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Abstract— This paper presents a method for localizing a
ground-based object when imaged from a small fixed-wing
unmanned aerial vehicle (UAV). Using the pixel location of
the target in an image, with measurements of UAV position
and attitude, and camera pose angles, the target is localized
in world coordinates. This paper presents a study of possible
error sources and localization sensitivities to each source. The
localization method has been implemented and experimental
results are presented demonstrating the localization of a target
to within 11 m of its known location.

I. INTRODUCTION

Unmanned vehicles are prime candidates for tasks involv-
ing risk and repetition, or what the military calls the “dull,
dirty and dangerous” [1]. The simplified goal of many of
these activities is to image and locate a target for tracking,
information-gathering or delivery purposes. Therefore, the
ability to explicitly determine the location of a visible,
ground-based object while only its general position is known
a priori would prove beneficial to the completion of these
tasks. The problem of estimating an object’s exact location is
called “localization”. Many of the current approaches to this
problem involve imaging a target from an unmanned blimp
or rotor craft [2], [3], [4]. Due to their low-altitude, low-
velocity flight capabilities, these aircraft allow significant
simplification of the problem. However, blimps are not well
suited for use in high winds or inclement weather, and the
costs and complexities associated with rotor craft are high.
It is therefore reasonable to explore localization methods
involving more robust and less-expensive fixed-wing UAV
platforms.

Fixed-wing UAVs, while lacking the ability to hover,
present unique benefits such as adaptability to adverse
weather, a shorter learning curve for the untrained operator
and extreme durability against harsh environments. Also,
the minimum airspeed requirement associated with a fixed-
wing aircraft provides images from multiple vantage points,
allowing for more robust localization. Man-packable, fixed-
wing UAVs are small enough to be carried and operated by a
single person while offering many of the same advantages as
their larger counterparts. The development and deployment
of such UAVs is comparatively inexpensive, making them
expendable in some scenarios [5].
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The problem often exists in both military and search
and rescue scenarios where an object needs to be found
or photographed when only its general location is known.
The goal of this research is to determine the exact location
of this object or target in world/inertial coordinates using a
gimballed camera on-board a small, fixed-wing UAV.

Initially finding and recognizing the target is accomplished
by allowing the UAV to follow a prescribed search pattern
covering the general area where the target is known to be
while a color-segmentation routine searches for the highly-
visible target within the camera’s field of view. Once de-
tected, localization begins immediately and continues while
the camera is actively gimballed to keep the target in its
image as the UAV adjusts its flight path to orbit the newly
calculated estimates of the target’s inertial location. These
estimates stem from measurements of UAV location and
attitude as well as camera pose angles and the target’s
pixel location in the image. Errors and uncertainties in
measurements and estimates will degrade the estimate of
target location. For this reason, a study of possible error
sources and their propagation through the localization routine
is also presented.

Vision-based localization is a well-studied problem. How-
ever, much of the research involves the self-localization
of unmanned ground vehicles in controlled laboratory set-
tings [6], [7], [8], [9]. This research extends the prior research
by considering implementation on a small airborne platform
operating in an unstructured environment. Closely related
is the research of Chaimowicz, et al. [2], who present the
results of an experiment using a tethered blimp to localize a
stationary object on the ground. While hovering at an altitude
of 18 m and equipped with a fixed camera, the blimp used a
series of images containing both the target and a set of at least
6 known landmarks to estimate target location. Although
this method led to very accurate localization and serves as
a useful benchmark, it is limited. Chaimowicz also used
GPS and IMU measurements from the blimp for localization,
which resulted in estimates within 8.2 m of the target’s GPS
location.

Rysdyk [10] also conducted similar research that simulates
maintaining a constant line-of-sight with a ground-based
target from a fixed-wing UAV. He outlines camera gimbal
control, but emphasizes UAV path-planning. Stolle [11]
presents similar research, but with more details on camera
control. Both Rysdyk and Stolle assume a priori knowledge
of precise target location and that the on-board camera is
located at the UAV center of mass.

This paper discusses research that extends the simulated



camera gimbal control done by Rysdyk and Stolle into
hardware implementation on board a small, fixed-wing UAV
flying at a nearly constant velocity of 13 m/s and at an
altitude of 60 m. This paper presents a general approach
to target localization from an airborne camera, provides
an analysis of possible error sources, and demonstrates the
effectiveness of the approach with experimental results.

II. TECHNICAL APPROACH

A simple projection camera model is shown in Figure 1.
The point q is the projection of the point pcobj onto the image
plane in pixels (ip), where pcobj denotes the location of an
object p relative to the center of the camera. It is assumed
that the location q is known in pixels and we desire to know
it in meters, so that pcobj can be found using similar triangles.
Trucco, et al [12] show that the change from pixels to meters
in the image frame is accomplished by

xim = (−yip + 0y)Sy
yim = (xip − 0x)Sx , (1)

where 0x and 0y denote the necessary x and y offsets to
bring the (0, 0) point to the image center from the upper-left
hand corner. Sx and Sy denote the image scalars for image
y and x directions respectively due to the change of axes
from ip to im coordinates.
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Fig. 1. Camera frames

If q is converted into meters, it can be scaled into the
camera frame using the law of similar triangles and the
camera focal length, f . However, since the distance λ from
the camera center to pcobj is not known, scaling can only occur
in two dimensions. For this reason, λ is usually extracted and
the scaling process is combined with Equation (1) to form
an expression for pcobj in terms of known pixel location q, as
shown by

pcobj = λC−1q , (2)

where C is a matrix containing the scaling information for
transformation between the camera, c, and the pixel, ip,
coordinate frames. This is shown by

λq =

⎡
⎣ 0 fx 0x
−fy 0 0y
0 0 1

⎤
⎦

︸ ︷︷ ︸
C

pcobj , (3)

where f
Sx

= fx and f
Sy

= fy . As can be seen, an object can
be successfully localized when λ is known. We will return to
the issue of finding λ in section II-B. A few more coordinate
frames are required when placing the camera in the sky, as
seen in Figures 2 and 3.
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Fig. 3. Coordinate frames

All coordinate frames follow a right-hand rule. The camera
frame c, has its origin at the camera’s center, with the positive
Z-axis, Zc, representing the optical axis of the camera. The
origin of the gimbal frame g, is the center of the two-axis
gimbal. The UAV body frame is centered at the UAV center
of mass, with the X-axis, Xb, out the nose of the aircraft and
the Y-axis, Yb, out the right wing. The UAV vehicle frame v,
is identical to the inertial frame I , only translated so the UAV
center of gravity is the origin. As it will be necessary to move
between coordinate frames frequently, a set of homogeneous
transformation matrices are now introduced.



A. Transformations

A homogeneous transformation matrix (HTM) combines
both rotation and translation between coordinate frames into
a single matrix. The structure of an arbitrary HTM, T j

i , is
shown by

T ji =
[

R −dji
0 0 0 1

]
, (4)

whereR represents a (3×3) rotation matrix and dji represents
a (3 × 1) translation vector. Both rotation and translation
occur from the ith to the jth coordinate frame. However,
when written in this manner, the rotation occurs first, fol-
lowed by the translation. Therefore the translation vector is
resolved in the j th coordinate frame and negated to avoid
requiring a pre-multiplication by R j

i . The function of each
HTM is described in Table I, and this section will discuss
each individually, identifying its elements and purpose.

TABLE I

HOMOGENEOUS TRANSFORMATION MATRICES.

HTM Description
T v

I Transformation from Inertial to UAV Vehicle frame
T b

v Transformation from UAV Vehicle to UAV Body frame
T g

b Transformation from UAV Body to Gimbal frame
T c

g Transformation from Gimbal to Camera frame

1) Transformation T vI : Since the transformation from the
inertial to the vehicle frame is actually a single translation,
T vI will only depend on the UAV’s GPS location and
barometric altitude measurements shown by

T vI =
[
I −dvI
0 1

]
,where

dvI =

⎡
⎣ xUAV

yUAV

−hUAV

⎤
⎦ , (5)

where xUAV and yUAV represent the North and East location
of the UAV as measured by the GPS, and hUAV represents the
UAV’s altitude as measured by a barometric pressure sensor.

2) Transformation T bv : The transformation from the vehi-
cle frame to the UAV body frame, T bv , consists of a single
rotation based on measurements of Euler angles, shown by

T bv =
[
Rbv 0
0 1

]
,where

Rbv =

⎡
⎣ cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ
cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ

⎤
⎦ ,(6)

where φ, θ and ψ represent the UAV’s roll, pitch and heading
angles in radians. Also, c∗ and s∗ abbreviate cos(∗) and
sin(∗) respectively.

3) Transformation T gb : The transformation from the UAV
body to the gimbal frame, T gb , will depend on the location
of the UAV’s center of mass with respect to the gimbal’s
rotation center. This vector, denoted by dgb , is resolved in the
gimbal frame. T gb will also depend on the rotation that aligns
the gimbal’s coordinate frame with the UAV’s body frame.
This rotation is denoted Rgb and requires measurements of
the camera’s azimuth and elevation angles αaz and αel
respectively, both of which are known. This transformation
is shown by

T gb =
[
Rgb −dgb
0 1

]
,where

Rgb = Ry,αel
Rz,αaz

=

⎡
⎣ cel 0 sel

0 1 0
−sel 0 cel

⎤
⎦

⎡
⎣ caz saz 0
−saz caz 0

0 0 1

⎤
⎦

=

⎡
⎣ celcaz celsaz sel
−sel caz 0
−selcaz −selsaz cel

⎤
⎦ , (7)

where dgb denotes the vector from the gimbal center to the
UAV center of mass, αaz denotes the azimuth angle of
rotation about Zg, and αel the elevation angle of rotation
about Yg, after αaz .

4) Transformation T cg : T cg is the transformation from
gimbal to camera reference frames. It will depend on the
vector dcg , which describes the location of the gimbal’s
rotation center relative to the camera center and is resolved in
the camera’s coordinate frame. T cg also depends on a simple
rotation Rcg, which aligns the camera’s coordinate frame with
that of the gimbal. It is shown by

T cg =
[
Rcg −dcg
0 1

]
, where

Rcg =

⎡
⎣ 0 0 −1

0 1 0
1 0 0

⎤
⎦ , (8)

since we choseXc = −Zg and Zc = Xg. Also, dcg denotes the
vector from the camera center to the gimbal center, resolved
in camera frame.

We now have four HTMs that are based on a priori
calibrations and real-time measurements from on-board sen-
sors. This means we can freely move between coordinate
frames as data is collected during flight. We now can extend
Equation (2) from the camera to the inertial frame, as shown
by

pIobj = λ[CT cgT
g
b T

b
vT

v
I ]−1q , (9)

where pIobj denotes the object location in the world, or inertial
frame. Knowing all other parameters on the right-hand side
of Equation (9), we are now ready to find the image depth,
λ.



B. Image Depth

Image depth refers to the distance along the camera’s
optical axis, Zc, to the object of interest in the image, and
its value is usually unknown [13]. To estimate λ, the camera
center is represented in inertial coordinates by pIcc, as shown
in Figure 4 and defined as

pIcc =

⎡
⎢⎢⎣
x
y
z
1

⎤
⎥⎥⎦
I

cc

= [T cgT
g
b T

b
vT

v
I ]−1

⎡
⎢⎢⎣
x
y
z
1

⎤
⎥⎥⎦
c

cc

, (10)

where the vector [x y z 1]ccc
T is equal to [0 0 0 1]T , since

it describes the location of the camera center in camera
coordinates. Figure 4 also shows the location q, which was
introduced in Figure 1.
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Fig. 4. Localization vectors

The location of q in the inertial frame is described by the
vector p̄Iobj, which is depicted in Figure 5 and defined as

p̄Iobj =

⎡
⎢⎢⎣
x̄
ȳ
z̄
1

⎤
⎥⎥⎦
I

obj

= [CT cgT
g
b T

b
vT

v
I ]−1q , (11)

where q contains the target’s pixel location, shown by

q = [xip yip 1 1]T . (12)
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Fig. 5. Localization vectors

Referring again to Figure 5, and noting the implied as-
sumption that the zero-altitude plane is defined where the
UAV’s altitude sensor was zeroed, the z components of p̄Iobj

and pIcc form the relationship

0 = zIcc + λ
(
z̄Iobj − zIcc

)
. (13)

The zero on the left-hand side of Equation (13) follows
from the assumption that the target lies on this plane of
zero altitude. This assumption is justified since future height-
above-ground, or terrain map measurements can provide
information to make the left-hand side of Equation (13)
known, but non-zero. Since both z Icc and z̄Iobj are known
from Equations (10) and (11) respectively, Equation (13) can
easily be solved for λ as

λ =
−zIcc(

z̄Iobj − zIcc
) . (14)

Since the inertial Z-axis, ZI , is defined positive toward the
center of the earth, zIcc will be negative for flight altitudes
greater than the calibrated zero. Thus, Equation (14) yields
a positive value for λ, as expected.

C. Target Location

Now that the depth of our current image is known, we can
easily estimate the inertial location of the target in the image
by

pIobj = λ[CT cgT
g
b T

b
vT

v
I ]−1q , (15)

or by continuing the method used to find λ, as shown by

pIobj = pIcc + λ
(
p̄Iobj − pIcc

)
. (16)

We see that the localization of a visible target was accom-
plished using only a camera and readily accessible UAV in-
formation. Noise and parameter uncertainty can significantly
affect the quality of the localization estimate. Section III
presents a study of error sources and their effects on target
localization.



III. ERROR ANALYSIS

Like all aircraft, UAVs are susceptible to outside influences
including wind gusts, jet streams, variations in atmospheric
pressures, air densities and temperatures. These phenomena,
among others, add unwanted noise to aircraft sensors. This
noise, combined with sensor errors and inaccuracies, contam-
inates each measurement of position, altitude, airspeed and
heading as well as roll, pitch and yaw rates. The purpose
of this section is to explore the main error sources in UAV
and gimbal control and to study how each one individually
affects the target localization result.

A. Error Sources

In the equation

pIobj = λ[CT cgT
g
b T

b
vT

v
I ]−1q, (17)

each term introduces inaccuracies to the end result. Since λ is
calculated from measurements of UAV altitude, its associated
errors will be accounted for through altitude uncertainty.
Errors in the camera calibration matrix, C, are comparatively
small since they originate in the calibration routine itself
and are therefore neglected. The transformation T c

g depends
on the location of the UAV center of mass with respect
to the camera center, which can be measured to within
millimeters and can also be ignored. T gb on the other hand,
will depend on camera gimbal angles, which are not exactly
known. The camera gimbal is controlled via commercially
available hobby servos, which laboratory tests have shown
to be accurate to less than half a degree and precise to
less than one fifth of a degree. These measures are only
valid when the servos are given sufficient time to reach their
desired angles. The time required to do so is on the order
of 5 ms/deg, which is sufficiently fast for typical changes in
desired gimbal angles.
T bv introduces further inaccuracies through errors in UAV

attitude estimation. Euler angles φ, θ, and ψ are estimated
from gyro measurements of roll, pitch and yaw rates as
well as accelerometer readings with reference to the gravity
vector [14], [15]. Unfortunately, gyros tend to drift, causing
accumulating errors in ψ. Estimates of φ and θ are gener-
ated by subtracting the gravity vector from accelerometer
measurements, a technique which works well under static
conditions. However, this subtraction yields degraded results
when the UAV is experiencing accelerations common during
flight. Through laboratory tests, φ, θ and ψ have been
shown to be statically accurate to within five degrees, and
dynamically accurate to within ten degrees.

The translation from inertial to vehicle frames, accom-
plished by T vI , adds inaccuracies that stem from both GPS
measurements and barometric altitude readings. The major
GPS inaccuracies are attributed to a variety of sources
that combine to achieve an accuracy of roughly 10 m in
the horizontal plane, and 25 m in the vertical plane [16].
For testing purposes, the known location of the target was
measured using the GPS unit on the UAV. Since the bias
portion of the GPS error equally effects measures of both

UAV and target positions, it does not contribute to the error
between the known location of the target and the estimated
location of the target. Random errors in GPS measurements
are average approximately 5 m in the horizontal plane.
With the addition of an absolute pressure sensor, altitude
inaccuracies are reduced to roughly 8 m [17].

TABLE II

UNCERTAINTIES,U∗

Source ± Value Source ± Value
αaz .5 deg αel .5 deg
φ 5 deg θ 5 deg
ψ 5 deg xUAV 5 m
yUAV 5 m hUAV 8 m
xip 5 pixels yip 5 pixels

The target pixel location, q, is also subject to uncertainties,
including visual occlusions and lighting changes. Accounting
for such, it is believed that q can be trusted within about 5
pixels in both xip and yip. Although actual uncertainties are
not known, the values shown in Table II are the results of
laboratory tests and it is assumed that they represent a 95%
probability.

B. Sensitivity and Propagation

This section presents a study of localization sensitivity to
uncertainties in measurements of UAV location and attitude
as well as camera gimbal angles using the method of
sequential perturbation [18]. The localization estimate of the
target position can be expressed as a function of the UAV
location and attitude and the gimbal azimuth and elevation
angles according to

pIobj = λ[CT cgT
g
b T

b
vT

v
I ]−1q (18)

= F (αaz , αel, φ, θ, ψ, (x, y, h)UAV) . (19)

Sequential perturbation is a numerical approach to estimate
the propagation of uncertainties through to a result and is
used when direct calculation of partial derivatives is not
feasible, as is the case with Equation (19). Using sequen-
tial perturbation, sensitivities to errors in each variable are
calculated under a nominal flight condition, in this case a
large-orbit coordinated turn. These sensitivities are listed
in Table III and show that errors in UAV roll angle and
camera elevation angle most dramatically affect localiza-
tion outcome. The fact that they are equally important is
expected since during a localization flight the camera is
panned to roughly ninety degrees, which aligns Y g, the
axis about which elevation occurs, with Xb, the axis about
which aircraft roll occurs. When aligned in this manner, the
localization algorithm cannot differentiate between changes
in elevation angle and changes in UAV roll angle.

Using Table II in conjunction with Table III, the total
expected localization error, Γ, can be computed [18] by

Γ =

√√√√ N∑
i=1

(
∂F

∂i
Ui

)2

= 14.9 m , (20)



TABLE III

NUMERICALLY APPROXIMATED PARTIAL DERIVATIVES

i Parameter ∂F/∂∗
1 αaz 1.1 m/deg
2 αel 1.7 m/deg
3 φ 1.7 m/deg
4 θ 1.1 m/deg
5 ψ 0.8 m/deg
6 xUAV 1.0 m/m
7 yUAV 1.0 m/m
8 hUAV 0.8 m/m
9 xip 0.15 m/pixel
10 yip 0.19 m/pixel

where i refers to each of the N parameters on which F is
dependent, as listed in Table III. We therefore conclude that
it is theoretically possible to locate a target within 15 m using
computer vision from a fixed-wing UAV under nominal flight
conditions of 60 m altitude and a large-radius coordinated
turn.

IV. AVERAGING METHOD

Since each estimate of its location requires only one image
of the target, it is theoretically possible to generate esti-
mates at the frame rate of the camera. Although bandwidth
constraints make this impossible, we can achieve several
estimates per second, allowing for effective filtering to help
reduce error. In this paper, we apply Recursive Least Squares
(RLS) to filter the estimates.

Recursive Least Squares: Recursive Least Squares (RLS)
is a simple method of recursively fitting a set of points
to some function of choice by minimizing the sum of the
squares of the offsets of the points. Typically, an RLS
algorithm is used to fit a set of points to a characteristic
line or quadratic, however, it can be also be used to find
a characteristic point. In this case, the result of the RLS
algorithm is identical to the result of a true average. The
RLS algorithm implemented is detailed in Algorithm 1.

V. HARDWARE TESTBED

BYU has developed a reliable and robust platform for
testing unmanned air vehicles [19], [20]. Figure 6 shows
the key elements of the testbed. The first frame shows
BYU’s Kestrel autopilot which is equipped with a Rabbit
3400 29 MHz processor, rate gyros, accelerometers, absolute
and differential pressure sensors. The autopilot measures
3.8× 5.1× 1.9 cm and weighs 17 grams.

The second frame in Figure 6 shows the airframes used
for the flight tests reported in this paper. The airframe is a
1.2 meter wingspan Zagi XS EPP foam flying wing, which
was selected for its durability, ease of component installation,
and flight characteristics. Embedded in the airframe are the
Kestrel autopilot, batteries, a 1000 mW, 900 MHz radio
modem, a GPS receiver, a video transmitter, and a small
analog camera.

The third frame in Figure 6 shows the ground station
components. A laptop runs the Virtual Cockpit software that
interfaces through a communication box to the MAVs. An

Algorithm 1 RLS Filter.

Input camera center location: pIcc ← [xIcc, yIcc, zIcc, 1]T

Input unscaled target location: p̄Iobj ← [x̄Iobj, ȳ
I
obj, z̄

I
obj, 1]T

Input image depth estimate: λ

{Pseudo-Code for X}
Persistent PN , AN , bN
aN1 ← I1×1

{I1×1 refers to the (1× 1) identity matrix}
bN1 ←

[
xIcc + λ(x̄Iobj − xIcc)

]
{The same equations apply for Y , only

bN1 ← [yIcc + λ(ȳIobj − yIcc)]}

if isempty(AN ) then
AN ← [aN1 ]
bN ← [bN1 ]
PN ← (ANTAN )−1

XN1 ← PNAN
T bN

else
PN1 ← PN − PNaN1

T aN1PN

1+aN1PNaN1
T

AN1 ← [AN aN1 ]T

bN1 ← [bN bN1]T

XN1 ← PN1AN1
T bN1

end if

PN ← PN1

AN ← AN1

bN ← bN1

return XN1

RC transmitter is used as a stand-by fail-safe mechanism to
facilitate safe operations.

VI. EXPERIMENTAL RESULTS

The results of an initial hardware experiment are shown
in Figure 7. The plot shows actual, estimated and filtered
target locations from a UAV flying at 60 m altitude in a
50 m radius circular orbit around an initial guess of the
target location. As can be seen in Figure 7, the filtered
estimates of target location are nearly within the expected
accuracy range of 15 m. At the start, the first few estimates
are outside the predicted error radius. However, they quickly
move into it as more estimates are made and the target’s
position is known with more confidence. The time history of
the localization error is shown in Figure 8 demonstrating the
rapid convergence of the RLS estimate to a quasi steady-state
error of 10.9 m. In this case, RLS estimates converge within
about 20 s, which is the time required to fly about one half
of an orbit. Two main factors are believed to contribute to
the steady-state error: attitude estimation errors and lack of
synchronization between attitude and position telemetry and
vision data. Future efforts will attempt to reduce these error
sources to further improve localization capabilities.



Fig. 6. (a) Kestrel autopilot. (b) Zagi airframes. (c) Ground station components.
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Fig. 7. Localization results

VII. CONCLUSIONS

This paper demonstrates the feasibility of vision-based
target localization from a small, fixed-wing UAV. Results
from hardware implementation show that the method pro-
duces satisfactory results, with excellent prospects for future
improvement. Localization estimates could be improved by
increasing the accuracy of attitude estimates, most notably
the UAV roll angle.
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