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Abstract. Building a spatially consistent model is a key functionality to endow a mobile robot with autonomy. Without

an initial map or an absolute localization means, it requires to concurrently solve the localization and mapping problems.

For this purpose, vision is a powerful sensor, because it provides data from which stable features can be extracted and

matched as the robot moves. But it does not directly provide 3D information, which is a difficulty for estimating

the geometry of the environment. This article presents two approaches to the SLAM problem using vision: one with

stereovision, and one with monocular images. Both approaches rely on a robust interest point matching algorithm that

works in very diverse environments. The stereovision based approach is a classic SLAM implementation, whereas the

monocular approach introduces a new way to initialize landmarks. Both approaches are analyzed and compared with

extensive experimental results, with a rover and a blimp.
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1. Introduction

Autonomous navigation is a fundamental ability for mo-

bile robots, be it for ground rovers, indoor robots, fly-

ing or underwater robots. It requires the integration of a

wide variety of processes, from low-level actuator con-

trol, to higher-level strategic decision making, via envi-

ronment mapping and path planning. Among these var-

ious functionalities, self-localization is an essential one,

as it is required at various levels in the whole system,

from mission supervision to fine trajectory execution

control:

• The missions to be achieved by the robot are often

expressed in localization terms, explicitly (e.g. “reach

that position” or “explore this area”) or more implicitly,

such as “return to the initial position”.

• Autonomous navigation calls for the building of global

maps of the environment, to compute trajectories or

paths and to enable mission supervision. A good esti-

mate of the robot position is required to guarantee the

spatial consistency of such maps.

∗Corresponding author.

• Finally, the correct execution of the geometric trajec-

tories provided by the planners relies on the precise

knowledge of robot motions.

It is well known that dead reckoning techniques gen-

erate position estimates with unbounded error growth, as

they compute the robot position from the composition of

elementary noisy motion estimates. Such approaches can

fulfill the localization requirements for local trajectory

execution control, but do not allow global localization.

Visual motion estimation techniques from monocular se-

quences (Heeger and Jepson, 1992; Vidal et al., 2001)

or stereovision sequences (Zhang and Faugeras, 1992;

Mallet et al., 2000; Olson et al., 2000) provide precise

motion estimates between successive data acquisitions,

but they are akin to dead reckoning.

The only solution to guarantee bounded errors on the

position estimates is to rely on stable environment fea-

tures. If a spatially consistent map of the environment

is available, map-based localization can be applied: a

number of successful approaches have been reported,

e.g. (Borges and Aldon, 2002; Dellaert et al., 1999).1 On

the other hand, if the robot position is perfectly known,

building an environment map with the perceived data is

quite trivial, the only difficulty being to deal with the
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uncertainty of the geometric data to fuse them in a geo-

metric representation.

Simultaneous Localization and Mapping. In the ab-

sence of an a priori map of the environment, the robot

is facing a kind of “chicken and egg problem”: it makes

observations on the environment that are corrupted by

noise, from positions which estimates are also corrupted

with noise. These errors in the robot’s pose have an influ-

ence on the estimate of the observed environment feature

locations, and similarly, the use of the observations of

previously perceived environment features to locate the

robot provide position estimates that inherits from both

errors: the errors of the robot’s pose and the map features

estimates are correlated.

It has been understood early in the robotic community

that the mapping and the localization problems are inti-

mately tied together (Chatila and Laumond, 1985; Smith

et al., 1987), and that they must therefore be concurrently

solved in a unified manner, turning the chicken and egg

problem into a virtuous circle. The approaches that solve

this problem are commonly denoted as “Simultaneous

Localization and Mapping”, and have now been thor-

oughly studied. In particular, stochastic approaches have

proved to solve the SLAM problem in a consistent way,

because they explicitly deal with sensor noise (Thrun,

2002; Dissanayake et al., 2001).

Functionalities Required by SLAM. The implementa-

tion of a feature-based SLAM approach encompasses the

following four basic functionalities:

• Environment feature selection. It consists in detect-

ing in the perceived data, features of the environment

that are salient, easily observable and whose relative

position to the robot can be estimated. This process de-

pends on the kind of environment and on the sensors

the robot is equipped with: it is a perception process,

that represents the features with a specific data struc-

ture.

• Relative measures estimation. Two processes are in-

volved here:

– Estimation of the feature location relatively to the

robot pose from which it is observed: this is the

observation.

– Estimation of the robot motion between two feature

observations: this is the prediction. This estimate

can be provided by sensors, by a dynamic model of

robot evolution fed with the motion control inputs,

or thanks to simple assumptions, such as a constant

velocity model.

• Data association. The observations of landmarks are

useful to compute robot position estimates only if they

are perceived from different positions: they must im-

peratively be properly associated (or matched), other-

wise the robot position can become totally inconsistent.

• Estimation. This is the core of the solution to SLAM:

it consists in integrating the various relative measure-

ments to estimate the robot and landmarks positions

in a common global reference frame. The stochastic

approaches incrementally estimate a posterior proba-

bility distribution over the robot and landmarks posi-

tions, with all the available relative estimates up to the

current time. The distribution can be written as

p(Xr (k), {X f (k)}|z, u) (1)

where Xr (k) is the current robot’s state (at time k) and

{X f (k)} is the set of landmark positions, conditioned

on all the feature relative observations z and control

inputs u that denote the robot motion estimates.

Besides these essential functionalities, one must also

consider the map management issues. To ensure the best

position estimates as possible and to avoid high computa-

tion time due to the algorithmic complexity of the estima-

tion process, an active way of selecting and managing the

various landmarks among all the detected ones is desir-

able. The latter requirement has lead to various essential

contributions on the estimation function in the literature:

use of the information filter (Thrun et al., 2002), split-

ting the global map into smaller sub-maps (Leonard and

Feder, 2001), delayed integration of observations (Guiv-

ant and Nebot, 2001) (in turn, it happens that the use of

sub-maps can help to cope with the non linearities that

can hinder the convergence of a Kalman filter solution

(Castellanos et al., 2004)).

Vision-Based SLAM. Besides obvious advantages such

as lightness, compactness and power saving that make

cameras suitable to embed in any robot, vision allows the

development of a wide set of essential functionalities in

robotics (obstacle detection, people tracking, visual ser-

voing. . . ). When it comes to SLAM, vision also offers

numerous advantages: first, it provides data perceived in

a solid angle, allowing the development of 3D SLAM

approaches in which the robot state is expressed by 6 pa-

rameters. Second, visual motion estimation techniques

can provide very precise robot motion estimates. Finally

and more importantly, very stable features can be de-

tected in the images, yielding the possibility to derive

algorithms that allow to match them under significant

viewpoint changes: such algorithms provide robust data

association for SLAM.

Most SLAM approaches rely on the position estimates

of the landmarks and the robot to associate the land-

marks: the landmark observations are predicted from

their positions and the current robot position estimate, and

compared to the current observations. When the errors on
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Figure 1. The ATRV rover Dala and the 10 m long blimp Karma. Both robots are equipped with a stereovision bench.

some of these positions are large, e.g. when the robot re-

perceives landmarks after having traveled along a long

loop trajectory for instance, the associations can become

ambiguous. This is all the more difficult when the robot

is evolving in 3D, the errors in the prediction of the 6 pa-

rameters of the robot position having rapidly a drastic

influence on the predicted landmark positions. A robust

way to solve the data association problem is to recog-

nize the landmarks, independently from their position

estimate: a good visual feature detection and matching

algorithm can provide this ability.

Paper Outline. Section 2 presents a robust interest

points matching algorithm that fulfills the feature se-

lection and data association functionalities. The process

matches Harris points detected in images by combin-

ing the image signal information and geometric con-

straints between the detected points. Section 3 presents

two vision-based SLAM approaches that use 3D points

as landmarks: an approach that relies on stereovision, in

which the landmark positions are fully observed from a

single position, and a bearing-only approach that exploits

monocular sequences. The latter is emphasized, as it must

deal with the fact that the landmark 3D state can not be

observed from a single position. Section 4 then presents

and analyses results obtained with an outdoor rover and

a blimp (Fig. 1).

2. Feature Detection and Matching

To fulfill the data association functionality in a SLAM

approach, a feature detection and matching algorithm

should provide matches robust with respect to the varia-

tions in the images due to noise and illumination condi-

tions, to viewpoint changes and to variations in the per-

ceived scene itself.

Any solution to the image feature matching problem

calls for three steps (Brown, 1992): definition of the

feature space, definition of a similarity measure over

the feature space, and match search strategy. The def-

inition of the features to match is of course essential,

as it conditions the whole process. Features can be di-

rectly the image signal, or edges, contours, lines, re-

gions detected on the image, up to higher level semantic

information. Using lower level features avoids the use

of fragile segmentation algorithms: many contributions

have therefore focused on the matching problem using di-

rectly the image signal as the feature space. The literature

abounds with contributions on matching methods based

on local gray values similarity scores (Shi and Tomasi,

1994; Zabih and Woodfill, 1994; Martin and Crowley,

1995). But in order to generate reliable matches, these

approaches require to focus the match search (e.g. as-

suming the transformation between the two images is

close to identity, or using a known epipolar constraint).

In a SLAM context, such approaches can help to match

features from consecutive positions, but they can hardly

provide data associations when the robot has made large

motions.

To establish matches when several unknown changes

occur in the image, one must consider features that

are as much invariant as possible with respect to any

image transformation. Point features, often denoted as

“interest points”, are salient in images, have good in-

variant properties, and can be extracted with much less

computation. A comparison of various interest points

detectors is presented in Schmid et al. (1998): it intro-

duces a modified version of the Harris detector (Har-

ris and Stephens, 1988) which uses Gaussian functions
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to compute the two-dimensional image derivatives, and

that gives the best repeatability under rotation and scale

changes (the repeatability being defined as the percentage

of repeated interest points between two images). How-

ever the repeatability steeply decreases with significant

scale changes: in such cases, a scale adaptive version of

the Harris detector is required to allow point matching

(Dufournaud et al., 2004). When no information on scale

change is available, matching features becomes quite

time consuming, scale being an additional dimension

to search through. To avoid this, scale invariant feature

detection algorithms have been proposed (Lowe, 1999).

However, these methods generate much less features than

the standard or scale adaptive detectors, especially in un-

structured or highly textured environments, and require

more computing time.

2.1. Interest Points

To locate points in the image where the signal changes

bi-directionally, the Harris corner detector computes the

local moment matrix M of two normal gradients of in-

tensity for each pixel x = (u, v) in the image (Harris and

Stephens, 1988):

M(x, σ̃ ) = G(x, σ̃ ) ⊗
(

Iu(x)2 Iu(x)Iv(x)

Iu(x)Iv(x) Iv(x)2

)

(2)

where G(., σ̃ ) is the Gaussian kernel of standard devia-

tion σ̃ , and Iu(.) and Iv(.) are the first order derivatives of

the intensity respectively in the u and v directions. The

eigenvalues (λ1, λ2) of M(x, σ̃ ) are the principal curva-

tures of the auto-correlation function: the pixels for which

they are locally maximum are declared as interest points.

It has been shown in Schmid et al. (1998) that interest

points are more stable when the derivatives are computed

by convolving the image with Gaussian derivatives:

Iu(x, σ ) = Gu(x, σ ) ⊗ I (x)

Iv(x, σ ) = Gv(x, σ ) ⊗ I (x)

where Gu(., σ ), Gv(., σ ) are the first order derivatives of

the Gaussian kernel of standard deviation σ along the

u and v directions. The auto-correlation matrix is then

denoted M(x, σ, σ̃ ). Note that to maintain the deriva-

tives stable with respect to the image scale change s,

the Gaussian functions can be normalized with respect

to s—the auto-correlation matrix is then M(x, σ, σ̃ , s)

(Dufournaud et al., 2004).

Point Similarity. If the geometric transformation T be-

tween two images I and I ′ is strictly equal to a scale

change s and rotation change θ , the following equality is

satisfied for two matching points (x, x′) in the images:

(

Iu(x, σ, θ)

Iv(x, σ, θ)

)

= R(θ )

(

Iu(x, σ )

Iv(x, σ )

)

=
(

I ′
u′ (x′, sσ )

I ′
v′ (x′, sσ )

)

where R(θ ) is the rotation and Iu(x, σ, θ) and Iv(x, σ, θ)

are the steered Gaussian derivatives of the image in the

direction θ (Freeman and Adelson, 1991). As a conse-

quence, we can write:

R(θ )M(x, σ, σ̃ )R(θ )T = M(x′, σ, σ̃ , s)

Since

M(x, σ, σ̃ ) = U

(

λ1 0

0 λ2

)

U T

and

M(x′, σ, σ̃ , s) = U ′
(

λ′
1 0

0 λ′
2

)

U ′T

where the columns of U and U ′ are the eigenvectors.

The principal curvatures of the two matched points are

therefore equal: λ1 = λ′
1 and λ2 = λ′

2.

For two matching points in two images of real 3D

scenes, this equality is of course not strictly verified, be-

cause of signal noise, and especially because the true

transformation of the image is seldom strictly equal to a

rotation and scale change. We define the point similar-

ity Sp between two interest points on the basis of their

eigenvalues and their intensity:

SP (x, x′) =
Sp1(x, x′) + Sp2(x, x′) + SpI (x, x′)

3

where

Sp1(x, x′) =
min(λ1, λ

′
1)

max(λ1, λ
′
1)

,

Sp2(x, x′) =
min(λ2, λ

′
2)

max(λ2, λ
′
2)

,

and SpI (x, x′) =
min(I (x), I ′(x′))

max(I (x), I ′(x′))

The maximum similarity is 1.0. Statistics show that

the evolution of Sp1 and Sp2 for matched points is hardly

affected by rotation and scale changes, and is always

larger than 0.8 (Fig. 2).

2.2. Matching Interest Points

To match interest points, a cross-correlation measure of

the signal can be used (Lhuillier and Quan, 2003), but

this requires a precise knowledge of the search area. To

cope with this, local grayvalue invariants can be used,
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Figure 2. Evolution of the mean and standard deviation of matching points similarity with known rotation (left) and scale changes (right). On the

right curve, the solid lines represent the evolution of the similarity when the scale of the detector is set to 1: the similarity decreases when the scale

change between the images increases. The dashed lines show the values of the similarity when the scale of the detector is set to 1.5: the similarity is

then closer to one when the actual scale change between the images is of the same order.

as in Schmid and Mohr (1997). The approach we pro-

pose here imposes a combination of geometric and sig-

nal similarity constraints, thus being more robust than

approaches solely based on point signal characteristics

(a simpler version of this algorithm has been presented

in Jung and Lacroix (2001)). It relies on interest point

group matching: an interest point group is a small set of

neighbor interest points, that represent a small region of

the image. With groups composed of a small number of

interest points, the corresponding region is small enough

to ensure that a simple rotation θ approximates fairly well

the actual region transformation between the images—

the translation being ignored here. The estimate of this

rotation is essential in the algorithm, as a group match hy-

pothesis (i.e. a small set of point matches) is assessed on

both the signal similarity between interest points and the

point matches compliance with the rotation. The match-

ing procedure is a seed-and-grow algorithm initiated by

a reliable group match (see Algorithm 1).

Algorithm 1 Overview of the interest point matching

algorithm

Given two images I and I ′:

1. Extract the interest points {x} and {x′} in both im-

ages

2. In both images, establish the groups of extracted

points. This defines two sets of groups G = {G}
and G′ = {G ′}, and the neighborhood relations es-

tablish a graph between the detected points—this

procedure is depicted in Section 2.2.1.

3. While G �= ∅:

(a) Establish an initial group match M(Gi ,G
′
j ),

which defines a rotation θi, j , and remove Gi

from G—this procedure is depicted in Section

2.2.2.

(b) Recursive propagation: starting from the

neighbors ofGi , explore the neighboring points

to find group matches compliant with θi, j . Re-

move the new matched groups from G, and it-

erate until no matches compliant with θi, j can

be found—this procedure is depicted in Sec-

tion 2.2.3.

4. Check the validity of the propagated group matches

2.2.1. Grouping Process. The sets of interest points

{x}, {x′} detected respectively in the two images I, I ′ are

structured in local groups, formed by a pivot point g0 and

its n closest neighbors {g1, . . . , gn} (Fig. 3). To ensure

that the image region covered by the points of a group

is small enough, n is rather small (e.g. we use n = 5).

The groups are generated by studying the neighborhood

Figure 3. Illustration of the point grouping procedure, with n = 2 for

readability purposes. Groups have not been generated around points a

and b as they are too close to the image border, and neither around d as

no neighbor is close enough. Three groups have been generated, with

points c, e and f as a pivot. b → e means “b is a neighbor of e”, which

defines a graph relation between the points.
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of each point following a spiral pattern: the grouping

process is stopped if the spiral meets the image border

before n neighbors are found. Also, a maximum threshold

on the distance between the neighbor points and the pivot

is applied, to avoid the formation of groups that cover a

too large image region (in low textured areas for instance,

where there are scarce interest points). This implies that

a few points do not belong to any group: their matching

is processed individually (see Section 2.2.3).

After the grouping process, we end up with two group

sets G = {G1, . . . ,GN } and G′ = {G ′
1, . . . ,G

′
M}, Gi de-

noting the local group generated with the point xi as a

pivot:

Gi = {g0, g1, . . . , gn}, g0 = xi

The neighbors {g1, . . . , gn} are ordered by their dis-

tance to the pivot:

‖v1 ‖< · · · <‖vn ‖

where the vectors vi are defined as vi = gi −g0 and ‖ . ‖
is the norm operator. For each neighbor of the group, we

also compute its angle, defined as:

θgp
= tan−1(vp · v, vp · u)

where u and v are the image axes.

2.2.2. Group Matching. The procedure to establish a

group match is essential in our approach: in particular, a

wrong initial group match would cause the algorithm to

fail. The procedure consists in three steps depicted in the

next paragraphs:

1. Given a group Gi in I with g0 as a pivot, all the groups

G ′
j in I ′ whose pivot g′

0 is similar to g0 are candidate

group matches.

2. For each candidate group match G ′
j , determine all the

group match hypotheses H (Gi ,G
′
j ) on the basis of the

possible individual neighbor matches, and select the

best one H∗(Gi ,G
′
j ).

3. Select the best group match among all the H∗(Gi ,G
′
j ),

and apply a validation criteria.

Point Similarity. Two points x, x′ are defined as similar

if their similarity measure is above a threshold TSp
:

SP (x, x′) > TSP

This test is used to asses the similarity of points in

steps 1 and 2 of the group matching procedure.

Building Group Match Hypotheses. Given two groups

(Gi ,G
′
j ) whose pivots have passed the point similar-

ity test, one must evaluate all the possible associated

group match hypotheses, i.e. the various combinations

of matches between the neighbor points of the groups. A

group match hypothesis H (Gi ,G
′
j ) is defined as:

• a rotation θ

• a set M(Gi ,G
′
j ) of interest point matches which respect

the rotation θ and whose similarity score is above the

threshold TSP
:

M(Gi ,G
′
j ) = {(gp, g′

q ) ∈ Gi × G ′
j | SP (gp, g′

q ) > TSP

and |θgp
− θg′

q
| < Tθ } ∪ {(g0, g′

0)}

• a group hypothesis similarity score SG , defined as the

sum of the similarity of the corresponding matched

interest points:

SG(H (Gi ,G
′
j )) =

∑

(gp,g′
q )∈M(Gi ,G

′
j )

SP (gp, g′
q )

The best group match hypothesis among all the ones

that can be defined on the basis of two candidate groups

(Gi ,G
′
j ) is determined according to Algorithm 2: this pro-

vides the best group match hypothesis H∗, if it exists, be-

tween Gi and G ′
j . Note in this procedure the introduction

of a threshold �SG
in the comparison of hypotheses, to

ensure that the best hypotheses has a much better score

than the second best: this is useful to avoid wrong group

matches for images with repetitive patterns, in which

many points are similar.

Algorithm 2 Determination of the best match hypothesis

for two groups

• Init: S∗
G = 0

• For p = 1 to |Gi |, For q = 1 to |G ′
j |:

• if SP (gp, g′
q ) > TSP

then create and evaluate a

group match hypothesis Hp,q (Gi ,G
′
j ):

– Set M(Gi ,G
′
j ) = {(g0, g′

0), (gp, g′
q )}. This de-

fines the rotation θ for this hypothesis: θ =
θgp

− θg′
q

– complete M(Gi ,G
′
j ) with the other points in Gi

that are similar to points in G ′
j , such that:

∀s > p and t > q, SP (gs, g′
t ) < TSP

and |θ − (θgs
− θg′

t
)| < Tθ

Note here that the fact that the neighbor are or-

dered by their distance to the pivot reduces the

search for additional point matches—see Fig. 4.

– Evaluate the hypothesis Hp,q (Gi ,G
′
j ):

if SG(Hp,q (Gi ,G
′
j )) > S∗

G + �SG
,

then H∗ = Hp,q (Gi ,G
′
j ) andS∗

G = SG(H∗).
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Figure 4. Completion of a group match hypothesis. Given the hypothesis H4,3 defined by the point matches (g0, g′
0) and (g4, g′

3), the best potential

match for g5 is determined by evaluating geometric and point similarity constraints. The indexes of the neighbors being ordered according to their

distance to the pivot, only the matches (g5, g′
4), and (g5, g′

5) are evaluated—on this example, (g5, g′
5) is the sole valid match.

Selection of the Best Group Match Hypothesis. Now

that we have determined the best group match hypothesis

H∗ for each candidate group match G ′
j for the group Gi ,

one must determine the one that actually corresponds to

a true group match. This is simply done by comparing

their similarity SG , applying the same threshold �SG
as

above to make sure the best match is not ambiguous.

Finally, the validity of the found group match is con-

firmed by evaluating the zero-mean normalized corre-

lation score (ZNCC) between windows centered on the

pivots (g0, g′
0) of the groups. This score can be computed

thanks to the knowledge of the rotation θ defined by the

group match hypothesis, which is applied to the pixels of

the window centered on g′
0.

2.2.3. Finding Further Matches

Propagation Process. Once a reliable group match hy-

pothesis is established, a propagation process searches

for new matches. The principle of the propagation is to

exploit the graph defined by the grouping process and

the estimated rotation associated to the current hypoth-

esis: additional point matches consistent with the cur-

rent rotation estimate are searched in the neighborhood

of the current group match. This process is depicted in

Algorithm 3 .

Algorithm 3 Propagation process

Given a group match (Gi ,G
′
j ) and the associated rotation

θ :

• Init: set M propage = M(Gi ,G
′
j ) \ {(g0, g′

0)}.
• While M propage �= ∅:

– Select a point match (gp, g′
q ) ∈ M propage. gp

and g′
q are respectively the pivots of the groups

Gp and G ′
q .

– For s = 1 to |Gp|, For t = 1 to |G ′
q |:

if SP (gs, g′
t ) < TSP

and |θ − (θgs
− θg′

t
)| < Tθ ,

add (gs, g′
t ) to M propage

– Remove (gp, g′
q ) from M propage

During the propagation, the translation between

matched points is computed: when the propagation ends,

this allow to focus the search for new matches, as illus-

trated in Fig. 5.

Propagation Monitoring. Repetitive patterns with a

size similar to the group size can lead to false matches,

although the initial group match has passed the tests de-

scribed in Section 2.2.2. The occurrence of such cases can

be detected by checking whether the propagation process

succeeds or not around the first group match: if it fails,

it is very likely that the initial group match hypothesis is

a wrong one, and it is then discarded (Fig. 6). Note that

this test also eliminates group matches if a group is iso-

lated or if the overlap between the two images I and I ′ is

restricted to the size of the group: these are degenerated

cases in which the algorithm does not match the groups.

Non-Grouped Points Matching. As mentioned in

Section 2.2.1, some points are not associated to groups

after the grouping procedure, mainly near the image bor-

ders. Once the propagation procedure is achieved, for

each non grouped point xb of I, matches are searched

among the set of points Xb in the image I ′:

Xc = {x|x ∈ W (x̂′
b)}

where x̂′
b is the estimated position of xb in I ′ provided

by the application of the transformation defined by the

mean of the rotations and translations estimated so far,

and W (x̂′
b) is a search window centered on x̂′

b. The points
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Figure 5. Illustration of the propagation process. Red crosses are interest points, yellow lines indicate neighborhood relations defined by the

grouping process. Here, g2 and g′
2 are the pivots of the initial group hypothesis H (G2,G

′
2), and the corresponding list of individual points matches is

M(G2,G
′
2) =

{

(g2, g′
2), (g1, g′

1), (g3, g′
3), (g4, g′

4)
}

. During the propagation, matches for points neighboring the ones of M(G2,G
′
2) are evaluated—

here the match (g5, g′
6) is added and the propagation stops. Thanks to the estimate of the translation between the points matched so far, the group

match hypothesis H (G7,G
′
8) can be evaluated, and new matches are added for a little computational cost.

Figure 6. Illustration of the propagation monitoring. The top images show two group matches independently established according to the process of

Section 2.2.2: the “Car 2” group is properly matched, whereas “Car 1” has been incorrectly matched. The bottom images show the additional matches

established by the propagation process: no additional matches have been determined around the “Car 1” group, whereas other matches around the

“Car 2” have been determined: the “Car 1” group match is a false one.
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Figure 7. Points matched with a small viewpoint change and significant scene modifications (throughout the paper, red crosses shows the interest

points, and green squares indicate successful matches). 349 matches are found in 200 ms (115 ms for the points detection, 85 ms for the matching

process.

Figure 8. Points matched with a significant viewpoint change, that induces a 1.5 scale change. 57 points are matched in 80 ms.

comprised in W (x̂′
b) are evaluated according to the hy-

pothesis pruning process presented in Section 2.2.2: test

on the point similarity measure SP and verification with

the computation of the ZNCC coefficient.

2.3. Results

The algorithm provides numerous good matches while

keeping the number of outliers very small, in differ-

ent kinds of scenes and in a wide variety of conditions,

tolerating noticeable scene modifications and viewpoint

changes. Figures 7 to 9 present matches obtained in var-

ious conditions, with the computational time required—

the processed image size is 512 × 384, and time mea-

sures have been obtained on 3.2 GHz Pentium IV). The

algorithm does not explore various scale changes: when

a scale change greater than half a unity occurs, it must

be provided as a parameter to the interest point detec-

tion routine. This is a limitation as compared to scale

invariant point features, but a coarse knowledge of the

scale change is sufficient: in a SLAM context, such an

estimate is readily obtained.

Table 1 lists the parameters required by the matching

algorithm and their values. These values are used for all

the results presented throughout the paper, and during

our everyday use of the algorithm: no parameter tuning

is required.

Three parameters are used during the grouping pro-

cess presented Section 2.2.1: Minimum group size, Max-

imum group size and Maximum distance between pivot

and group member (the size parameters do not include

Table 1. Thresholds and parameters of the matching algorithm.

Maximum group size 5

Minimum group size 2

Size of correlation window for ZNCC 9 × 9

Threshold TSP
on point similarity SP 0.7

Threshold on ZNCC TZNCC 0.6

Threshold �SG
to discriminate group hypotheses 0.1

Threshold on rotation change, Tθ 0.2rad
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Figure 9. Points matched with a scale change of 3. 70 points are matched in 270 ms.

the pivot). The Minimum group size is naturally set to 2,

the minimum size that allows to run the group matches

determination presented Section 2.2.2. The Maximum

group size is a compromise: on the one hand, the more

members in a group, the more reliable are the group match

hypotheses. On the other hand, a big number of points in

a group tends to violate the hypothesis that a simple ro-

tation approximates its transformation between the two

images: empirical tests show that a value of 5 offers a

good balance. Finally, the Maximum distance between

pivot and group member threshold is set to 3
√
D, where

D is the density of interest points in the image.

The threshold TSP
on the similarity measure is used to

evaluate if two points match: its value is set to 0.7, accord-

ing to the variations of the point similarities presented

in Section 2.1. The threshold TZNCC on the correlation

score to confirm a point match is set to 0.6, a value

smaller than usually used for this score (e.g. in dense

stereovision): this is due to the fact that a rotation is im-

posed to one of the correlation window before comput-

ing the score, which smooths the signal in the window,

and also to the fact that we aim at matching points seen

from different viewpoints. Finally, the threshold on ro-

tation change Tθ is set to 0.2rad, a quite large value

that is necessary to cope with the errors on the inter-

est points detection, that can reach at most 1.5 pixel

(Schmid et al., 1998).

3. Vision-Based SLAM

The vision algorithms of Section 2 provide a solution for

two of the four basic SLAM functionalities introduced in

Section 1: the observed features are the interest points,

and data association is performed by the interest point

matching process.

There are however two important cases to distin-

guish regarding the observation function, depending

on whether the robot is endowed with stereovision or

not:

• With stereovision, the 3D coordinates of the features

with respect to the robot are simply provided by match-

ing points in the stereoscopic image pair,

• But if the robot is endowed with a single camera, only

the bearings of the features are observed: this requires

a dedicated landmark initialization procedure, that in-

tegrates several observations over time.

This section presents how we set up a SLAM solution

in both cases, focusing on the monocular case, which

raises specific difficulties. Note that regarding the over-

all SLAM estimation process, vision does not raise any

particular problem—we use a classical implementation

of the Extended Kalman Filter in our developments.

3.1. SLAM with Stereovision

A vast majority of existing SLAM approaches rely on

data that directly convey the landmark 3D state (e.g. us-

ing laser range finders or millimeter wave radars). Stere-

ovision falls in this category, but it is only recently that

this sensor has been used to develop SLAM approaches.

In Se et al. (2002), an approach that uses scale invari-

ant features (SIFT) is depicted, with results obtained by

a robot evolving in 2D in a 10 × 10 m2 laboratory en-

vironment, in which about 3500 landmarks are mapped

in 3D. In Kim and Sukkarieh (2003), rectangular patches

are spread on a horizontal ground and used as landmarks.

This is not strictly speaking a stereovision approach, but

the distance to the landmarks is readily observable as the

landmarks have a known size. Our first contribution to this

problem has been published in Jung and Lacroix (2003),

with some preliminary results obtained on a stereovision

bench mounted on a blimp.
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With a stereovision bench, the state of the observed

features can readily be estimated from a single observa-

tion: a feature (interest point) is transformed into a land-

mark (3D point) thanks to the matching of the feature in

the two images provided by the stereoscopic bench. A

SLAM solution can then be readily developed using the

EKF scheme, in which the state X of the filter is composed

of the 3D position parameters of the stereovision bench

(or the robot) Xr = [xr , yr , zr , yawr , pitchr , rollr ], and

of a set of landmark 3D coordinates X k
f = [xk, yk, zk]:

X = (Xr , X1
f · · · X k

f · · ·)T

The associated state covariance has the following form:

P =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

PXr
PXr ,X1

f
· · · PXr ,X k

f
· · ·

PX1
f ,Xr

PX1
f ,X1

f
· · · PX1

f ,X k
f

· · ·
...

. . .
...

... · · ·
PX k

f ,Xr
PX k

f ,X1
f

· · · PX k
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f
· · ·

... · · ·
...

...
. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where PX i
refers to covariances of sub-state X i and PX i ,X j

refers to cross covariance of sub-states X i and X j . Thanks

to the interest point detection and matching processes, the

usual state prediction and state update processes can read-

ily be applied (the equations of the extended Kalman filter

are not recalled here, as they can be found in numerous

articles in the literature).

3.2. Bearings-Only SLAM

3.2.1. Related Work. The bearings-only SLAM

problem is an instance of the more general partially

observable SLAM, in which the sensor does not give

enough information to compute the full state of a

landmark from a single observation. Using sonar sensors

for example, raises the problem of range-only SLAM. A

solution to this problem has been proposed in Leonard

et al. (2002): since a single observation is not enough to

estimate a feature, multiple observations are combined

from multiple poses.

Several contributions propose different solutions for

delayed initial state estimation in bearings-only SLAM.

In Bailey (2003), an estimation is computed using ob-

servations from two robot poses, and is determined to be

Gaussian using the Kullback distance. The complexity of

the sampling method proposed to evaluate this distance

is quite high. In Deans and Hebert (2000), a combina-

tion of a Bundle Adjustment for feature initialization and

a Kalman filter is proposed. The complexity of the ini-

tialization step is greater than a Kalman filter but the-

oretically gives more optimal results. A method based

on a particle filter to represent the initial depth of a fea-

ture is proposed in Davison (2003) and Davison et al.

(2004). However its application in large environments is

not straightforward, as the required number of particles

is linear with the initialization range. In Lemaire et al.

(2005) the initial PDF of a feature is approximated by a

sum of Gaussians, bad members are pruned until only a

single Gaussian remains, that is then simply added to the

Kalman stochastic map.

A first un-delayed feature initialization method was

proposed in Kwok and Dissanayake (2004). The initial

state is approximated with a sum of Gaussians and is

explicitly added to the state of the Kalman filter. The

sum of Gaussians is not described and the convergence

of the filter when updating a multi-Gaussian feature is

not proved. This algorithm has been recently extended

in Kwok et al. (2005) using Gaussian Sum Filter. Also a

method based on a Kalman federate filtering technique

is described in Solà et al. (2005).

Bearings-only SLAM using vision is also very similar

to the well known structure from motion (SFM) prob-

lem. Recent work by Nister (2003) show very nice re-

sults. The main difference is that robotic applications re-

quire an incremental and computationally tractable solu-

tion whereas SFM algorithm can run in a time consum-

ing batch process. Links between non linear optimization

algorithms and standard Kalman filter for SLAM and

bearings-only SLAM are studied in Konolige (2005).

The approach presented here is in the delayed category.

Figure 10 depicts it: when a new feature is observed, a full

Gaussian estimate of its state cannot be computed from

the measure, since the bearings-only observation function

cannot be inverted. We initialize the representation of this

feature with a sum of Gaussians (Section 3.2.3). Then, a

process updates this initial state representation, until the

feature can be declared as a landmark whose full state is

estimated (Section 3.2.4). Once estimated, the landmark

is introduced in the stochastic map, which is managed by

the usual EKF.

The main characteristics of our approach are the fol-

lowing:

• the initial probability density of a feature is approxi-

mated with a particular weighted sum of Gaussians,

• this initial state is expressed in the robot frame, and not

in the global map frame, so that it is de-correlated from

the stochastic map, until it is declared as a landmark

and added to the map,

• many features can enter the initial estimation process

at a low computational cost, and the delay can be used

to select the best features.

In order to add the landmark to the map, and to compute

its state in the map frame along with the correlations in

a consistent way, the pose where the robot was when the
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feature was first seen has to be estimated in the filter. All

observations of the feature are also memorized along the

corresponding robot pose estimations, so that all available

information is added to the filter at initialization.

3.2.2. Structure of the Kalman Filter. The state of the

EKF is composed of the landmarks estimates, the current

robot pose, and as previously pointed out, some past poses

of the robot. For simplicity, let’s consider that the k last

poses of the robot are kept in the filter state. The Kalman

state is:

X =

⎛
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⎜

⎜
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In our case the prediction step must be conducted with

special care since a whole part of the trajectory is esti-

mated. All the poses but the current one are static states,

so only the current pose is affected by prediction. Be-

fore applying the prediction equations, all the past poses

are re-numbered, so that the robot trajectory looks like:

Xr = [X0
r , X2

r , . . . , X k
r , X k+1

r ]. The oldest robot pose

X k+1
r is forgotten because we don’t want the size of the

filter to increase. X k+1
r is used to back up the current robot

pose and becomes X1
r (ring buffer mechanism):

X1
r ← X0

r PX1
r
← PX0

r
∀ j P

X1
r ,X

j

f
← P

X0
r ,X

j

f

PX1
r ,X i

r
← PX0

r ,X i
r

i �= 0 i �= 1 PX1
r ,X0

r
← PX0

r

3.2.3. Feature Initialization. From now on we consider

3D point features represented by their Cartesian coordi-

nates X f = (x, y, z) and the associated bearings-only

observation function z = h(X f ):

(

θ

φ

)

=
(

arctan(y/x)

− arctan(z/
√

x2 + y2)

)

Actually z = (θ, φ) represents the direction of a pixel

(u, v) which corresponds to an interest point.

In our notation, the observation model h(), as well as

the inverse observation model g() do not include frame

composition with the robot pose, instead these trans-

formations are formalized in to() and from() functions:

to( f, v) computes vector v in frame f , and from( f, v)

computes vector v in frame f −1. This eases the follow-

ing developments, and is general with respect to the un-

derlying representation of a 3D pose (using Euler an-

gles, quaternions,. . . ). This also makes the implemen-

tation more modular, and observation models easier to

implement.

In the sensor polar coordinate system (ρ, θ, φ), the

density probability of the feature state is already jointly

Gaussian on (θ, φ), since the measure (interest point lo-

cation estimate) is considered Gaussian. The measure it-

self does not give any information about the depth, but we

generally have a priori knowledge. For indoor robots, the

maximal depth can for instance be bounded to several me-

ters. For outdoor robots the maximal range is theoretically

infinity, but in general only the surrounding environment

may be of interest for the robot. This gives us for ρ an a

priori uniform distribution in the range [ρmin, ρmax ].

The Kalman filter assumes Gaussian PDF. A Gaussian

is represented with only two values. So we choose to

approximate this a priori knowledge on the depth with a

sum of Gaussians:

p(θ, φ, s) = Ŵ(θ, σθ ) · Ŵ(φ, σφ) · p(ρ)

= Ŵ(θ, σθ ) · Ŵ(φ, σφ) ·
∑

i

wiŴi (ρi , σρi
)

Considering the invariant scale of the PDF, the follow-

ing geometric series for
∑

i wiŴi (ρi , σρi
) is proposed:

ρ0 = ρmin/(1 − α)

ρi = β i · ρ0 σρi
= α · ρi wi ∝ ρi

ρn−2 < ρmax/(1 − α) ρn−1 ≥ ρmax/(1 − α)

Figure 10 shows a plot of this distribution for typical

values of α and β. The constant ratio α between the mean

and the variance defines the width of the Gaussians. The

rate β of geometric series defines the density of Gaussians

to fill in the depth range. α and β are chosen so as to meet

the following constraints:

• nearly constant distribution in the range [ρmin, ρmax ],

• the covariance of each Gaussian must be compatible

with non-linearity of the observation function around

the mean of this Gaussian, so that it will be acceptable

to update it in the EKF,

• the number of Gaussians should be kept as low as pos-

sible for computational efficiency purposes.

In Peach (1995) it is proved that for a scale invari-

ant observation model the choice of α guarantees the

linearization to be acceptable by the EKF, a discussion

about the value of α is also given. A value of about 0.25

is empirically good. The same ratio can also be found in

Davison (2003).

Each Gaussian {μp

i = (ρi , θ, φ), �
p

i = (σ 2
ρi
, σ 2

θ , σ 2
φ )}

is then converted to {μc
i , σ

c
i )} in Cartesian coordinates in

the current robot frame, which is the reference frame for

this feature X
t f

r (Fig. 11):

μc
i = g(z) =

⎛

⎝

ρi cos φ cos θ

ρi cos φ sin θ

−ρi sin φ

⎞

⎠ �c
i = G�

p

i GT
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Figure 10. Left: Our approach to the bearings-only SLAM problem. Right-top: Gaussian sum approximating the initial distribution over depth.

Right-bottom: different initial distributions.

where G = ∂g/∂z|(ρi ,θ,φ). Since we do not project this

distribution in the map frame, the distribution is for now

kept uncorrelated with the current map. As a consequence

the sum of Gaussians is not added to the state of the

Kalman filter and initialization is done at a low compu-

tational cost.

3.2.4. Initial State Update. The rest of the initializa-

tion step consists in choosing the Gaussian which best

approximates the feature pose—the feature being thrown

away if no consistent Gaussian is found. This process is

illustrated in Fig. 11.

Subsequent observations are used to compute the like-

lihood of each Gaussian i . At time t , given observation

zt with covariance Rt , the likelihood of Ŵi to be an esti-

mation of the observed feature is:

L t
i =

1

2π
√

|Si |
exp

(

−
1

2
(zt − ẑi )

T S−1
i (zt − ẑi )

)

where Si is the covariance of the innovation zt − ẑi . And

the normalized likelihood for the hypothesis i is the prod-

uct of likelihoods obtained for Ŵi :

�i =
∏

t L t
i

∑

j

∏

t L t
j

The prediction of the observation ẑi must be done con-

sidering each Gaussian in the robot frame. For clarity, let

H() be the full observation function. We have:

ẑi = h
(

to
(

X̂0
r , from

(

X̂
t f

r , μc
i

)))

= H
(

X̂0
r , X̂

t f

r , μc
i

)
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H T
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H T
2

+H1 P
X0

r ,X
t f
r

H T
2 + H2 PT

X0
r ,X

t f
r

H T
1

+H3�
c
i H T

3 + Rt

where H1 = ∂H/∂ X0
r |X̂0

r ,X̂
t f
r ,μc

i

H2 = ∂H/∂ X
t f

r |
X̂0

r ,X̂
t f
r ,μc

i

and H3 = ∂H/∂μc
i |X̂0

r ,X̂
t f
r ,μc

i

Then we can select the bad hypotheses and prune the

associated Gaussian. Bad hypotheses are those whose

likelihood �i is low. When observing the evolution of the

likelihoods �i computed with simulated or with real data,

we see that the likelihood of a hypothesis which is getting

unlikely dramatically drops. The likelihood of n equally

likely hypotheses is 1/n: we take 1/n as a reference value,

and simply prune a hypothesis if its likelihood is under a

certain threshold τ/n.

When only a single Gaussian remains, the feature is

a candidate for addition to the map. We check that this

Gaussian is consistent with the last measure using the
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angular uncertainty
observation

Figure 11. From an observed feature in the images to a landmark in the map. From left to right: the sum of Gaussians is initialized in the robot

frame; some Gaussians are pruned based on their likelihood after additional observations of the feature; when a single hypothesis remains, the feature

is declared as a landmark and it is projected into the map frame; and finally past observations are used to update the landmark estimate.

 0  5  10  15  20

step 0
step 1
step 2
step 3
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step 6

Figure 12. Evolution of the weighted sum of Gaussians through ini-

tialization steps.

χ2 test. Such a convergence is plotted step by step in

Fig. 12. If the test does not pass, it means that our a

priori distribution did not include the feature, in other

words that the feature is not in the range [ρmin, ρmax ]: in

this case the feature is rejected.

3.2.5. Landmark Initialization. When a Gaussian

Ŵi (μ
c
i , �

c
i ) is chosen, the corresponding feature j is de-

clared as a landmark, and is added to the stochastic map:

X+ =
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X−

X
j

f

)
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(
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X−,X

j

f

P
X
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Remember that for all steps since the feature was first

seen, we kept the feature observations, and the corre-

sponding poses of the robot have been estimated by the

filter. Up to now the observations were used only to com-

pute the likelihood of the hypotheses, but we can now

use this information to update the filter state. In our algo-

rithm, all available information in the initial step is added

to the stochastic map just after the feature is added as a

landmark.

4. Experiments

Besides the essential issues discussed in the former sec-

tions, the implementation of a complete SLAM solution

calls for additional developments: the prediction func-

tion that estimates the relative robot motions between

consecutive observations, an error model on this predic-

tion and an error model of the feature observations are

required. Also, an active way to select the features to be

mapped in the filter state helps to control the overall sys-

tem evolution. Finally, the availability of a ground truth

is necessary to quantitatively assess the precision of the

estimates.

These issues are presented in the following section for

both the stereovision and bearings-only cases, and Sec-

tions 4.2 and 4.3 present results obtained with a ground

rover and an airship.

4.1. SLAM Setup

4.1.1. Robot Motion Prediction.

3D Odometry. With a robot equipped with an inertial

measurement unit, an estimate of the 3D elementary mo-

tions u(k + 1) can be provided by integrating the odom-

etry data on the plane defined by the pitch and roll an-

gles of the robot. An actual error model on odometry

is difficult to establish: since the rover Dala experiences
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Left (t) Right (t)

Left (t + 1) Right (t + 1)

Figure 13. Illustration of the matches used to estimate robot motion with stereovision images, on a parking lot scene. The points matched between

the stereo images are surrounded by green rectangles. The robot moved about half a meter forward between t and t + 1, and the matches obtained

between the two left images are represented by blue segments.

important slippage and is equipped with a cheap inertial

measurement unit, we defined the following conservative

error model:

• The standard deviation on the translation parameters

�tx , �ty, �tz is set to 8% of the traveled distance,

• The standard deviation on�� (yaw) is set to 1.0 degree

per traveled meter, and to 1.0 degree for each measure

on ��, �� (pitch and roll).

Visual Motion Estimation (VME). With a stereo-vision

bench, the motion between two consecutive frames can

easily be estimated using the interest point matching al-

gorithm (Mallet et al., 2000; Olson et al., 2000). Indeed,

the interest points matched between the image provided

by one camera at times t and t + 1 can also be matched

with the points detected in the other image at both times

(Fig. 13): this produces a set of 3D point matches be-

tween time t and t + 1, from which an estimate of the

6 displacement parameters can be obtained (we use the

least square minimization technique presented in Arun

et al. (1987) for that purpose).

The important point here is to get rid of the wrong

matches, as they considerably corrupt the minimization

result. Since the interest point matching algorithm gener-

ates only very scarce false matches, we do not need to use

a robust statistic approach, and the outliers are therefore

simply eliminated as follows:

1. A 3D transformation is determined by least-square

minimization. The mean and standard deviation of the

residual errors are computed.

2. A threshold is defined as k times the residual error

standard deviation—k should be at least greater than

3.

3. The 3D matches whose error is over the threshold are

eliminated.

4. k is set to k − 1 and the procedure is re-iterated until

k = 3.

This approach to estimate motions yields precise re-

sults: with the rover Dala, the mean estimated standard

deviations on the rotations and translations are of the or-

der of 0.3◦ and 0.01 m for about half-meter motions (the

error covariance on the computed motion parameters is

determined using a first order approximation of the Jaco-

bian of the minimized function (Haralick, 1994)).

In the scarce cases where VME fails to provide a mo-

tion estimate (e.g. when the perceived area is not textured
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enough to provide enough point matches), the 3D odom-

etry estimate is used.

4.1.2. Observation Error Models

Landmark Observed in a Single Image. With the modi-

fied Harris detector we use, the error on the interest point

location never exceeds 1.5 pixel (Schmid et al., 1998):

we set a conservative value of σp = 1.0 pixel.

Landmark Observed with Stereovision. Given two

matched interest points in a stereovision image pair, the

corresponding 3D point coordinates are computed ac-

cording to the usual triangulation equations:

z =
bα

d
x = βuz y = γvz

where z is the depth, b is the stereo baseline, α, βu and γv

are calibration parameters (the two latter depending on

(u, v), the position of the considered pixel in the image),

and d is the disparity between the matched points. Using

a first order approximation, we have (Matthies, 1992):

σ 2
z ≃

(

∂z

∂d

)2

σ 2
d =

(bα)2

d4
σ 2

d

substituting the definition of z defined in (4.1.2), it fol-

lows:

σz =
σd

bα
z2

which is a well known property of stereovision, i.e. that

the errors on the depth grow quadratically with the depth,

and are inversely proportional to the stereo baseline. The

covariance matrix of the point coordinates is then:

⎡

⎣

1 βu γv

βu β2
u βuγv

γv βuγv γ 2
v

⎤

⎦

(

σd

bα
z2

)2

All the parameters of this error model are conditioned

on the estimate of σd , the standard deviation on the dis-

parity. The point positions are observed with a standard

deviation of 1 pixel, so we set σd =
√

2.0 pixel.

4.1.3. Feature Selection and Map Management. One

of the advantages of using interest points as features is

that they are very numerous. However, keeping many

landmarks in the map is costly, the filter update stage

having a quadratic complexity with the size of the state

vector. It is therefore desirable to actively select among all

the interest points the ones that will be kept as landmarks.

Figure 14. Selection of the points that will be kept as landmarks (green

squares). Some cells here contain more than one landmark: indeed,

when a landmark leaves a cell, it can move to a cell where there are

already landmarks (a new landmark is then generated in the old cell).

Landmark Initialization. A good landmark should eas-

ily be observable (matched), and landmarks should be

regularly dispatched in the environment. The strategy to

select the landmarks is the following: the image is reg-

ularly sampled in cells (Fig. 14). If there is at least one

mapped landmark in a cell, no new landmark is selected;

if not, the point that has the highest Harris low eigenvalue

λ2 is selected as a landmark. This ensures a quite good

regularity in the observation space (the image plane).

Map Management. In a first stage, all the landmarks

are integrated in the map. The corresponding observa-

tions are helpful to estimate the pose of the robot in

the short-term. Once a feature is not matched anymore

(either because it is out of the field of view or is not

matched), the associated landmark is only valuable for

a future loop closing: in the meantime it only consumes

computational resources. A successful loop closing does

not require many landmarks, only a few good ones are

necessary: our strategy is to keep the landmark density

under a given threshold (one landmark per 0.83 m3 in the

experiments), the least observed landmarks being simply

thrown away.

Loop Closing. Since no appearance model of the land-

marks is memorized, an image database is built to achieve

loop-closings: single images are stored every time the

robot travels a given distance, along with the correspond-

ing estimated robot pose and feature IDs. This database

is periodically searched for a possible loop-closing on

the basis of the current robot estimated position. For that

purpose, a loose test between the robot and stored images

positions is sufficient: one of the strengths of the matching

algorithm is that it is able to match points with no knowl-

edge of the relative transformation between the images
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Figure 15. Comparison of the estimated uncertainty on the robot pose with cameras looking forward and sideward (left: stereovision SLAM, right:

bearings-only SLAM). The robot follows a circular 6 m diameter circular trajectory during 3 laps.

(only a coarse estimate of the scale change is required,

up to a factor of 0.5). When a loop-closing detection oc-

curs, the corresponding image found in the database and

the current image are fed to the matching algorithm, and

successful matches are used to update the stochastic map.

4.1.4. Ground Truth. In the absence of precise devices

that provide a reference position (such as a centimeter ac-

curacy differential GPS), it is difficult to obtain a ground

truth for the robot position along a whole trajectory. How-

ever, one can have a fairly precise estimate of the true

rover position with respect to its starting position when it

comes back near its starting position at time t , using the

VME technique applied to the stereo pairs acquired at the

first and current positions. VME then provides the current

position with respect to the starting point, independently

from the achieved trajectory: this position estimate can

be used as a “ground truth” to estimate SLAM errors at

time t .
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Figure 16. Number of mapped landmarks (left) and number of tracked features (right) during stereovision SLAM and bearings-only SLAM (sideward

camera setup).

4.2. Results with a Ground Rover

This section presents results obtained using data ac-

quired with the rover Dala, equipped with a 0.35 m wide

stereo bench mounted on a pan-tilt unit (the images are

down-sampled to a resolution of 512 × 384). The Stereo

SLAM setup is straightforward, the motion estimate com-

puted with VME is used as the prediction input. For the

bearings-only SLAM, only the left images of the stereo

pairs are used, and odometry is used as the prediction

input.

4.2.1. Qualitative Results. Data acquired along a sim-

ple 3-loop circular trajectory with a diameter of 6 m pro-

vide insights on the behavior of the algorithms. Two sets

of data are compared here: one with the cameras looking

forward, and one with the cameras heading sideward.

Figures 15 and 16-left respectively illustrate the evolu-

tion of the estimated robot pose standard deviations and
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Figure 17. Left: trajectories obtained with VME integration and stereo SLAM. Right: trajectories obtained with odometry integration and bearings-

only SLAM (sideward camera setup).

Figure 18. Bearings-only SLAM loop closing: orthogonal projection of the landmarks (3σ ellipses) just before closing the first loop (left) and just

after the first loop (right). The grid step is 1 meter.

number of mapped landmarks. They exhibit the usual

loop-closing effects of SLAM: the uncertainty on the

robot pose dramatically drops after the first lap, and the

number of mapped landmarks stops growing once the

frist loop is closed.

The plots also exhibit better performance with the

sideward setup than with the forward setup. Indeed,

when the cameras are looking sideward, the features

are tracked on more frames: the mapped landmarks

are more often observed, and fewer landmarks are

selected. And in the bearings-only case, the side-

ward setup yields a greater baseline between consec-

utive images, the landmarks are therefore initialized

faster.

Finally, according to these plots bearings-only SLAM

seems to perform better than stereo SLAM, in terms of

robot position precision and number of mapped land-

marks. This is actually due to the fact that in stereo

SLAM, a feature needs to be matched between images

t − 1 and t and between the left and right images. As

can be seen on Fig. 16-right, there are some frames on

which few features are matched, which reduces the num-

ber of observations—note that the frame indices where

few features are matched correspond to the frame in-

dices of Fig. 15-left where the robot pose uncertainty

raises.

4.2.2. Quantitative Results. Results are now presented

on data acquired on a 100 m long trajectory during which

two loop closures occur, for both the stereovision and

bearings-only cases, the cameras being oriented sideward

(Fig. 17).

Loop-Closing Analysis. Figure 18 presents an overview

of the map obtained with bearings-only SLAM at differ-

ent points of the trajectory. The landmarks uncertainties
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Figure 19. Left: number of mapped features that are matched during the loop-closing process. Right: uncertainty of the estimated robot pose with

stereo and bearings-only SLAM.

Figure 20. Stereovision SLAM: left image of the frame 677 after

the second loop is closed. The overlay shows new features (yellow),

tracked features (green), and features matched during the loop-closing

process (blue), the yellow ellipses are the 3-σ bounds of the predicted

observations.

obviously drop after the loop-closing process has suc-

cessfully matched already mapped features: Fig. 19-left

shows when a loop-closing event is detected and

the number of landmarks successfully matched, and

Fig. 19-right show the evolution of the robot pose un-

certainty. Figure 20 shows the features used by SLAM,

after the second loop has been closed. Blue features

are the ones that have been mapped during the begin-

ning of the trajectory and that are “recovered” by the

loop-closing process: note that the predicted observa-

tions are consistent with the real observations, the de-

tected features lie in the ellipses that represents their

prediction.

Comparison Between Stereo SLAM and Bearings-Only

SLAM. As presented in Section 4.1.4, using VME be-

tween the first frame (70) and frame 463, we obtain

an accurate estimate of the actual robot pose at frame

463. Based on this reference, Table 2 compares the er-

rors in the poses estimated by the integration of VME,

stereo SLAM, the integration of odometry and bearings-

only SLAM. In both the stereo and bearings-only cases,

SLAM considerably reduces the errors made by a simple

integration of the prediction data.

Both algorithms perform well on this data-set, but

bearings-only SLAM does not produce a consistent pose

estimate. Bearings-only SLAM is very sensitive to the

prediction input: this is the only metric data in the system,

that sets the scale of the robot trajectory and of the esti-

mated map. On the ATRV Dala, the non-suspensed non-

orientable wheels are often slipping, which yields poor

odometry motion estimates (Fig. 17). A Gaussian error

model for this odometry is not well-adapted: this is cer-

tainly the main source of inconsistency here.

4.3. Results with a Blimp

We ran the algorithms on data acquired by the blimp

Karma equipped with a 2.1 m baseline stereoscopic bench

Table 2. Errors made by VME, stereo SLAM and bearings-only

SLAM between frames 70 and 463 (distances in meter, angles in

degree).

stereoSLAM Odometry boSLAM
Loop VME

70/463 Error Error Std. dev. Error Error Std. dev.

x 0.26 0.003 0.006 3.71 0.25 0.01

y 1.20 0.007 0.005 1.55 0.14 0.03

z 0.65 0.012 0.006 0.16 0.03 0.02

yaw 10.1 0.1 0.1 43.2 2.3 0.2

pitch 2.0 0.3 0.1 1.7 0.4 0.3

roll 7.3 0.4 0.2 0.03 0.08 0.2
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Figure 21. Comparison of the trajectory estimated by VME and stereo SLAM (3D view and projection on the ground). The trajectory is about

280 m long, and about 400 image frames have been processed.

Figure 22. The digital elevation map built with dense stereovision

and stereo SLAM trajectory estimate (the grid step is 10 meters).

(Fig. 1), using VME estimates as prediction for both

the stereovision and bearings-only cases (Karma is not

equipped with any ego-motion sensor). Figure 21 shows

the trajectories estimated with VME only and with the

stereo SLAM approach, and Fig. 22 shows a digital ter-

rain map reconstructed using dense stereovision and the

positions estimates provided by SLAM.

Table 3 compares the errors in the poses estimated by

the integration of VME, stereo SLAM, and bearings-only

SLAM, with the “ground truth” provided by the applica-

tion of VME between frames 1650 and 1961 (Fig. 23).

Here, the position resulting from the integration of VME

exhibits a serious drift in the elevation estimate, a drift

that is properly corrected by SLAM. Nevertheless, both

SLAM approaches do not provide a consistent pose esti-

mate: this is a well known problem of SLAM-EKF, that

is sensitive to modeling and linearization errors (Castel-

lanos et al., 2004). For large scale SLAM, one should

switch to one of the existing algorithm that copes with it,

Table 3. Loop closing results with the blimp (distances in meter, an-

gles in degree).

stereoSLAM boSLAM
Loop VME

1650/1961 Error Error Std. dev. Error Std. dev.

x 1.01 9.65 0.15 9.11 0.27

y 4.11 1.35 0.13 1.87 0.16

z 13.97 0.64 0.07 1.68 0.20

yaw 4.26 1.95 0.22 4.49 0.26

pitch 5.70 0.56 0.42 1.24 0.47

roll 7.66 0.2 0.16 0.59 0.24

such as hierarchical approaches which can use a different

optimization framework than EKF for closing large loops

(Estrada et al., 2005).

5. Conclusion

We presented two complete vision based SLAM solu-

tions: a classic EKF-SLAM using stereovision observa-

tions, and a bearing-only SLAM algorithm that relies on

monocular vision. Both solutions are built upon the same

perception algorithm, which has interesting properties for

SLAM: it can match features between images only with a

coarse estimation of scale change, which enables to suc-

cessfully close large loops. This would not be possible

with a classic Mahalanobis data association for stereovi-

sion, and even more difficult for monocular vision.

As compared to Se et al. (2002), not so many land-

marks are stored in the map, and loop closing is success-

fully achieved with a low number of landmarks (see Fig.

19): a good practical strategy for map management is

essential, as it reduces the computation requirements of

several parts of the whole SLAM process.

The presented bearing-only algorithm shows a quite

good behavior with real world long range data. In

particular, the delayed approach is well adapted to a
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Figure 23. Top: images used to establish the ground truth by applying VME between the reference frame 1650 and the frame 1961 of the trajectory

shown in Fig. 21. Green squares are the points matched between the two frames. Bottom: landmarks matched just after the loop closing. Left:

the current processed image, with the landmarks currently tracked (green squares), and the ones that have been perceived again and matched (blue

squares) with the stored image shown on the right.

real time implementation since it does not perform use-

less computations for unstable features which are rapidly

lost. Experimental results confirm that it is more ad-

vantageous to have the camera oriented sideward the

direction of travel: the best solution would definitely

be to use a panoramic camera. Also, a good preci-

sion of the prediction function is of essential impor-

tance to initialize consistent and precise landmarks po-

sitions: for a ground rover, an efficient setup would be

to use a stereovision bench to provide motion predic-

tions, and a panoramic camera to detect and map the

landmarks.

Finally, a weakness of our approach is that the loop

closing mechanism requires to store a lot of images. A

good solution would be to add a high level model to

the landmarks, that could be matched with the perceived

images—we believe the approach depicted in Rothganger

et al. (2003) is very relevant for instance.

Note

1. Localization based on radioed beacons, such as GPS, fall in this cate-

gory of approaches, the beacons playing the role of the a priori map.
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