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Abstract

Pilot aiding during low-altitude flight depends on

the ability to detect and locate obstacles near the

helicopter's intended flightpath. Computer-vision-

based methods provide one general approach for

obstacle detection and range estimation. Several

algorithms have been developed for this purpose,

but have not been tested with actual flight data.

This paper presents results obtained using helicopter

flight data with a feature-based range estimation al-

gorithm. A method for recursively estimating range

using a Kalman filter with a monocular sequence of

images and knowledge of the camera's motion is de-

scribed. The helicopter flight experiment and four

resulting datasets are discussed. Finally the perfor-

mance of the range estimation algorithm is explored

in detail based on comparison of the range estimates

with true range measurements collected during the

flight experiment.

1 Introduction

passive range estimation algorithm using the heli-

copter data is presented in this paper to demonstrate

the performance that can be expected in flight.

The range estimation algorithm presented here

is based on a monocular sequence of images and on

knowledge of the camera's motion. Optic flow mea-

surements are derived by a feature-based method

which tracks distinctive regions between images. An

extended Kalman filter uses the measurements of op-

tic flow and camera motion to recursively estimate

range. The recursive nature of the Kalman filter pro-

vides an efficient mechanism for combining redun-

dant measurements to successively refine the range

estimates.

The helicopter flight experiment provides a

realistic flight database including video images,

motion state information, and camera calibration

parameters. True range measurements were also

obtained for evaluating the accuracy of range esti-

mates. Straight-line and curved flight paths were

flown over man-made and natural terrain.

The purpose of this paper is to present range

estimation results using actual flight data, and to

evaluate algorithm performance by comparison of

NASA Ames in conjunction with the U.S. Army has

been investigating the use of passive range estima-

tion with an imaging sensor to detect and locate

obstacles which may represent a safety hazard to he-

licopters during low-altitude flight [1]. The obstacle

information may be displayed directly to the pilot or

used by an automatic obstacle-avoidance guidance

system to enhance safety for near-terrain flight.

Several approaches for implementing passive

range estimation have been investigated at NASA

Ames [2, 3, 4, 5]. In previous works, simulated and

laboratory data have been used to demonstrate the

performance of these algorithms. More recently, a

helicopter flight experiment has been conducted to

obtain samples of data that will be available from

onboard systems during flight. The results of one

range estimates with true range measurements. The

range estimation algorithm is described in Section 2.

focusing on the extended Kalman filter. Section 3

describes the helicopter flight experiment and the

contents of the resulting flight database. Range es-

timation results obtained from four flight scenarios

are the subject of Section 4. Conclusions and ideas

for future work complete the paper.

2 Estimation Algorithm

Consider a helicopter-mounted camera that observes

a point P on a stationary object in the environment

as shown in Figure 1. The image point (u, v} corre-

sponding to the point P is given by the perspective
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Figure 1: Geometry for Passive Range Estimation

projection equations as follows

=/x,/z., v =/y.lz. (1)

where x,, y,, z, are components of p,, the object's

position relative to the camera, and f is the focal

length of the camera lens. As the camera moves,

the image of P will also move. If P is assumed fixed

in the Earth frame, the rate of change of p, in the

camera's axes system can be determined using the

Coriolis equation as follows

p, = -v. - x p, (2)

where V, = {Vx,,Vv,,V=, } and w, = {w=s,w_,,w=,}

are the camera's translational and rotational veloci-

ties with respect to the Earth frame. Differentiating

the perspective projection equations with respect to

time and substituting for _, according to the above

equation yields the well-known optic flow equations

which relate camera motion, object motion in the

image, and the object's range. The optic flow equa-

tions are as follows

-_ (-rEx, -t- uVz,) /z,

= +

+f

Decomposing the optic flow into components due to

camera translation (at, Or) and rotation (/_, _)r) gives

u +a., (4)

where

a, = (-Iv,,, + uv.,)/z.

= (-fvz,, +

(5)

With the optic flow equations, range to an object zs

can be determined given measurements of the cam-

era's motion state (V_,ws), the object's location in

the image (u, v), and the optic flow (_, 7)). Note that

only the optic flow due to translation (/h, 7)t) is a

function of the object's range; therefore, range can

be estimated only when the camera is translating.

Furthermore, the optic flow due to translation will

be zero at an image location (fVx,_/Vzs, fV_,/Vz,)

known as the focus of expansion (FOE). Since the

FOE corresponds to the intersection of the velocity

vector with the image plane, range estimates cannot

be obtained for objects along the camera's instan-

taneous direction of motion. Additionally, the abil-

ity to estimate range deteriorates for objects whose

translational optic flow is small, such as objects that

are far away or that appear near the FOE.

Optic-flow information and ultimately a range

estimate is associated with features in an image,

where a feature is defined as a small region of in-

terest within the image. The optic flow measure-

ments are obtained from the difference between an

object's location in successive images. The number

of features for which range estimates can be obtained

depends directly on the ability to select robust fea-

tures that can be unambiguously tracked between

images. The quality of the range estimate for each

feature depends on the ability to accurately track

the feature between images. In this implementation

features are squares of 11 x 11 pixels which exhibit

intensity variation greater than some user-specified

minimum threshhold value. A correlation method is

used to determine the feature's location in each new

image.

Using the optic-flow equations (3), we formu-

late the computation of range as a state estimation

problem using a K_an filter. The Kalman filter is

well-suited to this application because it combines

redundant measurements to recursively improve its

estimate over time. In addition, the state covari-

ance matrix provided by the Kalman filter gives an

indication of the estimate accuracy. The Kalman ill-

ter also yields a prediction of the state vector, the

state covariance matrix, and an expected location

of the feature for the next sample time. This latter

information is used to constrain the search area for

locating the feature in the next image. As the range

information improves, the search window becomes

smaller and less computation is required to locate
the feature.

Several Kalman filter implementations were

studied by Sridhar and Phatak [2], who obtained

2



thebestresultsbyselectingthestatevectorX = p,

and the measurement vector Z = {u, v}. With these

definitions, the Coriolis equation (2) becomes the

state equation and the perspective projection equa-

tions (1) become the measurement equations. The

state and measurement equations can be written as

foUows

where

2 = -[_,]x- v,

z = h(X) = [fx,/zs, fys/z,] T

The Kalman filter consists of two parts: the

measurement update which improves the state esti-

mate given a new measurement, and the time update

which propagates the state forward in time accord-

ing the the system dynamics. Before each iteration

of the Kalman filter, we know Q(k) and R(k) and we

have estimates of X(k) and P(k). The measurement

update is then performed according to the following

equations

(6) f((k) = X(k) + K(k)[Z(k) - H(k)ff(k)]

P(k) = [I- K(k)H(k)]P(k) (12)

where H(k) is computed from ._(k) as described

above and the Kalman filter gain K(k) is computed

using the equation

g(k) = P(k)HT(k)[g(k)P(k)gT(k) + R(k)] -1.

(13)

The time update equations are

Y,'(k + 1) = ¢(k)R(k) + r(k)U(k)

/5(k + 1) = _(k)P(k)_(k) T

q-rd(k)O(k)Fd(k) T (14)

As noted above, the Kalman filter requires ini-

tial estimates for X and P. The initial estimate

for X can be derived from the optic flow equations

(8) and the perspective projection equations given a lea-

(9) ture's location in two images and the camera's trans-
lational and rotational velocities which are assumed

constant during the interval between images. First,

the optic flow equations (3) are solved for zs. The

optic-fiow equations actually comprise an overdeter-

mined system of two equations in the one unknown

z,, so a single quadratic equation in z8 is formed by

summing the squares of the two optic-flow equations.

Once z, is found, x8 and Y6 can be determined from

the perspective projection equations (1). The initial

estimate of the state covariance matrix is chosen a

_o_.

A feature belonging to a far-away object or a

feature near the FOE may have an inter-image mo-

tion smaller than can be resolved by the measure-

ment process. The effective signal-to-noise ratio of

shift measurements can be increased by skipping im-

p, fb, (kzl) age frames to lengthen the time interval between im-

0 --Wzs OJy s ]
0 (7)

--_ys Wzs 0

The state equation is a time-varying linear system

that depends on the camera's translational and ro-

tational velocities. The measurement equation is a

nonlinear function of the state.

The continuous-time state and measurement

equations cart be converted to their discrete-time

equivalents assuming that Vs and w, are constant

during the sampling interval AT. The discrete time

system equations are

- X(k + 1) =

Z(k) =

¢b(k)X(k)+ r(k)U(k)

+ra(k)G(k)

h[X(k)] +

where if(k) is the state transition matrix, P(k) is

the input distribution matrix, U(k) = -V,(k) is the

control matrix, rd(k) is the disturbance distribu-

tion matrix, and _z(k) and ¢,(k) model the process

noise and measurement noise, respectively. Zero-

mean Gaussian white noise is assumed such that

R(k) =- cov(_) and Q(k) =- cov(_z). The state tran-

sition matrix and the control distribution matrices

have been derived by Sridhar and Phatak [2]. The

measurement equation is linearized about the cur-

rent estimate of X giving

Z(k) = g(k)X(k) + <z(k) (10)

H(k) = Oh(X)/OX

[ o - .lz2, ] (n)
ages. Feature matching will then take place between

where H(k) is computed based upon the best state images that are n frames apart, where n is the frame

estimate available just before the measurement up-

date. The discrete-time state equation (8) and the

linearized measurement equation (10) are used to re-

cursively estimate the state vector X and the state

covariance matrix P.

skipping factor. The Kalman-filter time updating

is still performed at the original rate because the

camera's motion information does not change. The

measurement update is performed less frequently be-

cause each feature's location is measured only every

3
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Figure 2: Flight Experiment Overview

n frames. When the time index k is a multiple of

n, a full measurement update is performed accord-

ing to equations (12,13) above; otherwise, a trivial

measurement update is performed according to the

following equations

X'(k) =

is(k) = P(k)

Note that for a frame skipping factor of one every

image is processed and the modified measurement

update equations degenerate to the original form

given in equations (12,13). The effect of varying

measurement update rate will be discussed in Sec-

tion 4 where a reference image sequence will be sub-

sampled using several values for the frame skipping
factor.

3 Experimental Flight Data

In order to test the range estimation algorithm with

actual data, a heJicopter flight experiment was con-

ducted at NASA Ames [6, 7]. The measurements

included video imagery, the helicopter motion state,

true range information, and the camera's character-

istic parameters. The flight experimentisillustrated

in Figure 2.

A monochrome video camera was mounted in

the nose of a CH-47 Chinook helicopter for image

collection. The video signal was recorded onboard

the helicopter with a U-matic video recorder and

later digitized for computer processing. State mea-

surements were acquired from an inertial navigation

unit (INU) and discretesensorssuch as arr.elerom-

etersand rate gyros onboard the helicopter.The

truerange informationwas obtained using a ground-

based lasertrackerto measure the positionof the

helicopter-mountedcamera and the (stationary)tar-

gets. Correlationbetween the airborne data (video

imagery and state data) and the ground laser posi-

tion data was accomplished using synchronized time

sources. On the helicopter a time message was su-

perimposed in a corner of the image and on the

ground the measurements were stamped with the

current time.

Knowledge of the camera's installation geome-

try and its imaging properties is also necessary to

perform range estimation. It was assumed in the al-

gorithm development that the camera's motion was

available in the camera's axis system, and that an

image location could be directly measured in terms

of u and v as given in the perspective projection

equations. In each case, the desired information

must be derived from raw measurements and knowl-

edge of the camera calibration parameters. The

camera parameters consist of external parameters

which describe the camera's geometric installation

including its position and orientation with respect

to the helicopter's axis system, and internal param-

eters which describe the imaging properties of the

camera such as the lens focal length, the spacing of

image pixels, and the pixel location where the z, axis

intersects the image plane. The camera parameters

were determined experimentally as described in an

earlier paper [6].

During post-flight processing, the raw state

measurements were filtered and checked for consis-

tency. The measurements were sampled at 100 Hz

and have a signal bandwidth of 10 l=Iz. Measure-

ments of velocity, although available on most oper-

ational helicopters, could not be obtained with the

available equipment on the CH-47 and had to be de-

rived from the remaining state measurements (posi-

tion, acceleration, orientation, and rotational veloc-

ity) using a state-estimationtechnique. Instrument

biasand scale-factorerrorswere alsoidentifiedand

removed using stateestimation.The resultingstate

informationwas converted to the camera's axissys-

tem and subsampled to video rate (30 Hz). The

variableswhich describe the relationbetween the

helicopterbody axes and the camera axes are the

externalcamera calibrationparameters. The laser

measurements ofpositionwere alsocorrectedforthe

offsetbetween the laser-trackpoint and the camera's

location. The differencebetween the target loca-

tionsand the camera locationgives the true range

measurements (or more accurately,the true relative

displacement vectors) which can be expressed in

Earth, body, or camera axes.

The analog video signalrecorded onboard the

helicopterwas digitizedto produce 512 x 512 pixel



images with 256 gray levels. Given the digitized im-

ages, an image plane location can be measured in

terms of its row and column indices in the pixel ar-

ray. An image plane location in (u, v) coordinates

must be derived using the following equations

u = (n. - n.°)6u,

= (n_ - n_.)6v. (15)

where (nu, n_) is the grid location of the pixel,

(n_,o,nv,) is the grid location where the ze axis

passes through the image plane, and (6ue, 8re) is the

effective pixel size. The variables n_., n_,, 6u_, 8re,

and the lens focal length f are the internal camera

calibration parameters.

The digitized images, camera state information,

true range measurements, and camera calibration

parameters resulting from a particular flight sce-

nario have been collected into data sets consisting

of a sequence of images with headers and a separate

file containing the true target position data. The

data sets for four flight scenarios have been collected

into a database which may be requested from NASA

Ames [7]. The four flight scenarios are described be-

low:

3. Posts Data Set: This scenario shows the heli-

copter flying a straight line path 35 ft above

a field containing a road, fence posts, and a

building with a tower. The helicopter's speed

is 40 ft/sec. The image sequence contains

90 frames (3 seconds of flight) and the cam-

era's travel is 120 ft. The true range has been

measured for 13 objects varying between 80 and

350 ft from the camera's initial position.

4. Towers Data Set: The helicopter flies toward

several large power transmission towers against

a background of hills while following a straight

line flight path. The helicopter's speed is

90 ft/sec and the image sequence consists of

90 frames. True range data are not available

for this image sequence.

The next section will present range results ob-

tained with these four data sets using the algorithm

discussed earlier.

.

*

Line Data Set: The helicopter is flying a

straight line path between two rows of trucks

parked on a runway in this scenario. The he-

licopter has an altitude of about 15 ft above

the runway and is flying at a ground speed of

35 ft/sec. At this speed, the helicopter moves

roughly 1 ft between successive images. The

image sequence consists of 240 frames (or 8 sec-

onds of flight) during which time the helicopter

travels approximately 290 ft. The location of

two points on each truck has been measured to

provide true range information. Range to the

trucks varies between 200 and 800 ft relative to

the camera's initial position.

Arc Data Set: In this scenario the helicopter

follows an S-shape ground track between the

same arrangement of trucks described above.

The helicopter alternates between flying toward

the trucks on its left and those on its right. The

helicopter maintains an altitude of 15 ft and a

4 Range Estimation Results

4.1 Evaluation Method

It is difficult to define a single measure for evaluat-

ing range estimation algorithms. Potentially, range

accuracy can be evaluated on a pixel-by-pixel basis

provided that sufficient truth data are available. In

practice range estimates and truth data are sparse

so that overall algorithm performance depends not

only on range accuracy but also on the distribution

of image features where range estimates are avail-

able. Because the distribution of image features re-

sulting from different algorithms will vary, a more

meaningful comparison is based on groups of fea-

tures belonging to a singleobject.The resultingob-

ject range and sizeinformationispreciselythe input

requiredtoplan an obstacle-freeflightpath. For this

reason,the resultspresented here focus on compar-

ison of (a) the.range estimates of variousobjects,

and (b) the range estimates of the individuallea-

speed of 40 ft/sec. The peak yaw rate is approx- tures belonging to a single object. It is important to

imately 0.13 rad/sec. During 8 seconds of flight note that the algorithm described earlier automati-

(corresponding to a 240-frame image sequence) cally selects features and generates range estimates.

the helicopter moves 350 ft toward the trucks. Only when this process is complete are the resulting

The visible trucks are 200 to 650 ft away from range estimates manually grouped for the purpose

the camera, of performance evaluation.
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Figure 3: First and Last Images of the Line Sequence

The four data sets described in the previ-

ous section have been chosen to demonstrate ma-

neuvers and/or obstacles encountered during low-

altitude helicopter flight. The Line sequence demon-

strates the algorithm's performance during nomi-

naUy straight and level flight conditions. The addi-

tive effect of curvilinear motion is provided in the

Arc sequence. The Posts and Towers sequences

contain obstacles likely to be encountered in low-

altitude flight. The results obtained with the Line

sequence are described at length in the next section.

The remaining sequences have been studied in simi-

lar detail, but for brevity only the unique aspects of

each will be discussed.

4.2 Line Data Set

The first and last images of the 240-frame Line se-

quence taken during straight line flight are shown in

Figure 3. The labeled points in the first image indi-

cate locations where the true range has been mea-

sured. The camera's path and the measured truck

locations are shown in Figure 4. The camera's mea-

sured velocity is shown in Figure 5. The helicopter's

attitude changes continuously even during straight

and level flight which manifests itself as consider-

able motion of the FOE. Using the measurements of

V_ and we, the FOE location has a range of travel of

about 40 pixels both horizontally and vertically as

shown in Figure 6.

A

450 f E C _'__m m
""550 B 2 eO

D ==u
650 - I _'= I I I I I I 1

-100 0 100 200 300 400 500 600 700 800

X, feet

Figure 4: Camera Path and Truck Locations for Line

Sequence

Range estimation was performed on this se-

quence with the parameters

[ _0_ 00 ]
P(O) ---- 0 302 0 ft2

0 0 1002

R(k) = [0.50 0.50 ] pixel2-

[0 00]
Q(k) = 0 0 0

000

Figure 7 shows the image locations where range es-

timates were obtained in the 65th frame of the se-

quence. The FOE's location for this image is de-

picted by crosshairs in the figure. A total of ap-

proximately 250 range estimates were obtained in

the image shown. The range estimates belonging to
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Figure 6: FOE Motion for Line Sequence
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Figure 7: Range Estimates for Line Sequence

(frame 65)

each truck are indicated by the boxes in Figure 7.

The range estimates for truck A are plotted in Fig-

ure 8 along with the true range to the front and

rear of the truck. Some of the range estimates start

to die out near frame 70 as the truck begins mov-

ing out of the camera's field of view. The initial

range estimates for new features may contain large

errors because the optic flow is small and because

the initial range estimate is based on only two me,-

surements. Truck A, for example, which is favorably

located near the camera and far from the FOE, ha.,

an inter-image shift of about 0.7 pixel relative to the

FOE at the beginning of the sequence. In contra._t.

Truck E is both far from the camera and close to the

FOE, leading to an initial inter-image shift of only

0.1 pixel. During the same time, the FOE moves by

approximately 1.5 pixels. The difficulty in measur-

ing these small feature motions makes the process

of range estimation for the flight data significantly

more challenging and demonstrates the importance

of subpixel measurement accuracy for this applica-

tion. Figure 8 shows that even for poor initial range

values, the Kalman filter will converge to a reason-

able range estimate. The state covariance matrix

provides an indication of the confidence associated

with each estimate. The square root of the z_ com-

ponent of the state covariance matrix is shown in

Figure 8 for the features belonging to truck A.
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Figure 8: Range Estimates for Truck A in Line Sequence

The mean and standard deviation of the se-

lected range estimates belonging to a truck can be

compared with the true range measurements for that

truck in order to evaluate the performance of the

range estimation algorithm. An improved estimate

of the object's range can be obtained by eliminating

low-confidence range samples. Several criteria were

used to identify undesirable range estimates includ-

ing the following:

1. Percentage Method - Disregard the highest and

lowest 20% of the range estimates.

2. Statistical Method - Compute the raw mean

and standard deviation of the range samples.

Disregard those range estimates lying more

than 2 standard deviations from the mean.

3. Covarlance Matrix Method - Use the state co-

variance matrix to disregard samples for which

> a_. Values of 10% and

20% were used for a.

The mean and standard deviations of the remain-

Lug samples give a composite range estimate fo[ the

truck. The resulting composite range estimates for

truck A are shown in Figure 9. Each of the trim-

ruing methods leads to a composite range estimate

which lies between the front and back of the truck.

The range estimates begin to diverge from the true

range at frame 70 because the truck begins mov-

ing out of the camera's field of view. The features

tracking the front of the truck die off first leaving

a greater proportion of range estimates to the back

of the truck, so the mean of the remaining estimates

slowly increases. The standard deviation of the com-

posite range estimate decays over time in a roughly

exponential manner.

Similar range estimation results have been ob-

tained for the remaining trucks as shown in Fig-

ure 10. The range estimates (trimmed using the

Percentage Method) and true range measurements

are tabulated in Table 1 for every 2 seconds of flight.

The true range column gives the range to the mid-

point of each truck while the true standard devia-

tion represents half of the truck's length. As each

truck is 20 feet in length, range errors less than

about 10 feet are unimportant because they indi-

cate range estimates which lie between the front and

back of a truck. Table 1 shows that the range error

and the standard deviation of the range estimate are

greater for more-distant trucks. Both range errors

and standard deviations decrease over time indicat-

ing improved accuracy and a greater uniformity of

the individual estimates. The range estimates con-

verge to within 10% of the true range for each truck.

The standard deviation is less than half the truck

length for the nearest three trucks.

The time required for the range estimation pro-

cess to converge is also important in many applica-

tions. Table 2 shows the number of frames required

for the range estimates to converge to within 10%



Figure9: CompositeRangeEstimatefor TruckA in LineSequence

Table1: ErrorsinRangeEstimatesofTrucksinLineSequence

% ErrorRange

A 59 217.9 9.2

B 59 341.2 10.2

B 119 269.2 10.2

B 179 193.6 10.3

C 59 468.4 11.2

C 119 398.6 11.3

C 179 321.1 11.3

C 239 239.5 11.3

D 59 591.8 i0.2

D 119 519.7 10.3

D 179 444.0 10.3

D 239 364.0 10.4

E 59 716.7 10.3

E 119 646.8 10.3

E 179 569.1 10.4

E 239 487.2 10A

216.1

346.7

261.2

205.3

412.0

386.7

312.2

232.5

498.0

457.2

476.6

398.8

577.5

620.9

525.4

482.9

7.8 1.8
-i4.1 5.5

24.5 8.0

8.8 11.7

50.4 56.4

20.6 11.9

14.1 8.9

6.8 i 7.0

94.3 93.8

74.4 62.5

54.7 32.6

32.5 34.8

85.7 139.2

79.3 25.9

81.6 43.7

52.7 4.3

0.83

1.61

2.97

6.04

12.04

2.99

2.77

2.92

15.85

12.03

7.34

9.56

19.42

4.00

7.68

0.88
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Figure 10: Composite Range Estimates for Trucks B-E in Line Sequence

Table 2: Convergence Time forVarious Trimming Methods

Truck Raw

frame range

Trimming Method

A 9 269.9

B 65 334.5

C 35 493.7

D 94 551.1

E 69 705.9

Percentage

frame range

7 271.9

24 379.3

47 481.1

125 512.1

69 705.9

Statistical

frame range

7 271.9

24 379.3

35 493.7

123 514.6

69 705.9

Cov .((10%)

frame range

26 252.7

45 356.4

71 455.3

168 458.0

118 648.1

Cov (20%)

frame range

19 259.9

32 370.6

54 473.7

141 491.8

60 715.6
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of the true mean range as a function of the vari-

ous trimming methods. The Percentage Method and

Statistical Method yield the best results in terms of

minimizing convergence time. The time until con-

vergence generally increases with range and proxim-

ity to the FOE. Truck D deviates from this trend,

possibly due t0 tracking difficultiescaused by dis-

tractingbackground objects(seeFigure 7).Table 2

alsogiveseach truck'strue range at the time when

convergence isachieved. The minimum distanceat

convergence is about 250 ft. Since the helicopter

moves at about 35 ft/sec,this would give a pilot

a minimum of about 7 seconds of warning to avoid

each ofthe trucks.In most cases,fora givendistance

of camera travelthe algorithms have demonstrated

the abilityto estimate the range to objectsup to

10 times fartheraway to within 10% error.

Inter-image feature shiftsmay be much less

than a pixel as noted earlier.This isa difficulty

since the abilityto measure subpixelimage motion

islimited.The effectivesignal-to-noiseratioofshift

measurements can be increasedby skipping images

ofthe originalsequence. Range estimationwas per-

formed with skipping factorsof 1,2,3,4,5,and 10.

The resultingrange estimates were trimmed using

the Percentage Method and the time to 10% con-

vergence was determined. The convergence times

given in Table 3 are expressed as the equivalent

frame number of the originalsequence so that the

resultsofdifferentskipping factorscan be compared

on an equal footing.The columns of Table 3 show

that for a given frame skipping factor,convergence

time increaseswith range. The rows ofTable 3 show

that for each truck there is some optimal frame skip-

ping factor,say n'_ which yieldsa minimum conver-

gence time (indicatedby boxed entriesinthe table).

SinceTruck A exhibitslittlevariationinconvergence

time, n* ischosen to be one. Truck E has two lo-

cal minima, both indicatedby boxed entries.For

frame skipping factorslessthan n° the convergence

time increasesdue to the limitedaccuracy offeature

shiftmeasurements, while forframe skippingfactors

greaterthan n ° the convergence time increasesdue

to the decreased measurement rate.Finally,TaMe 3

shows the trend that the optimal frame skippingfac-

tor forminimum convergence time increaseswith an

object'srange.

4.3 Arc Data Set

The first and last images of the 240-frame Arc se-

quence taken during maneuvering Right are shown in

Table 3: Convergence Time for Various Frame Skip-

ping Factors

t Truck I n=l

24

47

125

Frame Skipping Factor

2 3 4 5 10

8 6 8 I0 20

[_] 6 8 20 30

[_ 52 85 6046

132 87 V_ 135 100

154 126 _ 100 170

Figure 11. The labeled points in the first image in-

dicate locations where the true range has been mea-

sured. The camera's path and the measured truck

locations are shown in Figure 12. The camera's mea-

sured linear and angular velocities are shown in Fig-

ure 13. The FOE travels about 150 pixels horizon-

tally and 40 pixels vertically as shown in Figure 14.

The resulting range estimates (trimmed with

the Percentage Method) are shown in Table 4. Truck

D moves out of the field of view at frame 105 and

re-enters the image at frame 190. The range esti-

mate for Truck D (using the Percentage Method) is

plotted in Figure 15. The range estimate for each

truck is seen to converge to within about 10% of

the true range. The number of frames required for

convergence is given in Table 5 along with the true

range when convergence is achieved. The minimum

range at convergence is for Truck B at 229.5 ft which

gives the pilot about 5.7 seconds of warning to react

and plan a new path. Table 5 also gives the dis-

tance traveled by the helicopter before convergence

is reached and the percentage of the initial obsta-

cle range represented by the travel distance. The

distance traveled for Truck B is 13.7% of its initial

range, roughly the same fraction as observed for the

Line sequence. This is not unexpected because over

the first 27 frames of the sequence when the range

estimate is converging, the helicopter's path is well

approximated by a straight line (see Figure 12). The

percentage distance traveled for Trucks C and D is

probably a better indicator of the performance that

can be expected during maneuvering Right. The

convergence time for Truck E is significantly greater

than for the other trucks although the range at con-

vergence is comparable. The slower convergence for

Truck E is attributed to its proximity to the FOE as

the FOE sweeps across the image. Figure 16 shows

the distance between the FOE and each of the two

11



Figure11:First andLastImagesof theArcSequence
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Figure 12: Camera Path and Truck Locations for

Arc Sequence

known locations on Truck E as a function of the

frame number.

The convergence time of the range estimates

during maneuvering flight is greater than for straight

line flight. The Kalman-filter-based range estima-

tion procedure is expected to perform equally well

under both flight scenarios and does not provide an

adequate explanation for the performance degrada-

tion. More probably, the performance difference is

due to errors in the motion data used by the Kalman

filter. The helicopter's heading angle has the low-

est resolution (0.7 degree) of the angular measure-

ments collected during flight test. Normally, the

helicopter's heading angle would not enter into the

motion data used for range estimation if the linear

velocity and angular velocity were directly measured

in the helicopter's body axis system or in the cam-

era's axis system. Recall, however, that linear veloc-

ity could not be directly measured during flight and

instead had to be reconstructed using state estima-

tion. The resulting velocity profile depends most

heavily on the available position and acceleration

measurements. The helicopter's heading angle plays

an important role in transforming the position infor-

mation measured in Earth axes into the helicopter's

body axis system. An error of 0.7 degree in the

helicopter's heading angle leads to an 8-pixel error

in computing the FOE location. In practice, since

the estimated velocity profile is a compromise be-

tween position and acceleration information, FOE

location errors less than 8 pixels are expected. For

straight and level flight the heading angle is slowly

changing and the heading angle measurement error

can be identified as a pure bias based on consis-

tency between the position and acceleration mea-

surements. The resulting FOE location errors are

therefore minimal for straight line flight. During

maneuvering flight, however, the heading-angle mea-

surement error is only partially accounted for by bias

correction. The remaining heading-angle measure-

ment error translates directly into uncertainty in

the FOE location which introduces errors into the

range estimation process. In future flight experi-

ments, this difficulty will be corrected by obtaining

direct linear-velocity measurements or by obtaining

heading-angle measurements of higher accuracy.

12
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Figure 13: Camera Velocity for Arc Sequence

Table 4: Errors in Range Estimates of Trucks in Arc Sequence

% ErrorRange

B 59 182.2 10.3 173.2

C 59 313.8 11.3 373.8

C 119 242.6 11.0 261.5

C 179 158.1 11.1 142.0

D 59 432.4 10.3 280.1

D 105 348.4 10.1 354.1

D 239 182.9 10.3 186.8

E 59 561.7 10.4 207.8

E 119 484.6 10.2 333.2

E 179 402.4 10.2 316.1

E 239 306.6 10.3 275.6

11.4 [

25.3

20.2

5.0

68.3

53.5

16.3

0.0

45.3

42.6

32.6

9.0

60.0

18.9

16.1

152.3

5.7

3.9

353.9

151.4

86.3

31.0

I 4.94

19.12

7.79

10.18

35.22

1.64

2.13

63.01

31.24

21.45

10.11

Table 5: Converge Time for Arc Sequence

Truck J ConvergenCeFrame

B 27

C 8O

D 92

E 239

True Range at [ Initial Distance

Convergence ] Range Traveled

229.5 265.8 36.3

290.7 375.5 84.8

376.0 514.2 138.2

306.6 621.7 315.1

% of Initial

Range Traveled

13.7

22.6

26.9

50.7
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Table6: ErrorsinRangeEstimatesof Objects in Posts Sequence

[Tr I I _rue I Truel Est. ] Est. ] Error 1%Error
uck Frame 1_ _age Std Mean Std Range Range

A 35 129.80 0.00 137.20 0.90 7.40 5.70

B 55 130.60 0.00 134.80 0.30 4.20 3.22

C 89 137.10 0.00 142.80 4.00 5.70 4.16

D 89 194.10 0.00 192.30 0.00 1.80 0.93

E 89 301.30 9.40 302.70 7.30 1.40 0.46

F 89 304.30 0.50 313.50 5.00 9.20 3.02

G 89 401.50 4.40 354.20 19.60 47.30 11.78

H 89 192.10 0.00 268.80 0.00 76.70 39.93

I 89 129.50 0.00 130.50 5.30 1.00 0.77

J 89 87.40 0.00 92.80 1.50 5.40 6.18

K 70 99.40 0.00 103.50 2.70 4.10 4.12

L 70 97.50 0.00 95.30 2.40 2.20 2.26

M 55 93.30 0.00 91.50 2.00 1.80 1.93

170 [ = _ Estimated Range

180 =t _--True Range
I .,., 350

'if /
210[ 1
22o I, I I I I I I I I ol I I 1 I, I I I I

120 140 160 180 200 220 240 260 280 300 0 30 60 90 120 150 180 210 240

u, pixels Frame Number

Figure 14: FOE Motion for Arc Sequence
Figure 15: Composite Range Estimate for Truck D

in Arc Sequence
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4.4 Posts and Towers Data Sets

The first and last images of the 90-frame Posts se-

quence taken during 3 seconds of straight-line flight

over a field with a road, a building, and several white

posts are shown in Figure 17. The labeled points

in the first image indicate locations where the true

range has been measured. The sensor velocity is

approximately 40 ft/sec during the sequence. The

range estimates and true range measurements are

shown in Table 6 for each of the objects labeled in

Figure 17. The range estimate for an object corre-

sponds to the last image frame in which the object

appears. The range estimates are within 10% of the

true value for all of the objects except G and H.

Due to its proximity to the FOE, the range estimate

for object G requires greater time to converge. Post

H was first detected in frame 84 and requires more

than the remaining 5 frames to converge.

Figure 18 shows the first and last images of the

Figure 16: Proximity of Truck E to the FOE for Ar c i - 90-frame Towers sequence taken during 3 seconds

Sequence of straight-line flight over power transmission tow-

ers. The sensor velocity is approximately 90 ft/sec

during the sequence. True range measurements are

not available for this sequence, so the range esti-

mates can only be compared for consistency among

the three towers indicated in Figure 18. The range

estimates are 456.0, 442.0, and 441.1 feet for towers

A, B, and C, respectively. The standard deviation

of the estimates are 17.7, 15.4, and 15.6 feet.
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Figure 17: First and Last Images of the Posts Sequence

Figure 18: First and Last Images of the Towers Sequence
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5 Conclusions by improving range estimates to slowly-moving fea-

tures. In another approach, a combined stereo and

motion range estimation algorithm has been devel-

In this paper actual flight data have been used oped at Ames Research Center and tested with lab-

to demonstrate the feasibility of passive range es- oratory data [8]. A helicopter flight test program

timation from a helicopter equipped with a single is under way to provide stereo images and motion

camera and an inertial navigation system. Range measurements for use with this class of algorithms.

estimation results were compared with true range

measurements which were independently acquired.

A feature-based method extracts optic-flow mea- References
surements from the image sequence. Then an ex-

tended Kalman filter uses the measurements of op-

tic flow and camera motion to recursively estimate

range. Range estimation results have been shown

for straight-line and maneuvering flight paths over

man-made and natural terrain.

The range estimation method yields results

which compare closely with true range measure-

ments. For straight-line motion, range estimates

converging to within 10% of the true range by the

time the helicopter has traversed 1/10th the distance

to the object. For straight-line flight at 35 ft/sec, ob-

stacle ranges were estimated within 10% error at a

minimum distance of 250 ft, giving the pilot approx-

imately 7 seconds of warning to avoid the obstacles.

During maneuvering flight the range estimates con-

verged more slowly due to the relatively low reso-

lution of angular motion information. For turning

maneuvers at 40 ft/sec, obstacle ranges were esti-

mated within 10% error at a minimum distance of

230 ft, giving the pilot approximately 5.7 seconds of

warning to avoid the obstacles. [4]

The inter-image motion of distant objects en-

countered in the flight data was often significantly

less than one p_el. For these objects, improved

range accuracy and decreased convergence time are

obtained by skipping images to effectively decrease

the image sampling rate. In general, a particular

value of the frame skipping factor leads to a mini-

mum convergence time and this optimal frame skip-

ping factor is seen to increase with the obstacle's

range. An event-driven Kalman filter is currently

[1] V. H. L. Cheng, and Sridhar, B., "Considera-

tions for Automated Nap-of-the-Earth Rotor-

craft Flight," Journal of the American Heli-

copter Society, Vol. 36, No. 2, pp. 61-69, April

1991; also, Proceedings of the 1988 American

Control Conference, Atlanta, GA, June 15-17,

1988.

[2] Sridhar, B., and Phatak, A., "Simulation and

Anaysis of Image-Based Navigation system for

Rotorcraft Low-Altitude Flight," American He-

licopter Society Specialists' Meeting on Au-

tomation Applications of Rotorcraft, Atlanta,

GA, April 1988. To appear in IEEE Transac-

tions on Systems, Man and Cybernetics.

[3] Sridhar, B., Suorsa, R., and Hussien, B., '_Pas-

sive Range Estimation for Rotorcraft Low-

altitude Flight," NASA TM 103897, October

1990.

Menon, P. K. A., and Sridhar, B., '_Passive

Navigation Using Image Irradiance Tracking,"

AIAA Guidance, Navigation, and Control Con-

]erence, Boston, MA, August 1989.

[5] Barniv, Y., "Velocity Filtering Applied to Opti-

cal Flow Calculations," NASA TM 102802, Au-

gust 1990.

[6] Smith, P. N., '_Flight Data Acquisition for Val-

idation of Passive Ranging Algorithms for Ob-

stacle Avoidance," NASA TM 102809, October

being explored as one method for simultaneously.... 1990.

treating quickly and slowly moving features. Here

the Kalman filter time update occurs with every im-

age as before, but the measurement update takes

place only when the feature has moved some min-

imum distance (say, one pixel) from its previous

measurement-update location.

The motion-based range estimation algorithm

described here suffers difficulties near the FOE as

do most motion-based methods. An event-driven

Kalman filter may help to minimize this problem

[7]

[8]

Smith, P. N., "A Rotorcraft Flight Database

for Validation of Vision-Based Ranging Algo-

rithms," NASA TM 103906, April 1992.

Sridhar,B., and Suorsa,R., '¢IntegrationofMo-

tionand StereoSensorsinPassiveRanging Sys-

tems," IEEE Transactions on Aerospace and

Electronic Systems, Vol. 27, No. 4, pp. 741-746,

July 1991.
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