as sensitivity and precision. See
Table I for the terminology used in the remainder of this
paper.

Fig. 5. Test Methodology



TABLE I

TERMINOLOGY

event an object according to ground truth
alarm an object according to detector system
required event an event within the detection area
optional event an event outside the detection area
good event a required event with

at least one matching alarm
good alarm an alarm with at least one matching

event (either required or optional)
event trajectory a sequence of events

with the same object id
alarm trajectory a sequence of alarms

with the same object id
class-B event/ an event/alarm trajectory with at least
alarm trajectory one good event/alarm
class-A event/ an event/alarm trajectory with at least
alarm trajectory 50% of good events/alarms
object sensitivity number of good events divided

by the total number of events
object precision number of good alarms divided

by the total number of alarms
trajectory number of trajectories with at least
sensitivity x hits divided by the total number of

trajectories according to ground truth
trajectory number of trajectories with at least
precision x hits divided by the total number of

trajectories generated by the system

V. FIELD TESTS

The PROTECTOR field tests were performed in both
test track and in real traffic, according to the methodology
described in previous section. We distinguish two types
of results: those obtained from online vehicle processing
during the field tests Fall 2002, with the then available
system (i.e. implementing solely Section II, without texture
classification), and secondly, the results obtained offline
with our current system (i.e. fully implementing Sections
II and III). We denote these by “PROTECTOR” and “PRO-
TECTOR+”, respectively. In both cases, test and training
were strictly separated; the system had not previously seen
any test track or urban scenes of the field tests. Processing
involved a 2.4 GHz Intel Pentium PC.

A. Test Track

The test track experiments were performed at the Institut
für Kraftfahrwesen Aachen (IKA) in Germany. 29 different
traffic scenarios were enacted, involving a vehicle at 30
km/h approaching one or two pedestrians crossing laterally
at various walking speeds, with or without additional road
side objects (e.g. cars, panels). Figure 6 illustrates two
scenarios. In the top scenario, two pedestrians are crossing
the street in opposite direction. The closest pedestrian just
enters the sensor coverage area of the approaching vehicle,
when he starts crossing the road. In the lower scenario, a
pedestrian suddenly appears behind a parked car. Figure
7 shows a third scenario, in which the ability of the
PROTECTOR system to discriminate between pedestrians
and other road side objects is tested; several rectangular

Fig. 6. Two IKA test track scenarios (out of 29 total)

wooden panels are placed next to the road to potentially
confuse the system.

Fig. 7. IKA test track scenario dealing with object discrimination

Figure 7 also provides an impression of the auxiliary
measuring equipment used for ground truth determination.
Two laser scanners, shown left in the figure, were used
to determine distance to the pedestrians. Not visible is
the so-called “Correvit” sensor attached to the vehicle for
measuring vehicle speed. Auxiliary equipment is triggered
at the moment the vehicle passes through a light barrier in
the driving corridor.

The results of the 29 scenario runs are summarized in
Table 2. The first row shows average performance over
scenarios of low-to-moderate complexity (i.e. un-obstructed
views of pedestrians walking at a normal pace, without road
side objects). The second row shows average performance
over the more challenging cases (i.e. pedestrians partially
obstructed and/or running, additional road side objects).
Final row shows aggregated performance over all 29 sce-



narios. As apparent, overall performance is quite good: a
sensitivity of 1.0 and 0.95 for “class B” and “class A”
trajectories, and a precision of 0.97 and 0.96, respectively.
Considering the second row, it was observed that the system
experienced mainly problems in those scenarios where the
pedestrian was running from behind a vehicle, for which
we blame the shape detection module (i.e. incomplete shape
training set). The system also experienced a small number
of false detections on the measuring equipment placed on
the test track.

B. Real Traffic

The biggest challenge of the PROTECTOR field tests was
undoubtedly the pre-selected “Real-World” route through
suburbia and inner city of Aachen, Germany. Two runs
(Run1 and Run2) on the same route were performed in
close temporal succession, lasting 27 min and 24 min,
respectively. On the route, ten pedestrian “actors” awaited
the system, either standing or crossing at various walk-
ing speeds, according to a pre-defined choreography (for
both runs the same). In addition, there were the “normal”
pedestrians which happened to be on the road. The vehicle
driver was requested to maintain 30 km/h, traffic conditions
permitting.

Statistics for the both runs are shown in Table III. Rows
relate to the total number of images, and the number
of objects and trajectories (partially) within the sensor
coverage area. A more restrictive area in front of the vehicle
was derived from the sensor coverage area by restricting
the lateral positional offset from the vehicle medial axis to
lie within 1.5m. Objects and trajectories entering this area
were labeled ”risky”. Columns “Ground Truth” relate to
quantities labeled by a human operator, whereas the others
relate to quantities processed by the two system versions:
PROTECTOR and PROTECTOR+. The two runs were
performed at different system parameter settings for the
PROTECTOR version: (Run1 ”minimize false detections”
and Run2 ”maximize the correct detections”). The PRO-
TECTOR+ used Run1 for parameter optimization, therefore,
only results on Run2 are reported.

Detailed performance statistics are shown in Table IV
according to the terminology of Table I. Going from Run1
to Run2, we see the expected effect of changed parameter
settings for the PROTECTOR system: increased sensitivity
but decreased precision. The integration of the texture
classification module with the system optimization approach
demonstrates its benefit in the PROTECTOR+ column. Pre-
cision increased from 10%/28% to 32%/75% for all/risky
trajectories with sensitivity remaining approximately con-
stant. Clearly, Table IV indicates that a lot of improvement
needs to be made before a PROTECTOR-like system can
reach commercial viability. Note however the large increase
in performance when focusing on the more relevant ”risky”
objects/trajectories; application-specific constraints have the
potential to improve matters considerably. Average process-
ing rates over the entire runs were 12-13 Hz. In practice,

rates fell to 4-10 Hz when pedestrians were actually present
in the coverage area.

Finally, Figure 8 provides two screen shots of the PRO-
TECTOR system in action. The top and lower image illus-
trates a test track and urban scenario, respectively. The left
sub-images show the results of stereo-based preprocessing
(the bounding boxes of shape templates activated by stereo
are shown in grey, as discussed in Section II). Middle sub-
images contain detection results superimposed. The right
sub-images contain a top view of the scene in front of the
vehicle. Shown is the sensor coverage area, with distance
scale in meters. Detected pedestrians are denoted by red
dots, (relative) velocity vectors by white line segments. The
vertical “green-yellow-red” bar illustrates the associated risk
level. Although in both scenes pedestrian trajectories were
detected, only the top case resulted in a driver warning.

VI. CONCLUSIONS

We introduced a test methodology for the validation of
a pedestrian detection system in a real vehicle setting; it
brings benchmark testing on the pedestrian application a
good step closer. We applied this methodology to the newly
optimized PROTECTOR system and presented quantitative
results from unique large-scale field tests, involving hours of
driving on the test track and in real urban traffic. Although
results are promising and considerable progress has been
achieved over the past 1-2 years, more research is needed
before such systems can be placed at the hands of ordinary
vehicle drivers.
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[10] C. Wöhler and J. Anlauf. An adaptable time-delay neural-network

algorithm for image sequence analysis. IEEE Trans. on Neural
Networks, 10(6):1531–1536, 1999.

[11] L. Zhao and C. Thorpe. Stereo- and neural network-based pedestrian
detection. IEEE Trans. on ITS, 1(3), 2000.



TABLE II

TEST TRACK RESULTS (“PROTECTOR” SYSTEM): “A”/“B” DENOTES A-CLASS/B-CLASS TRAJECTORY PERFORMANCE

scenario object object trajectory trajectory
complexity sensitivity precision sensitivity precision

low-to-moderate (15) 0.81 0.96 0.90/1.00 1.00/1.00
moderate-to-high (14) 0.78 0.92 1.00/1.00 0.92/0.94

overall (29) 0.80 0.94 0.95/1.00 0.96/0.97

TABLE III

“REAL WORLD” STATISTICS: “GROUND TRUTH” RELATES TO QUANTITIES LABELED BY A HUMAN OPERATOR, OTHER COLUMNS RELATE TO

QUANTITIES PROCESSED BY THE TWO SYSTEMS.

Run1 Run2
Ground Truth PROTECTOR Ground Truth PROTECTOR PROTECTOR+

Images 1021 21239 855 17390 17390
Objects (all/risky) 485 / 71 637 / 68 370 / 47 1358 / 123 595 / 55
Trajectories (all/risky) 29 / 13 144 / 24 29 / 10 317 / 42 101 / 16

TABLE IV

“REAL WORLD” PERFORMANCE: “F” DENOTES FRAME-LEVEL PERFORMANCE, WHILE “A”/“B” DENOTE A-CLASS/B-CLASS TRAJECTORY

PERFORMANCE, RESPECTIVELY.

Run1 Run2
PROTECTOR PROTECTOR PROTECTOR+

F A B F A B F A B
Sensitivity (all) 31.5% 27.6% 44.8% 41.5% 55.2% 69.0% 52.7% 51.7% 75.9%
Precision (all) 28.4% 20.1% 20.1% 14.9% 9.8% 10.7% 43.0% 30.7% 31.7%
Sensitivity (risky) 43.7% 69.2% 69.2% 51.1% 80.0% 80.0% 62.0% 80.0% 90.0%
Precision (risky) 64.7% 62.5% 62.5% 33.3% 28.6% 28.5% 72.5% 75.0% 75.0%

Fig. 8. PROTECTOR system results: stereo preprocessing, detections and trajectories, risk assessment.


