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Abstract— This paper presents an accurate and robust track-
ing vision algorithm for Fetoscopic Laser Photo-coagulation
(FLP) surgery for Twin-Twin Transfusion Syndrome (TTTS).
The aim of the proposed method is to assist surgeons during
anastomosis localization, coagulation and review using a tele-
operated robotic system. The algorithm computes the relative
position of the fetoscope tool tip with respect to the placenta,
via local vascular structure registration.

The algorithm uses image features (local superficial vascular
structures of the placenta’s surface) to automatically match
consecutive fetoscopic images. It is composed of three sequential
steps: image processing (filtering, binarization and vascular
structures segmentation); relevant Points Of Interest (POIs)
seletion; and image registration between consecutive images.

The algorithm has to deal with the low quality of fetoscopic
images, the liquid and dirty environment inside the placenta
jointly with the thin diameter of the fetoscope optics and low
amount of environment light reduces the image quality. The
obtained images are blurred, noisy and with very poor color
components.

The tracking system has been tested using real video se-
quences of FLP surgery for TTTS. The computational perfor-
mance enables real time tracking, locally guiding the robot over
the placenta’s surface with enough accuracy.

I. INTRODUCTION

Fetoscopy has been introduced in fetal diagnosis and

therapy and its application in some cases affecting the fetus

is the only treatment that can be offered. Laser coagulation

of placental vessels for Twin-Twin transfusion syndrome

(TTTS) is the most common surgery carried out today[1],

which is associated with survival rates of at least one twin

ranging from 75 to 85%[2]. This syndrome is a severe com-

plication that affects about 10-15% of monochorionic twin

pregnancies[3] and with expectant management, is associated

with a mortality rate of about 80-100%. TTTS is the result

from an unbalanced intertwin blood flow from the donor to

the recipient twin through placental vascular anastomoses.
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The first-line treatment of severe TTTS is fetoscopic laser

photocoagulation of those anastomoses.

Fetoscopic laser surgery uses intrauterine fetoscopy with

a laser fibre. A 2 to 3mm cannula is percutaneously inserted

into the recipient sac under ultrasound guidance. A rigid

fetoscope with a straight sheath is used for a posterior

placenta, and a fetoscope with a curved sheath is used for

an anterior placenta. A 600-µm laser fibre is passed through

the operative channel of the sheath of the fetoscope, and a

(Nd:YAG) or diode (semi-conductor) laser is used. All com-

municating vessels between the twins on the chorionic plate

of the placenta (including arteriovenous [AV], arterioarterial

[AA] and venovenous [VV] anastomoses) are coagulated

with a nontouch technique. The goal of surgery is to ablate

all intertwine anastomoses[4].

Actual FLP technique can be improved in several aspects:

time reduction (anaesthesia exposition of foetuses), anasto-

moses ablation accuracy (reducing the affected vessels and

placenta’s ablated surface) and increase patients safety avoid-

ing fetoscope contact with the placenta due to surgical envi-

ronment movements (breathing, aorta pulsation in posterior

placenta and, occasionally, spasmodic and non-predictable

movements, e.g. coughing). The surgical procedure consists

of a sequence of steps including: localization of umbilical

insertions, search of the equator (middle region between

umbilical insertions where the anastomoses are located with

higher probability), search for anastomoses, planning the

order of their coagulation, navigate to anastomoses and

their coagulation and, finally, a review and, if required, re-

coagulation of each anastomose.

The proposed solution is based on the analysis of the

fetoscopic images to extract relevant information (vascular

structures) and infer the relative position between fetoscope

and placenta. This information can be used by the robotic

system to stabilize and perform fine tracking of local Regions

of Interest (ROIs). The introduction of a teleoperated system

with pseudo-autonomous fetoscope guidance can improve

actual FLP performance. Due to the nature of the surgery,

with deformable tissues and non-predictable movements, pre-

planning of trajectories is not possible. A useful solution is to

provide the system with the relative position of the fetoscope

with respect to the placenta and associate the acquired images

with these positions. This information enables the possibility

of real-time collision risk analysis, image stabilization and

fine tracking of placenta’s Points of Interest (POIs).

This paper is structured as follows: the following section

reviews the state of art of new FLP technological solutions



and automatic vessel detection techniques. Then, Section

III describes the visual tracking algorithm and shows the

obtained results using real video sequences of FLP surgeries.

Section IV introduces the teleoperation system where the

algorithm is integrated. Conclusions and next research steps

are described in the last section.

II. RELATED WORK

Fetoscopy has been object of study to obtain both, the pla-

centa’s 3D vascular reconstruction and its surface mosaicking

to provide the surgeons with pre-operative or intra-operative

information. Several works generate a 3D reconstruction

based on pre-operative medical images. In this respect, in

[5] MRI images are used to obtain primary data, while in [6]

3D power angiography and color imaging Dopplers are used

to obtain blood flow. In [7] a 3D reconstruction of arterial

network from micro-computed tomography is obtained for

the study of fluid dynamics of the placenta (experimentally,

from a rat). All these 3D models can be used to detect and

reconstruct structures, identify branches and anastomoses,

and generate a knowledge dataset of placentary vascular

structures. In [8], the generation of a vessels map using

MR angiography reduces the computation complexity (from

a 3D analysis to 2D continuity analysis plus cross section

detection). In [9], the objective is the tracking of capillary

vessels using a pseudo-autonomous off-line method, select-

ing seeds manually. The authors use the formulation of graph

construction for their reconstruction approach, using different

classes (curves, branches, half lines, etc.). The method is

designed to detect anomalies in capillary structures. A similar

problem is treated in [10], detecting retina’s vessels using

the global image. The method is based on the automatic

detection of seed points and the reconstruction of the vessels

structures using the local gradient information. These last

algorithms are used for non real-time medical analysis.

Some works generate a complete placenta’s surface mosaic

to provide the surgeons with a map of the superficial vascular

structures for TTTS surgery. In [11] the problem is addressed

with an automatic detection of POIs (blobs) and associating

a characteristics vector to each of them. To match images

and compute their respective transformations, the proposed

algorithm uses the maximal vector similitudes. Finally, the

mosaic is refined with the sum of the squared differences

as the optimization norm, minimizing transitions between

paired images. This method generates noticeable results

(back projection error of 0.6 pixel), but cannot be applied to

real time tracking: it needs 3.4sec for every pair of images.

In [12], the authors apply a novel approach based on the

use of convolutional neural networks, with the need of a

first learning phase. The used images come from a simulated

placenta, with better visual conditions than in real scenarios.

Following with placenta’s reconstruction, [13] generates the

mosaic combining image registration with the Square Root

Unscented Kalman Filter to use the temporal information and

an electromagnetic tracker system to reduce the accumulative

error, thus obtaining the absolute position of the fetoscope.

The resulting system is tested on an ex-vivo placenta in a

free and clean environment. There is no information on the

required time to match pairs of images. Finally, in [14] the

Scale Invariant Feature Transform (SIFT) method is used to

generate the mosaic. To reduce the required computational

time, the method uses GPUs parallel computation. The initial

results are promising in terms of coherence on the obtained

vascular structures, but it is tested on an ex-vivo paper printed

placenta model, avoiding environmental difficulties.

Neural networks are used in [15] to classify the fetoscopic

images into three different actions: ablation, targeting and

others. The objective is to obtain automatically a workflow of

the fetoscopic surgery procedure. The authors empathise on

the high variability and poor quality of the obtained images.

To overcome with this limitation and determine which action

is being performed, they use convolutional neural networks.

The color of laser light is one of the main image features

used to classify the surgical action.

The presented method offers a valid solution due to the

obtained results with real images. This algorithm presents

robustness in front of image variability (high differences

between each patients placenta surface, environmental illu-

mination, dirtiness, etc.) and poor image quality. A second

benefit is the computational efficiency and the possibility of

parallelization over GPUs.

III. IMAGE ACQUISITION IN FETOSCOPY

In fetoscopy, image processing constitutes a complex prob-

lem due to the low quality of the obtained images. Several

reasons cause the acquired images to turn out to be of very

poor quality. The first problem that arises in fetoscopy image

acquisition is the optics diameter, which is 2 ∼ 3mm⊘ and

illumination of the space is low. Consequently, the amount

of light is limited, resulting into a noisy image. The required

camera’s long exposition time jointly with the camera and

placenta’s movements generate blurred images. A second

problem produced by the optics thickness is the visualization

of the optical fibers into the image in a similar form of a

non structured honeycomb. It is difficult to extract a filtering

mask because of the lack of a well defined structure and the

free rotation between the fetoscope (containing the fibers)

and the camera sensor. In addition, the environment and the

placenta also interfere with the correct image acquisition.

Placenta’s textures present a high variability, preventing the

extraction of a defined pattern from the images. The color

of the blood vessels is not homogeneous, hindering the

extraction of structures information and their continuity. The

liquid environment, amniotic fluid, deteriorates the obtained

images. The light spot of the endoscope, when is close to

the placenta, saturates partially or totally the image. The

floating detritus and the air bubbles also saturate the image.

Both of them appear as moving big spots with unpredictable

trajectories.

IV. VISUAL TRACKING ALGORITHM

The pseudo-autonomous fetoscope guidance needs its rel-

ative position with respect to the placenta. The fetoscope

pose is continuously provided by the robotic arm while



the visual tracking algorithm computes the transformation

between two consecutive images. Once obtained the images

transformation and known the fetoscope pose, it is possible

to control the relative transformation between fetoscope and

the focused local placenta region. This transformation opens

the possibility of an active camera tracking of an interesting

point (e.g. an anastomoses) and maintain a fixed distance

between the fetoscope and the placenta.

The developed visual algorithm uses the vascular struc-

tures of the placenta surface to extract relevant points and

compute the transformation between two consecutive images.

The algorithm is divided into three sequential steps: first,

filtering, binarization and segmentation of the new image, to

extract the vessels structures. Second, obtaining the image

POIs. These POIs are used in the third step to compute the

local registration in the XY plane and, finally, computing

the global transformation.

A. Image Binarization and Segmentation

The segmentation of the different arteries and vessels of

the placenta relies on a complex process due to poor quality

of the fetal images. A block diagram of the segmentation

and tracking process is presented in Fig. 1.

First, given a fetoscopy image, Fig. 2.a, the algorithm

extracts the green channel of the images because this channel

has a better contrast between the vascular structures and the

background according to [16], [17] and applies a median

blur filter to remove noise, Fig. 2.b. Second, the algorithm

computes a Contrast Limited Adaptive Histogram Equaliza-

tion (CLAHE) to enhance the contrast between the different

structures in the image, Fig. 2.c. Third, an adaptive thresh-

olding binarization is applied using the algorithm explained

in [18], Fig. 2.d. Finally, a serie of postprossessing filters is

applied, a speckles filter to eliminate the small components

of the binary image, Fig. 2.e, and a morphological closing

filter to fill the small holes in the detected structures, Fig 2.f.

B. Points of Interest Selection

In order for the algorithm to reach a solution, a set of

suitable POIs are needed. These POIs must be distributed

uniformly along the image as much as possible to obtain

the local translation of all the zones to calculate the global

transformation. Moreover, these POIs, in the binary segmen-

tation, must also fulfill that the window around them has a

homogeneous distribution of black and white pixels to obtain

a good displacement in the local correlation step.

The strategy used to select the POIs is as follows. Let Bi

be the binary segmented image of Ii. Then, the algorithm

searches for a set of circles (two for the presented experi-

ments) with centre in Ci and takes as point candidates those

corresponding to the intersection of these circles with the

contour of the segmented areas. These circles are updated at

each image by using those in the previous image and varying

their radius values until a minimum of intersections with the

segmented areas is reached, and also looking for the POIs

to be uniformly distributed in all directions with respect to

the centre of the image, see Fig. 3.

Let {P1, . . . , Pmi
} be the candidate POIs for image Bi

and Q = {Q1, . . . , Qmi−1
} the POIs obtained using the new

circles in image Bi−1. Then, ∀Pj the algorithm searches if

a correspondence exists in {Q1, . . . , Qmi−1
}, see Fig. 4. If

this correspondence does not exist, the algorithm removes the

corresponding Pj points from the set. If two POIs are too

close, the algorithm takes the mean of both POIs as a new

point. Once all the POIs have been tested, if there are not

enough POIs, the algorithm searches again different circles

that verify all the previous conditions. In the experiments, a

minimum of six POIs are required to obtain a robust solution.

C. Image Registration Algorithm

This subsection explains the algorithm used to find the

transformation that matches two consecutive fetoscopic im-

ages. The algorithm uses an Eucliden transformation with 6
degrees of freedom (3 for position and 3 for orientation).

A block diagram with all the algorithms’ steps to find the

transformation between the images is shown in Fig. 1. The

idea behind the implemented algorithm is to calculate local

displacements in the plane XY in the previous selected

POIs as the maximum correlation between these POIs and

a displacement in a neighbourhood. These displacements

model the transformation locally because the movement

of the tool does not significantly modify its orientation

in this type of surgery. Finally, the algorithm resolves an

optimization problem using these POIs and the displacements

to calculate the global transformation.

In order to calculate the local displacements, the algorithm

does as follows. Let Pj be one of these selected POIs with

pixel coordinates (xj , yj). First, the algorithm extracts a

window
∼

wPj
of size sx × sy around the point Pj and a

window
∼

W xj ,yj
around the coordinates (xj , yj) in the image

Ii−1 of size Sx×Sy with Sx > sx and Sy > sy . Then, these

windows are scaled by a factor 100/sx × 100/sy to obtain

wPj
and Wxj ,yj

. This scaling factor is applied to obtain

faster results in the local correlations. Then, the algorithm

calculates the correlation of the windows wPj
and all the

subimages of size 100×100 of the window Wxj ,yj
. Then, the

displacement is computed as the coordinates of the maximum

correlation. Finally, the mean m∆P and standard deviation

σ∆P of all the displacements are calculated to erase the

outliers by keeping all the POIs whose displacement verifies

∆Pi ∈ {m∆P − 1.5σ∆P ,m∆P + 1.5σ∆P }. In Fig. 5, the

outliers are represented in yellow.

Once all the local displacements have been estimated, let

(Pj ,∆Pj) be the pair composed of the pixel coordinates and

the displacement of point Pj . Then, the algorithm computes

the best transformation
∼

T as the solution of the following

minimization problem

∼

T = argmin
T

∑

j

||T (Pj)− (Pj +∆Pj)||
2

The non-linear least square problem is solved using the

Lavenberg-Marquardt algorithm. Fig. 6 shows the final reg-

istration between two consecutively images.

alici
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Fig. 1. Block schema of the tracking algorithm. Imgi and Imgi−1 are the images at time t = i and t = i− 1

.

Fig. 2. Image binarization and segmentation sequence.

Fig. 3. POIs detection between the circles and the segmented area.

Fig. 4. POIs correspondences between Bi and Bi−1.

V. RESULTS

This sections presents the results of the described al-

gorithm using a set sequences of real fetoscopic images,

formed by sets of 20 to 40 frames. These frames have a

size of 963 × 963 RGB pixels with JPEG compression,

which increases the image correlations difficulty. In order

Fig. 5. Final selected POIs for image correspondences. The POIs that are
marked as outliers after the local correlation step are represented in yellow.

Fig. 6. Example of image registration of two consecutively frames.

to verify the performance of the algorithm (quality of image



registration), the similarity between the transformed Ii−1 and

the original Ii image has been calculated using a set of

indexes: Mean Square Error (MSE), Peak Signal-to-Noise

Ratio (PSNR) and the Structural Similarity Index (SSIM).

The MSE is defined as the mean square error per pixel. PSNR

is defined as the maximum value of the reference image with

respect to the MSE of the images. It is assumed that values

over 20 dβ indicates a satisfactory image pairing. SSIM

calculates the structural degradation between two images.

The image sequences have been selected representing dif-

ferent parts of the placenta surface (different density of vas-

cular structures, and background textures) in order to test the

robustness and applicability of the algorithm. Fig. 8 shows

the mosaics resulting from the different testing sequences. To

generate these testing mosaics, the original image sequences

have been used. To compute the transformed Ii image the

result of the cumulative transformation ATi = T1 · · ·Ti is

applied where Tj is the tranformation between the image

j − 1 and j.

Table I presents the mean and standard deviation of these

indexes for 5 different sequences. The algorithm shows a

MSE of 15.64± 5.92 using all the frames of the sequences.

Likewise, calculating the PSNR using the same images, a

value of 28.82 ± 1.30 dβ is obtained. The SSIM value for

the same images is 0.75 ± 0.07, indicating a low structural

information degradation.

Sequence 2 and 5 give worst results because sequence 2 is

formed by a faster and random movements and, in sequence 5

some images show low vascular structures. In sequence 1 the

camera describes a short and smooth trajectory, the results

demonstrates the repeatability of the algorithm. Sequence 3

and 4 have high vascular structures and consequently the

quality of the image registration is higher than in sequences

2 and 5, as expected. All the registrations suffer from the

compression of the images which distortion the definitions

of the edges and artificially varies the background texture of

the placenta.

Finally, the error of the algorithm has been also evaluated

as follows: first, the difference image between the previous

frame and the transformation of the current frame. After-

wards, this image has been binarized using a threshold of

10. The mean of the error is 2.17% and a deviation error of

1.45%. Fig. 7 presents the percentage of error ones in the

binarized difference image.

The complete frame computational time is bellow 25 ms

in a serial configuration over CPU. The most time consuming

step is the speckles filter. Initial tests in parallel configuration

over GPU show an improvement of two times, which permit

a real time image registration. To achieve optimized results

a deeper study of parallel scalability is still necessary.

VI. INTEGRATION INTO THE FETAL

TELEOPERATION SYSTEM

This section presents the developed teleoperation station

for fetal surgery and the integration of the vision based track-

ing system. Only the required details of the teleoperation

Fig. 7. Percentage of ones in a binarization of threshold 10 in the image
difference between the previous frame and the current transformed image.

TABLE I

MEAN AND STANDARD DEVIATION OF MSE, PSNR AND SSIM INDEXES

OF 5 DIFFERENT SEQUENCES OF IMAGES.

Test id Frames MSE PSNR SSIM

mean std mean std mean std

1 27 10,1749 2,4666 30,397 0,9121 0,7041 0,0466

2 20 17,8535 8,5643 27,9842 1,6877 0,7767 0,0831

3 40 16,8433 5,2278 28,87 1,227 0,7359 0,0697

4 40 14,385 5,1529 28,8032 1,2801 0,7737 0,0607

5 29 18,9587 8,1879 28,0193 1,399 0,7588 0,0689

All samples 15,64308 5,9199 28,81474 1,30118 0,74984 0,0658

system are described, its complete description is out of the

scope of this paper.

The fetoscopic teleoperation platform is based on a bi-

lateral single master - single slave architecture. The master

is composed of a 6DoF haptic device, multi-function ped-

als and an interactive user interface with several modules:

fetoscopic view with augmented reality, an interactive map

with information of the placenta and POIs (e.g. located

anastomoses, umbilical insertions, equator, etc.) collected

during the surgery, the teleoperation system status, etc. The

slave is composed of a 6DoF robotic arm holding a 3mm

fetoscope, an optical fiber extraction/retraction system for

the coagulation laser and a trocar compensation system to

actively control the depth of the trocar inside the uterus.

Fig.9 shows a block schema of the teleoperation system.

Teleoperation system control is designed as a state graph

and the states are defined by the FLP procedure: Idle,

Free Navigation, Track Point, Trajectory to POI and emer-

gency/safe fetoscope pose. Free navigation is designed to

navigate over the placenta’s surface to locate POIs. Trajec-

tory automatically guides the fetoscope from current pose to

a desired POI using free paths previously defined by the feto-

scope. Track point actively maintains the center of the camera

view, compensating the placenta’s movements. This last state

is used to study a potential POI, coagulate and review a POI.

In all these three states, the vision system contributes to the

fetoscope pose: the resulting slave pose is the sum of master

device and placenta’s movement (discriminating the robot



Fig. 8. Resulting placenta’s surface reconstruction mosaics from the image sequences used in tests.

to placenta’s variations due to master commands). Fig. 10

shows the state graph of the teleoperation system and all the

possible transitions.

The vision system contributes to the fetoscope pose in

all these three explained system status. In Free Navigation,

the user can select a constant distance to placenta’s surface

for a safety navigation and to decrease the user’s cognitive

load. The vision system computes the fetoscope to placenta’s

surface distance and determines the fetoscope depth. In

Trajectory status, the vision system keeps the minimum

safety distance at each trajectory step. Once reached the

destination POI, the vision system searches the matching

between POI image and current image and actively guides

the robot to keep the POI in the center of the fetoscopic view.

Finally, in Track Point, the system recognises the current

image and, again, actively guides the robot to fix the POI in

the center of the view.

VII. CONCLUSIONS

This paper presents a robust and accurate vision based

tracking algorithm of the placenta’s surface. The methodol-

ogy allows dealing with the poor quality (noisy and blurred)

of the images obtained with a real fetoscope and scenario.

The method obtains the translation, camera axis rotation and

scaling from every two consecutive images containing visible

vascular structures in real time.

The proposed algorithm can be used as image stabilization

and fine localization of POIs during fetoscopic surgeries, like

TTTS, over the placenta’s surface. The inclusion of image

stabilization increases the accuracy of anastomoses photo-

coagulation, whereas the fine localization helps surgeons to

perform a correct navigation, reducing the surgery time.

The next steps of this research will be the use of non

compressed images extracted directly from the fetoscopic

vision system and the tracking of fetoscope using a magnetic

tracker (Aurora tracking system by NDI Medical). These

tests will enable a direct comparison between fetoscope pose

and algorithm results. The algorithm will be completely par-

alellized to reduce computational time. Finally, the complete

teleoperation system will be tested in a real surgical scenario

by the surgeons involved in the project.
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Fig. 9. Block schema of the complete teleoperation system for TTTS.

Fig. 10. State graph of teleoperation system control for FLP.
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T. Van Mieghem, E. Doné, A.-S. Boes, K. Hecher, E. Gratacós et al.,
“The outcome of monochorionic diamniotic twin gestations in the era
of invasive fetal therapy: a prospective cohort study,” American journal

of obstetrics and gynecology, vol. 199, no. 5, pp. 514–e1, 2008.

[4] R. A. Quintero, K. Ishii, R. H. Chmait, P. W. Bornick, M. H. Allen,
and E. V. Kontopoulos, “Sequential selective laser photocoagulation
of communicating vessels in twin–twin transfusion syndrome,” The

Journal of Maternal-Fetal & Neonatal Medicine, vol. 20, no. 10, pp.
763–768, 2007.

[5] Z. J. Wang, X. W. Zhu, Q. T. Huang, Z. Q. Yun, Y. W. Cao, Y. Y.
Chen, and M. Zhong, “Three-dimensional reconstruction of human
placental vascular network using in-vitro MRI data,” Ultrasound

in Obstetrics & Gynecology, vol. 47, no. 6, pp. 790–792, 2016.
[Online]. Available: http://doi.wiley.com/10.1002/uog.15809

[6] S. Campbell, “Placental vasculature as visualized by 3d power doppler
angiography and 3d color doppler imaging.” Ultrasound in Obstetrics

& Gynecology, vol. 30, no. 6, pp. 917–920, 2007.
[7] N. Bappoo, L. J. Kelsey, L. Parker, T. Crough, C. M. Moran, A. Thom-

son, M. C. Holmes, C. S. Wyrwoll, and B. J. Doyle, “Viscosity and
haemodynamics in a late gestation rat feto-placental arterial network,”
Biomechanics and modeling in mechanobiology, vol. 16, no. 4, pp.
1361–1372, 2017.

[8] R. P. Kumar, F. Albregtsen, M. Reimers, B. Edwin, T. Langø, and O. J.
Elle, “Blood vessel segmentation and centerline tracking using local
structure analysis,” in 6th European conference of the international

federation for medical and biological engineering, 2015, pp. 122–125.
[9] M. Paradowski, H. Kwasnicka, and K. Borysewicz, “Capillary Blood

Vessel Tracking Using Polar Coordinates Based Model Identification,”
in Computer Recognition Systems 3, 2009, vol. 57, no. December,
pp. 499–506. [Online]. Available: http://link.springer.com/10.1007/3-
540-32390-2

[10] T. Yedidya and R. Hartley, “Tracking of Blood Vessels in Retinal
Images Using Kalman Filter,” 2008 Digital Image Computing: Tech-

niques and Applications, pp. 52–58, 2008.
[11] M. Reeff, F. Gerhard, and P. Cattin, “Mosaicing of Endoscopic

Placenta Images,” GI Jahrestagung, vol. 93, no. 1, pp. 467–474, 2006.
[12] F. Gaisser, S. Peeters, B. Lenseigne, P. Jonker, and D. Oepkes, “Stable

Image Registration for In-Vivo Fetoscopic Panorama Reconstruction,”
Journal of Imaging, vol. 4, no. 1, p. 24, 2018. [Online]. Available:
http://www.mdpi.com/2313-433X/4/1/24

[13] M. Tella, P. Daga, F. Chadebecq, S. Thompson, D. I. Shakir, G. Dwyer,
R. Wimalasundera, J. Deprest, D. Stoyanov, T. Vercauteren, and
S. Ourselin, “A Combined em and Visual Tracking Probabilistic Model
for Robust Mosaicking: Application to Fetoscopy,” IEEE Computer

Society Conference on Computer Vision and Pattern Recognition

Workshops, pp. 524–532, 2016.
[14] P. Daga, F. Chadebecq, D. I. Shakir, L. C. G. Herrera, M. Tella,

G. Dwyer, A. L. David, J. Deprest, D. Stoyanov, T. Vercauteren, and
S. Ourselin, “Real-time mosaicing of fetoscopic videos using SIFT,”
vol. 9786, p. 97861R, 2016.

[15] F. Vasconcelos, P. Brandão, T. Vercauteren, S. Ourselin, J. Deprest,
D. Peebles, and D. Stoyanov, “Towards computer-assisted TTTS:
Laser ablation detection for workflow segmentation from fetoscopic
video,” International Journal of Computer Assisted Radiology and

Surgery, vol. 13, no. 10, pp. 1661–1670, 2018. [Online]. Available:
https://doi.org/10.1007/s11548-018-1813-8

[16] N. Almoussa, B. Dutra, B. Lampe, P. Getreuer, T. Wittman, C. Salafia,
and L. Vese, “Automated vasculature extraction from placenta images,”
in Medical Imaging 2011: Image Processing, vol. 7962. International
Society for Optics and Photonics, 2011.

[17] H. Li, J. Zhang, Q. Nie, and L. Cheng, “A retinal vessel tracking
method based on bayesian theory,” in Industrial Electronics and

Applications (ICIEA), 2013 8th IEEE Conference on. IEEE, 2013,
pp. 232–235.

[18] D. Bradley and G. Roth, “Adaptive thresholding using the integral
image,” Journal of graphics tools, vol. 12, no. 2, pp. 13–21, 2007.


