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The goal of integrating sensors into robot motion planning has incited recent re-
search efforts. The Perceptual Control Manifold serves this goal extending the
notion of the robot configuration space to include sensor space. In this paper,
we develop a framework for sensor-based motion planning of robotic manipulators
using the Topology Representing Network algorithm to develop a learned repre-
sentation of the Perceptual Control Manifold. The topology preserving features
of the neural network lend themselves to yield, after learning, a diffusion-based
path planning strategy for flexible obstacle avoidance. We demonstrate the ca-
pabilities of topology preserving maps using an industrial robot simulator and a
pneumatically driven robot arm (SoftArm).

1 Introduction

An important requirement for autonomous robotics is the ability to generate
motion plans that achieve specified goals while satisfying environmental con-
straints. Motion planning is generally defined in terms of a configuration space
or C-space 9. In most motion planning approaches, the C-space is assumed to
be known, implying a complete knowledge of both robot kinematics and obsta-
cles. Uncertainty of these characteristics, however, is prevalent which makes
such motion planning techniques inadequate for practical purposes. A sens-
ing mechanism, for example, which uses video cameras and computer vision
techniques, can help in overcoming uncertainties for guiding the motion of a
robot 2. However, to best utilize the sensor feedback given the limitations of
these sensors, a robot motion plan should incorporate constraints from the
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sensor system as well as criteria for optimizing the sensor feedback.

Current robotic systems treat robot motion planning and control as two
independent problems handled by different systems: (i) a motion planner de-
termines a collision-free path to achieve a task, and (ii) the control system
attempts to follow the planned path. The decoupling of sensor-based robot
control from motion planning may not result in desirable plans. A feasible
collision-free path may be hard to traverse, e.g., because of inadequate sensor
feedback, whereas incorporating sensor constraints into motion planning may
yield an easier path to control. To address this issue, a framework for motion
planning was proposed in Refs. 23,20 that considers sensors as an integral part
of the definition of the motion goal. The approach is based on the concept
of a Perceptual Control Manifold (PCM), defined on the product of the robot
C-space and sensor space. The PCM provides a flexible way of developing mo-
tion plans that exploit sensors effectively. The configuration space framework
can be extended to include sensor space constraints such as visibility, motion
perceptibility and sensor singularity. The expected result of PCM-based mo-
tion planning is a path which is not only collision-free but also more efficient
to control, i.e., optimizes the sensor feedback.

In many practical robotic systems the PCM cannot be derived analytically,
since the exact mathematical relationship between configuration space, sensor
space and control signals is not known. Even if the PCM is known analytically,
motion planning may require the tedious and error-prone process of calibration
of both the kinematic and imaging parameters of the system 27,6. Instead of
using the analytical expressions for deriving the PCM we propose, therefore,
the use of a self-organizing neural network to learn the topology of this mani-
fold. Once the PCM is learned, it can be used as a basis for sensor-based
motion planning and control.

The rest of the paper is organized as follows. The general PCM concept
is developed in Section 2; Section 3 describes the Topology Representing Net-
work (TRN) algorithm 12 used to approximate the PCM and a diffusion-based
path planning strategy which can be employed in conjunction with the TRN.
The learned representation is then utilized for motion planning and control
of a PUMA robot simulation (see Section 4) as well as on a pneumatic ro-
bot system (SoftArm), depicted in Section 5. In both cases, path control and
flexible obstacle avoidance demonstrate the feasibility of this approach for mo-
tion planning in a realistic environment and illustrate the potential for further
robotic applications.
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Figure 1: Schematic diagram of a 3-degree of freedom manipulator, and the mapping to the
image feature space.

2 Perceptual Control Manifold

Sensors such as video cameras have a limited range of operation and work
well only when the objects in view are suitably configured with respect to the
camera 19,26. Thus, to best utilize the sensor feedback, a robot motion plan
should incorporate constraints from the sensor system as well as criteria for
optimizing the quality of the sensor feedback. In Refs. 23,22, a method for
incorporating the sensor constraints into motion planning was proposed with
the help of a space called the Perceptual Control Manifold or PCM as discussed
below.

The problem of motion planning of an articulated robot is usually defined
in terms of the configuration space, C (or C-space), which consists of a set of
parameters corresponding to the joint variables of the robot manipulator. C
is an n-dimensional manifold 9 for an n-degrees of freedom robot manipulator,
i.e., C ≡ Q1 × Q2 × . . .Qn ⊆ Rn, where qi ∈ Qi is a joint parameter (see
Figure 1). The obstacles and other motion planning constraints are usually
defined in terms of C, followed by the application of an optimization criterium
that yields a motion plan.

In vision-based control, the robot configuration is related to a set of mea-
surements which provide a feedback about the Cartesian position of the end-
effector using the images from one or more video cameras. We assume that
this feedback is defined in terms of measurable image parameters that we call
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image features, si (see Figure 1). Before planning the vision-based motion, a
set of m image features must be chosen. Discussion of the issues related to fea-
ture selection for visual servo-control applications can be found in Refs. 3,25,30.
The mapping from the set of positions and orientations of the robot tool to the
corresponding image features can be computed using the projective geometry
of the camera. Examples of commonly used projective geometry models in-
clude perspective, orthographic, or para-perspective projection models. Since
the Cartesian position of the end-effector, in turn, can be considered to be
a mapping from the configuration space of the robot, we can also define im-
age features with a mapping from C. Thus, an image feature can be defined
as a function si which maps robot configurations to image feature values,
si : C → Si. The set of all possible variations of the image features is termed
image feature space, S ≡ S1 ×S2 × . . .Sm. A robot trajectory in configuration
space will yield a trajectory in the image feature space.

Although we refer to vision, the discussion applies to any other sensor as
well, and the term “image” is thus used for the generic sensor measurements.
Examples of image features used in visual servo-control include image plane
coordinates of a point, and other parameters of a line in the image, centroid,
area, and other higher order moments of an image region. paper, we con-
sider a hand/eye setup where the image features are derived from stationary
cameras. Other examples where a fixed-eye configuration is used are given in
Refs. 8,24. For visual servoing examples in which an eye-in-hand setup is used,
see Refs. 14,30, and for examples in which an active camera is used, see 19,21.

The Perceptual Control Manifold or PCM is defined as the manifold defined
on the product space C × S, or CS-space. We know that an n-dimensional
configuration space C maps to an m-dimensional feature space S. Therefore,
this mapping can be defined in terms of the vector-valued function f : C → S
and results in an n-dimensional manifold embedded in an (n+m)-dimensional
space.

For the robot in Figure 1, consider the variation of an image parameter, s1,
when a joint parameter, say q1, is varied, while keeping the rest of the joints
fixed. Without considering the joint limits for the time being, this would
define an ellipse in the Q1 × S1 space. Similarly, when two of the joints,
say q1 and q2, are varied simultaneously, a hyper-ellipsoid will be defined in
Q1×Q2×S1×S2 ⊆ R4. For ease of visualization, we project the corresponding
PCM to S1 × S2 × Q1 ⊆ R3, as shown in Figure 2. Analogously, in higher
dimensions, the PCM for a hand/eye setup is defined by varying all the joints
and considering the parametric hypersurface defined in Q× S space.

A given robot configuration maps to exactly one point on the PCM. The
corresponding image features are not necessarily unique for a given position,
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Figure 2: Positions of the manipulator mapped into the PCM. Each robot configuration Pi

corresponds to exactly one point on the PCM.

but the additional representation of the joint establishes the uniqueness prop-
erty needed for motion planning and control. Since the PCM represents both
the control parameter and the sensor parameter, an appropriate control law
can be defined on it 23. Our concern in this paper is, however, on motion
planning. An important characterization of the PCM for motion planning is
the distinction between the singular and regular portions of the surface. The
singularities of the PCM need to be identified so that they may be avoided
during manipulation. The singularity constraints can be incorporated into the
motion planning along with other constraints that are defined on the PCM.

A robot task can be defined as a problem of trajectory planning on the
PCM from the initial position of the manipulator to some goal position. This
motion planning requires the system to satisfy constraints presented by robot
kinematics, the control system and the visual tracking mechanism. The use
of the PCM makes the sensor constraints easier to express compared to a
potentially awkward C-space representation. An example of such a constraint
are image feature singularities 21.

With a complete knowledge of the robot kinematics and camera parame-
ters, it would be possible to model the PCM analytically and carry out the

5



motion planning on this space. However, as mentioned in Section 1, such an
analytical model would be hard to derive under incomplete information, espe-
cially for a robot like the pneumatically controlled SoftArm that we use for our
experiments in Section 5. For an industrial robot like the PUMA, described in
Section 4, the kinematic model can be determined, but it is tedious to calibrate
the camera setup especially if the cameras are frequently moved. This moti-
vates us to aquire the PCM through a learning procdure and to subsequently
use the learned space for sensor-based motion planning.

3 Topology Representing Networks for Motion Planning

For the path planning task described in the following sections, we seek to
employ a neural network algorithm which is able to represent the topological
characteristics of the PCM. Although several self-organizing processes have
been suggested for forming topology-conserving maps, similar to the maps ob-
served in, e.g., the visual, auditory and motor cortex 16, we will implement
a recently introduced algorithm where the a priori knowledge of the input
dimensionality is not crucial. Furthermore, the algorithm adjusts to the topo-
logical structure of a given input manifold M and forms, in contrast to most
other self-organizing neural networks, always a perfectly topology preserving
mapping. In many applications, the input manifold is a submanifold of a
high-dimensional input space and may either be unknown or its topology may
not be simple enough for prespecifying a correspondingly structured graph.
For this purpose, the topology representing network 12(TRN) approach which
we will outline in the following is best suited because it offers a flexible way
to develop a discrete representation of the underlying data structure includ-
ing neighborhood relationships. The TRN algorithm is a combination of the
neural gas11 vector quantization scheme and of a competitive Hebb-rule. While
the neural gas part, a soft-competitive learning algorithm, distributes the in-
put weights according to the input probability distribution, the competitive
Hebb-rule preserves the topology by introducing neighborhood relations using
a winner-take-all principle. Besides in visuo-motor control and path planning,
this additional information is desirable in many applications 7. For an exten-
sive review on topology representing maps and biological brain function as well
as an overview of different applications, see Ref. 18. An extension of TRN, in-
troducing a growing neural gas (GNG) network, where the number of neurons
changes during the self-organizing process, is described in Ref. 4.
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3.1 Topology Representing Network Algorithm

We start by initializing the input weights wi, for all units i = 1 . . .N , with
random numbers and reset all connections to cij = 0. The data are assumed
to be embedded in Euclidean space <D of dimension D, i.e. for weights holds
wi ∈ <D and for input vectors u ∈ <D. For every input vector u the current
ranking order

‖win
0 − u‖ ≤ ‖win

1 − u‖ ≤ . . . ≤ ‖win
N−1 − u‖ (1)

is determined, ordering the elements of the network by the Euclidean distance
to the input signal. Using a soft-competitive learning rule, all input weights
win

i , i = 1 . . .N , are adjusted according to:

win
i (t + 1) = win

i (t) + γ(r, t) · (u − win
i (t)) (2)

For the SoftArm in Section 5.1, we have to provide additional output weights

wout
i (t + 1) = wout

i (t) + γ(r, t) · (u − wout
i (t)) (3)

which will be used to link a desired control action to a specific sensory input.
Adjustment of the weights wi is guided by a monotonously decreasing function

γ(r, t) = ε(t) · e−ri/λ(t) (4)

which depends on the current rank of a neuron ri as determined in Equation 1
and the learning step t. In some cases it may be suitable to use a different
γ(r, t) for input and output weights. While

ε(t) = εi(εf/εi)t/tmax (5)

determines the change in the synaptic weights, a neighborhood is represented
by the function

λ(t) = λi(λf/λi)t/tmax (6)

Both ε(t) and λ(t) are a function of time and gradually decrease as the learning
step t approaches tmax. This guarantees an accelerated coarse adaption of all
units at the beginning of the training procedure and provides the essential
fine-tuning of the reference vectors win

i for t → tmax. For the remaining
parameters, we choose εi = 0.3, εf = 0.05, λi = 0.2N , λf = 0.01.

Up to this point the network has covered the neural gas vector quantiza-
tion 1,13,11. The next part of the algorithm introduces the competitive Hebb-
rule which learns the topology by establishing neighborhood relations. For
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Figure 3: Topology representing network: When presented with samples from the grey shaded
regions during the training cycle, the map develops from the initial distribution of neurons at
t = 0 (left) through an intermediate distribution at t = 10000 (middle) to the final network

at t = tmax = 100000 (right) which captures the topology of the input manifold.

this purpose, each connection of strength cij ∈ [0, 1] is associated with an ‘age’
and the connection is removed if the age exceeds a certain lifetime without the
corresponding connection i → j being activated13. Following a winner-take-all
principle, for each learning step only the connection c01 between the units cur-
rently ranked 0 and 1 is altered. If c01 = 0 then we set c01 = 1 and the age of
the connection is initialized with t01 = 0; if c01 6= 0, we refresh the connection
age, i.e., set t01 = 0. At the same time, we increase the age of all connections
c0j to t0j = t0j + 1 for all units j with c0j 6= 0 and remove connections c0j

which exceed a given lifetime t0j > T (t), with T (t) = Ti(Tf/Ti)t/tmax and
Ti = 0.1N , Tf = 2N .

To visualize the network dynamics, Figure 3 shows the development of a
two-dimensional network. At the beginning, all neurons are initialized with
random numbers, in this case win

i ∈ [0, . . . , 1]. During the learning process the
network is presented with equally distributed random numbers drawn from
the grey shaded areas and the vector quantization scheme gradually adapts
the input probability distribution. The competitive Hebb rule introduces con-
nections between the units which resemble the topology of the input manifold
and, after a suitable training period, the algorithm detects and represents the
two-dimensional squares of which two are connected by a one-dimensional line.

3.2 Diffusion-Based Path Planning

After the topology preserving map of the input manifold M, which in our case is
equivalent to the PCM, has been established, we want to generate a path from
any initial position to a given target, e.g., to guide an end effector of a robot

8



manipulator in the presence of obstacles within the workspace. We propose
to use for this purpose the diffusion-based path finding algorithm suggested
in Ref. 17 on the discrete network lattice in which the target neuron it is the
source of a diffusing substance. The goal is to find a linked chain i0,1,...,n on the
graph leading from the current position i0 = ic to the target position in = it.

To find the desired path, we define a function fi(t) on the nodes i of the
network obeying the condition:

ft(t) = 1 ∀t (7)

and the relaxation dynamics:

fi(t + 1) =
m

Ni

∑
j∈Fi

fj(t) if i 6= it (8)

The function fi(t), initially set to fi(0) = 0 (i 6= it), represents the concen-
tration at each node of the network and is held constant at the target node
it while diffusing through the links of the network. Fi denotes the set of all
nodes which are neighbors of i as defined by the network topology and Ni is
the number of nodes in Fi. A flux can be defined as the concentration differ-
ence between two connected nodes and is directed towards the node with lower
concentration. A value m < 1 corresponds to absorptive losses at the nodes.
In order to avoid the trivial stationary solution we choose

m =
Ni

Ni + 1
(9)

While other relaxation procedures can be used as well, this simple re-
laxation scheme serves our purpose and is computationally inexpensive, an
important step towards real-time control, e.g., in the presence of moving ob-
stacles.

The path leading from ic to it can be found by starting at the current node
ic and choosing as the next step always the neighbor with maximal fi(t). Since
the network graph is finite, the algorithm is guaranteed to terminate yielding
a proper path ic,1,2,...,n−1,t. The path is short in the sense that it takes a route
that maximizes the increase of fi(t) at each step.

To summarize, the motion plan can be generated as follows:

1. Read current position uc and target position ut in visual space.

2. Find best matching neurons win
c and win

t .

3. Detect obstacles in vision space and eliminate connections to neurons i
which are covered by an obstacle.
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4. Define diffusion on network lattice and iterate until fi 6= 0

fi(t + 1) =
{

1 if i = it
1

Ni+1

∑
j∈Fi

fj(t) else (10)

5. Follow steepest gradient of fi(t) from current unit ic to target unit it.

In step 3 one can include other constraints, for example avoiding singu-
larities in the sensor space 23. It is not necessary to iterate step 4 until a
stationary solution of the diffusion has been achieved. Instead, we can gener-
ate a path as soon as the concentration on the current node ic is larger than
zero. This might, however, render a re-computation of the diffusion necessary,
if, for any reason, the current location is displaced into a position that has
not been covered by the process yet. Finally, if the motion plan meets a given
goal, movement can be initiated using the corresponding output values wout

i

of the map to generate the sequence of commands, e.g., to navigate a robot
arm from start to target (see Section 5).

Other graph search algorithms and global optimization strategies can be
applied to the learned representation of PCM as well. However, these will be
computationally expensive, especially when complex obstacles are taken into
account 9. Our approach on the other hand is of complexity O(N2) with N
being the number of nodes in the network and, in particular, it is independent
of the number and shape of obstacles. Furthermore, the plan is resolution
complete; only if the resolution of the discretized PCM manifold is not high
enough to resolve a possible path, the algorithm will fail to find it. Following
the steepest gradient of fi(t) from ic to it eliminates the problem of local
minima associated with many potential field path planning methods 9.

In Figure 4 we plot a sample path on a two-dimensional network (N = 500)
from the upper left unit to the upper right which was obtained using the diffu-
sion algorithm described above. Instead of learning a static topology including
obstacles, we initially present the complete workspace during the training stage
and dynamically map obstacles into the PCM after the representation of the
workspace has been accomplished. This approach is more suited for a robotic
manipulator operating in a changing environment, e.g., with obstacles placed
at different locations within the workspace.

As a means of demonstrating the practical capabilities within an engi-
neering framework for motion planning and control, the following sections will
describe a PUMA robot simulator and the SoftArm robotic system as well as
the implementation of the topology representing network algorithm for path
planning on these systems.
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Figure 4: Two-dimensional Topology Representing Network after the learning has been fin-
ished. Obstacles have been identified and a sample path (open circles) from upper left unit

to upper right unit of the map has been generated by the diffusion process.

4 Motion Planning for the PUMA Robot Manipulator

For off-line simulation and training, we developed a general purpose simulator
for robot manipulator kinematics and visualization. Our simulator is intended
for flexible testing and implementation of neural network control methods,
e.g., to test the sensor-based motion planning approach described in Section 3.
Furthermore, the simulator allows one to define arbitrary camera positions and
to visualize the robot motion in 3d.

4.1 The PUMA Simulator

The design of the robot simulator is based on parallel distributed process-
ing and socket-based interprocess communication which allows the different
modules of the simulator to run in parallel on a network of workstations. In
particular, it enables the neural network controller and the graphical front end
to be executed on separate computers while communicating over a local area
network. Our typical simulation setup consists of a TRN program running on a
high performance workstation and the robot simulator, including visualization
and vision processing, running on a workstation, best suited for fast graphics.

Figure 5 outlines the simulator, together with all its modules and commu-
nication paths. The robot controller, in our case a TRN with the sub-modules
for vector quantization, competitive Hebbian learning and diffusion-based path
planning, supplies the path plan and the corresponding control signals to ex-
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Figure 5: PUMA robot simulator: The TRN on the left side represents the robot controller
and communicates via UNIX sockets with the PUMA kinematics module which handles the
data transfer to Geomview, for visualization of the robot arm, and to the vision processing.

ecute the plan. The actual robot simulator, on the right side of Figure 5,
includes the kinematic model of the PUMA, the Geomview package as graph-
ical front-end and the vision processing subroutines.

The kinematics we employ here is based on the PUMA 562 industrial ro-
botic manipulator, a 6-degree of freedom robot arm with a two-fingered gripper.
All arm link coordinate parameters and the Denavit-Hartenberg representation
have been published in Ref. 10. The forward kinematics for the manipulator
is calculated by a PEARL program which also handles the communication to
and from the neural network controller as well as the data transfer between
Geomview and the vision processing.

Visualization of the robot arm is based on Geomview 15, a public domain
3D visualization software a. This package can be used as a stand alone viewer
for static objects or as a display engine for other programs, like our robot kine-
matics module which produce a dynamically changing geometry. Geomview
allows the definition of multiple camera views and renders a fast 3D graphical
representation of the robot arm. Although it is possible to query Geomview
for the position of the robot geometry in ‘world coordinates’, we chose to use
the Geomview camera frames as basis for vision processing. This emulates the
situation we encounter for an experimental robotic setup where we would like
to avoid any calibration tasks for the kinematic or vision parameters and solely
rely on sensor feedback to generate the motion plan. Furthermore, the modu-
lar design of the simulator allows the kinematics subsystem to be replaced by a

aGeomview home page: http://www.geom.umn.edu/software/geomview/
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Figure 6: Development of the topology representing network during the training: (left) The
initial distribution of neurons as initialized at t = 0. (middle) Intermediate form of the
network after t = 5000 training moves. (right) The final network at t = tmax = 50000; the

latter network resembles well the input manifold.

real robot. The vision processing programs will then receive data from actual
color cameras. In our simulation, vision processing is based on color separation
and thresholding in order to minimize the complexity, since our major concern
here is adaptive control of the robot. Different colors are assigned, therefore, to
the gripper and to obstacles, e.g., the gripper is drawn in red and the obstacles
are blue while the rest of the scene is mostly colored in grey shades. Color
separation yields the pixels covered by gripper and obstacles. For obstacle rep-
resentation, we use all (x, y) pixel positions. The gripper position is idealized
as one (x, y) value, calculated by the center of mass from the extracted blob.

4.2 Implementation

In previous research on neural network based visuo-motor control using a
PUMA 562 robotic manipulator 29, we employed neighborhood preservation
to average over the output of several adjacent units in order to speed up learn-
ing and to achieve a more accurate positioning. The present study seeks to
exploit the topology to generate a motion plan from a current position to a
given target satisfying several constraints. These constraints can include ob-
stacles defined in C-space, obstacles given through vision space and limitations
of the camera feedback 21.

The PCM, as introduced in Section 2, is defined as the product of C-space
and sensor space S . Therefore, two different types of information converge
upon neurons within the network. Visual input s = (s1 . . . sn)T is derived from
the Geomview cameras; vision processing resolves the gripper location in each
camera frame. Joint position of the manipulator, denoted by q = (q1 . . . qn)T ,
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is generated by the network during the learning cycle and concatenated with
s to the input vector u = (q, s)T for the TRN. Following a suitable training
period, the topology of the neural network resembles the PCM. The current
experiments focus on obstacle collisions of the robot’s gripper only. Future
studies will extend the control to avoid obstacles with the complete arm.

To better visualize how the neural network learns the topology of the PCM
during the training cycle, we restrict our first example to one camera and two
joints of the robot arm. Figure 6 shows the network projected onto the camera
plane in three stages. First, we plot the initial distribution of the weight
vectors at t = 0 when no connections exist, yet. After t = 5000 input vectors,
generated by random movement of the manipulator in a two-dimensional plane,
the network has not yet captured well the input manifold. Several connections
are misplaced and the distribution of the weights is not optimal. Finally, after
a set of t = tmax = 50000 training cycles, the TRN covers the complete input
space and matches the PCM well. Given the learned representation of the
PCM, we can use the network to generate a path plan from an initial gripper
location to a given target point while avoiding obstacles which can be placed
anywhere in the workspace of the robot arm. For static obstacles, we have to
run the diffusion process only once and then follow the path. In case of moving
obstacles, it is necessary to calculate an updated path at every step.

Figure 7 shows a 3D path, generated by the diffusion process. In this case,
a network of N = 1500 neurons has been trained with a set of 80000 sample
moves using three joints of the robot arm and the feedback from two cameras.
Therefore, the input vector for the TRN consists of

u = (q, s) = (q1, q2, q3, s1, s2, s3, s4)T (11)

One obstacle is placed in the work space and mapped onto the learned repre-
sentation of the PCM in order to eliminate connections which would lead to a
collision of the gripper with the obstacle. The diffusion algorithm then gener-
ates the path and executes it by moving the arm along the planned trajectory.
The vision feedback can also be used to correct deviations from the desired
path. The total path length is 13 steps, of which six sample frames for both
camera views are plotted in Figure 7. Interpolation between the nodes of the
network can be introduced by a method described in Ref.29 to further enhance
the path resolution.

5 Motion Planning for the SoftArm Robotic System

In a next step, we port our path planning algorithm to an experimental robotic
system which is quite different from the common industrial robot arm, e.g., the
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Figure 7: 3D path, generated by the diffusion process algorithm, as seen by camera 1 (top 6
frames) and camera 2 (bottom 6 frames).
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PUMA manipulator used in the previous section. The SoftArm, a pneumat-
ically driven robotic manipulator manufactured by Bridgestone, is modeled
after the human arm. It exhibits the essential mechanical characteristics of
skeletal muscle systems employing agonist-antagonist pairs of rubbertuators
which are mounted on opposite sides of rotating joints. Pressure differences
drive the joints, average pressure controls the force (compliance) with which
the motion is executed. This latter feature allows operation at low average
pressures and, thereby, allows one to carry out a compliant motion of the arm.
This makes such robots suitable for operation in a fragile environment, in par-
ticular, allows direct contact with human operators. The price to be paid for
this design is that the response of the arm to pressure signals (p̄1, p̄2, . . . , p̄N)T

and (∆p1, ∆p2, . . . , ∆pN )T cannot be described by a priori mathematical equa-
tions, but rater must be acquired heuristically. Furthermore, one expects that
the response characteristics change during the life time of the arm through
wear, after replacement of parts and, in particular, through hysteretic effects.
In consequence, accurate positioning of the SoftArm presents a challenging
problem and can only be achieved by an adaptive control mechanism. For a
more detailed introduction to the mechanics of the SoftArm see Refs. 5,28.

5.1 The SoftArm Robotic System

The complete robot system, which is depicted in Figure 8, consists of the Soft-
Arm, air supply, control electronics (servo drive units) and Hewlett Packard
HP755/99 workstation which includes a serial interface, connected to the ro-
bot’s servo drive units, and a video input card (Parallax Power Video 700Plus).
The servo drive units provide the internal control circuitry of the robot, op-
erate the servo valve units and send joint angle data, available from optical
encoders mounted on each joint, to the computer. Visual feedback is provided
by two color video cameras. For maximum flexibility, vision processing is im-
plemented in software rather than in hardware. The use of a frame grabber to
import the video signals in a JPEG encoded format minimizes the amount of
data to be transferred between the video board and workstation memory. The
location of the gripper is extracted from the video frames through a simple
color separation, yielding one color component. This is then thresholded and
the center of mass of the remaining image calculated. Coding the gripper in
a certain color, e.g., red, allows us to weaken the workspace scenery restric-
tions in terms of background and lighting conditions while, at the same time,
keeping the visual preprocessing simple and efficient.
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Figure 8: Diagram of the robot system, showing SoftArm, air supply, control electronics and
workstation. The host computer includes a software layer (robot control, neural network
and image processing programs) and the hardware components (serial interface and video

input).
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5.2 Implementation

We test our approach first in a two-dimensional environment, generating a
motion plan in one camera plane. For this purpose, we use only two joints of the
SoftArm to control the position. Visual input s = (s1 . . . sn)T is derived from
a color video camera; vision preprocessing resolves the gripper location in the
video frames. Joint position of the manipulator, denoted by q = (q1 . . . qn)T , is
derived from the feedback of optical encoders mounted on each joint. Following
a suitable training period, the topology of the neural network resembles the
PCM. In addition, the network provides the nonlinear mapping between the
position in input space u = (s,q)T and the corresponding pressure commands
p to achieve this configuration, in this case, between the 4D input vector
u = (s1, s2, q1, q2)T and the two-dimensional pressure vector p = (p1, p2)T .

A sample network is depicted in Figure 9 by plotting the visual compo-
nents s of the 4-dimensional input vectors win

i . This network was trained with
a data set of 1000 random moves within a subset of the workspace and con-
sists of N = 75 neural units. The left side shows the actual position in the
robot’s workspace as seen by the camera. On the right side, we use the learned
representation to generate a motion plan from a start point to a given target.
Both, start and target, are only given in visual space s (as is the obstacle),
the corresponding encoder readings need not to be known. By selecting the
best matching neurons for current position and target position in vision space
the resulting neurons also provide the values for the encoder readings. This
is possible, because s and q represent redundant information. The motion
plan, shown in Figure 9, is generated by the diffusion algorithm exclusively in
CS-space to ensure a smooth motion in terms of joint angles.

Extending the algorithm to a three-dimensional workspace increases the
information that needs to be processed by the network. The image feature
space S is now represented by the position s = (s1, s2, s3, s4)T of the gripper
in two camera planes, the configuration space C is given by the encoder readings
q of three joints, resulting in a 7D feature vector u = (s1, s2, s3, s4, q1, q2, q3)T

and a three-dimensional output vector p = (p1, p2, p3)T respectively:
In this case, a network consisting of N = 750 neurons is trained with

5000 random moves within the workspace by sending random pressure values
to the robot and observing the end effector position as well as reading out
the encoder values. The sequence in Figure 10 shows a sample path. The
robot arm is moving from the right side to the left side of the workspace while
avoiding a collision with the obstacle placed in the middle. The training of the
neural network was restricted to the lower portion of the workspace, so that no
valid path over the obstacle exists in this case. Again, start and target location
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target
start

Figure 9: (left) SoftArm robot system, obstacle and network structure in the workspace as
seen by the camera. The learning has been accomplished and the network represents the
topology of the PCM. (right) Motion plan (grey units) generated by the diffusion process

algorithm in CS-space after start and target have been defined in vision space.

as well as obstacles are only known in vision space, while the motion plan is
generated on the learned representation of the PCM by the diffusion procedure
introduced in Section 3. In the 3D environment, a problem arises due to the
discrete representation of the PCM. With our network of 750 neurons, the
resulting path generated on the learned representation of the PCM is only 12
steps long which, in a more realistic environment, can only be seen as a rough
motion plan. Nevertheless, it can be taken as a piecewise linear approximation
of the final path and a basis for further path smoothing techniques 9. Neural
network interpolation strategies can be used to improve the accuracy as well 5.

6 Discussion

The presented simulations of a PUMA industrial manipulator and the imple-
mentation on the pneumatically driven SoftArm prove that learning the PCM
with a topology representing neural network introduces a general framework
for robot path planning. Sensing, e.g., in the form of video feedback, is au-
tomatically factored into the planning process, leading to a flexible way of
visually controlling a robot manipulator. The motion plans, thus developed,
can exploit properties of the sensed data and can also be linked to appropriately
designed vision-based control laws. As our experiments in Sections 4.2 and 5.2
demonstrate, this method can be used to control robotic systems with multiple
degrees of freedom in a 3D environment based on sensor data. The proposed
path planning algorithm utilizes the topology preserving features of the neural
network to dynamically map obstacles into the PCM and to establish a mo-
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Figure 10: 3D path, generated by the diffusion process. The successive frames show the
robot arm moving from an initial configuration on the right side of the workspace to a given

target position on the left side while avoiding a collision with the detected obstacle.
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tion plan which prevents collisions of the gripper with detected obstacles. Not
taking into account hardware specific limitations such as camera and encoder
resolution, the accuracy of a motion plan is only limited by the network size.
A larger number of neurons leads to a finer sampling of the underlying PCM
topology and, hence, to a more detailed path, essential for an environment with
complex obstacles. The parallel distributed PUMA simulator in Section 4.1
supports off-line training which enables us to use the simulator for extensive
pre-training before implementing the network on a real PUMA robot. Since
the TRN is able to handle even drastic changes of the robot geometry and
adjust within a few hundred re-training cycles 29, it will also adjust to changes
in the camera positions relieving one from tedious camera calibration task.

In contrast to the industrial PUMA robot system, the SoftArm has not
been designed to facilitate accurate posture control. A simulator environment
is not available and the mechanics of the arm confines the size of our data base
to a few thousand moves, leading to a coarse representation of the manifold.
Hence, the number of training samples in our respective experiments was much
smaller than in the simulations for the industrial robot simulator. Future work
will have to address the discretization effect in higher dimensions, as introduced
by the use of redundant degrees of freedom, to achieve a finer path control.
The discretizing effect, that results from the use of small numbers of neurons
to map a high dimensional input space, can be alleviated by introducing in-
terpolation strategies 5 which also improve fine motion control. Furthermore,
future research should focus on extending the presented framework to include
active sensing as well as collision free motion planning of highly redundant
robotic manipulators within an uncertain and changing environment.
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