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Abstract— In this paper we study the problem of acquiring
a topological model of indoors environment by means of visual
sensing and subsequent localization given the model. The re-
sulting model consists of a set of locations and neighborhood
relationships between them. Each location in the model is
represented by a collection of representative views and their
associated descriptors selected from a temporally sub-sampled
video stream captured by a mobile robot during exploration.
We compare the recognition performance using global image
histograms as well as local scale-invariant features as image
descriptors, demonstrate their strengths and weaknesses and
show how to model the spatial relationships between individual
locations by a Hidden Markov Model. The quality of the acquired
model is tested in the localization stage by means of location
recognition: given a new view or a sequence of views, the most
likely location where that view came from is determined.

Index Terms— Vision based navigation, localization, mobile
robots

I. INTRODUCTION AND RELATED WORK

The acquisition of unknown environment models, naviga-

tion and pose maintenance belong to the essential capabilities

of a mobile robots. The approaches for vision-based model

acquisition and localization typically strived to obtain either

metric or topological models. The topological models were

commonly induced by visibility regions associated with the

artificial landmarks. Artificial landmarks simplified the issues

of landmark recognition and enabled reliable estimation of

the robot’s pose with respect to a landmark [1], [2]. In other

instances the nodes of the topological model corresponded to

segments of trajectories where the set of interest points can

be successfully tracked [3]. The techniques which tried to

bypass the choice of artificial landmarks have been mainly

motivated by approaches used for object recognition. One

of the main concerns of these methods is the choice of

image representation, which could guarantee some amount of

invariance with respect to variations in pose, illumination and

scale and be robust to partial occlusion and clutter. The image

representations proposed in the past comprised of descriptors

computed locally at selected image locations or globally over

the entire image. The image locations were selected using

various saliency measures and their associated rotationally or

affine invariant feature descriptors [4], [5], [6] then enabled ef-

fective matching of overlapping and possibly widely separated

views. Alternative global descriptors were derived from local

responses of filters at different orientations and scales [7] or
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multi-dimensional histograms [8], [9] computed over the entire

image. In case of omni-directional views representations in

terms of eigenviews obtained by principal component analysis

were applied successfully both for topological and metric

model acquisition, thanks to small variations of the image

appearance within a location and rotationally invariant image

representations [10], [11]. The use of local point features for

both metric and topological localization was proposed by [12],

[13]. In both of these instances the odometric readings were

used in connection with the visual estimates.

The problem of building a metric model and simultaneous

localization (SLAM) using solely visual sensing has been

demonstrated successfully in case of smaller, single room

environments [14] or trinocular stereo [15]. The applicability

of these purely vision-based methods to the problems of the

scale comparable to those achieved by laser range sensors is

very difficult due to often ambiguous nature of visual measure-

ments. In order to enable map building and localization solely

by means of visual sensing, suitable representations of the

environment at different spatial scales and associated means

of localization. The advantages of such representations have

been pointed out previously by [16] both from the perspective

of model building, localization as well as navigation given

the model. These types of hybrid models have been already

explored previously using ultrasound sensing [17].

In our approach, the final model will be represented in terms

of individual locations, each characterized by a set of represen-

tative views. Within the location we will endow the model with

a local geometry relative to the set of representative views.

In this paper we discuss a method for acquiring the coarse

structure of the environment in terms of its topology with the

localization being solved by means of location recognition. We

compare two different representations of locations in terms of

image orientation histograms we proposed previously [18] and

local scale invariant features. We report the recognition perfor-

mance using a single view at the time and demonstrate how to

exploit the spatial relationships between locations to improve

the classification results. The use of spatial relationships is

closely related to recently published work by [19] on using

contextual information for place and object recognition. Their

approach considered slightly different image representation

and used hand labelled data set for learning the observation

likelihood of individual locations.



II. APPROACH

We propose to represent the large scale structure of the

environment in terms of its topology captured by a location

graph. The nodes of the graph corresponds to individual

locations and the transitions represent neighborhood relation-

ships between them. In the presented work we focus on

the localization scheme enabled by recognition of locations,

which loosely correspond to the regions in the robot’s work

space which are similar in their appearance. The neighboring

locations are typically separated by regions where significant

robot navigation decision have to be made; such as hallway

intersections, corners and doorways. Initially, the frames of

the temporally sub-sampled video sequence obtained in the

exploration stage are partitioned and labelled as belonging to

different locations. After obtaining a labelled set of views asso-

ciated with the individual locations, we represent each location

in terms of representative feature vectors. In the classification

stage we determine given a previously unseen view, what is the

location it most likely comes from. Low location likelihoods,

which in the presence of thresholds would yield classification

errors, are resolved in the second stage by exploiting the

temporal context and spatial relationships between neighboring

locations modelled in terms of Hidden Markov Model (HMM).

We demonstrate the performance of the proposed approach on

the model acquisition and localization experiment in indoors

environment comprised of 18 locations.

III. IMAGE FEATURES

In order to obtain image representation which captures the

essential appearance of the location and is robust to occlusions

and changes in image brightness we compare two different

image descriptors and their associated distance measure. In the

first case we use image histograms integrated over large image

subregions and in the second case each image is represented

by a set of local scale-invariant features.

A. Image Histograms

The gradient orientation histograms are obtained by first

computing the image derivatives [Ix, Iy]T = [ ∂I
∂x

, ∂I
∂y

]T and

assigning orientation to each pixel as atan2(Iy, Ix). The

contribution of each pixel to the histogram is weighted by

its gradient magnitude m(x, y) =
√

I2
x + I2

y , which has

been initially normalized to [0, 1]. In order to obtain better

discrimination capability of this global representation, we

retain some of the spatial information present in the image by

computing the histogram for five sub-images (four quadrants

and the central region) and stacking them together to form an

image descriptor. The most notable characteristic of orientation

histogram feature is that it properly reflects the changes in

image appearance due to portions of the environment leaving

the field of view and reflect presence of corners, doors,

and bulletin boards; characteristics which intuitively represent

different locations.
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Fig. 1. Locations l5 (top) and l3 (bottom) of the 4
th floor, detected scale

invariant features and global gradient orientation histograms (right). The circle
center represents the keypoint’s location and the radius the keypoint’s scale.

B. Scale-Invariant Features

The second descriptor we consider are the scale-invariant

(SIFT) features proposed by D. Lowe [20]. The SIFT features

correspond to highly distinguishable image locations which

can be detected efficiently and have been shown to be stable

across wide variations of viewpoint and scale. Such image

locations are detected by searching for peaks in the image

D(x, y, σ) which is obtained by taking a difference of two

neighboring images in the scale space

D(x, y, σ) = (G(x, y, kσ) − G(x, y, σ)) ∗ I(x, y)

= L(x, y, kσ) − L(x, y, σ). (1)

The image scale space L(x, y, σ) is first build by convolving

the image with Gaussian kernel with varying σ, such that at

particular σ, L(x, y, σ) = G(x, y, σ) ∗ I(x, y). Candidate fea-

ture locations are obtained by searching for local maxima and

minima of D(x, y, σ). In the second stage the detected peaks

with low contrast or poor localization are discarded. More

detailed discussion about enforcing the separation between

the features, sampling of the scale space and improvement in

feature localization can be found in [20], [21]. The keypoint

descriptor is then formed by computing local orientation

histograms (with 8 bin resolution) for each element of a 4×4
grid overlayed over 16 × 16 neighborhood of the point. This

yields 128 dimensional feature vector which is normalized to

unit length in order to reduce the sensitivity to image contrast

and brightness changes in the matching stage. Figure 1 shows

the keypoints found in the example images in our environment

and their associated global orientation histograms. In our

experiments the number of features detected in an image of

size 480× 640 varies between 10 to 1000. In many instances

this relatively low number of keypoints, is due to the fact

that in indoor environments many images have small number

of textured regions. Note that the detected SIFT features

correspond to distinguishable image regions and include both

point features as well as regions along line segments.



IV. ENVIRONMENT MODEL

In the exploration stage the images were taken by a still

digital camera about 2 meters apart, with the orientation in

the direction of mobile robot heading. The path along which

the training sequence was taken visited all locations (some of

them twice) and is depicted in Figure 2. In this data set the

heading direction was in most cases aligned with the principal

directions of the world coordinate frame or perpendicular to

it. Along the exploration route the consecutive orientation his-
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Fig. 2. Floor plan of the 4
th floor; exploration route and labels associated

with individual locations labelled by hand.

tograms were compared using χ2 empirical distance measure

between two distributions

χ2(hi, hj) =
∑

k

(hi(k) − hj(k))2

hi(k) + hj(k)
(2)

where k is the number of histogram bins. In our case an

image descriptor was obtained by stacking five magnitude

weighted sub-image orientation histograms. The discrimina-

tion capability of the orientation histograms is depicted in

Figure 3. The affinity matrices depict all pairwise compar-

isons between the views using χ2(hi, hj) and the temporal

distance profile measure distances between two consecutive

views of the sub-sampled image sequence χ2(ht−1, ht). Note

pairwise distance − histograms of sub−images
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Fig. 3. The pairwise and temporal comparison of orientation histograms of
images taken by still digital camera: global histograms image representation
(left) and sub-image histograms (right).

that the affinity matrices have clear distinguishing clusters

corresponding to the images collected along particular path

at locations l1, l2, . . . , lN . The non-diagonal structure of the

affinity matrix in Figure 3 also reveals that certain sub-

sequences are similar to each other in spite of the fact that

they belong to different locations. This is not surprising

since certain locations (e.g. corridors) appear very similar if

compared using the orientation histogram descriptor. The clear

transitions between the locations are represented by peaks in

the temporal histogram comparison plot. These were typically

caused by sudden change of robots’ heading or more gradual

change in the location appearance.

In the case of SIFT features the transitions between in-

dividual locations are determined depending on the number

of features which can be successfully matched between the

successive frames. As long as 4% of features or at least

six feature points could be matched successfully between the

consecutive views they were assigned as belonging to the same

location. More detailed description of the model acquisition

stage using SIFT features can be found in [22].

The assignment of individual views to clusters is in our

case induced from the temporal relationships acquired during

exploration. We have examined two different methods for

initial label assignment; automatic and by hand and obtained

comparable recognition results. The automatic location label

assignment was obtained by searching for the peaks in the

temporal histogram distance profile. First coarse peaks were

detected and further refined using an adaptive threshold and

the minimum separation distance criterion, yielding a set of

dominant peaks. Note that in Figures 3 the dominant peaks

are quite distinguishable, clearly separating images associated

with the individual locations. In the experiments reported in

this paper the location labels are assigned by hand due to the

fact that the exploration path contains several cycles. These can

be resolved by incorporating odometric estimates as a part of

the state estimation.

After temporal clustering of the image sequences obtained

in the exploration phase, the sequence was partitioned into

18 locations. Due to the rectilinear structure of indoors en-

vironments and presence of large number of corridors, the

semantics associated with individual locations corresponds to

places in the map approached with some canonical orientations

coarsely quantized into four different directions (N, W, S, E).

Hence being at the same (corridor) location with two opposite

orientations corresponds to being at two different locations

in our model. Although at this stage this coarse model is

sufficient, in order to enable complete metric localization (e.g.

within a room), finer quantization of the orientation space is

required.

A. Location Representation

Once the initial sequence was partitioned into invidiual

locations, we next obtain representation for each location in

terms of a smaller number of prototype image descriptors.

In case of orientation histograms we have used Learning

Vector Quantization technique (LVQ). LVQ examines the data

represented as vectors xi ∈ R
n and in an iterative fashion

builds a set of prototype vectors, called codebook vectors,

that represent different regions in the n-dimensional feature

space. We used the existing implementation of LVQ PAK

package [23] with χ2 statistics in place of the distance func-



Fig. 4. Examples of representative views of 12 out of 18 locations.

tion1. In the second method we tested, all the views belonging

to a particular location were first sampled uniformly, followed

by K-means clustering stage. The number of samples varied

depending on the location and number of clusters per location

varied between 1 to 5.

In case of SIFT feature representation, each location was

represented by a number of representative views and their

associated SIFT features. The sparsity of the model is directly

related to the capability of matching SIFT features in the

presence of larger variations in scale. The number of repre-

sentative views varied between one to four per location and

the views were obtained by regular sampling of sub-sequences

belonging to individual locations. Examples of representative

views associated with individual locations are depicted in

Figure 4.

V. LOCATION RECOGNITION

In the first location recognition experiment we have ran-

domly chosen 70%, 80% or 90% of total frames as the

training data and the whole sequence is treated as testing

data. The recognition experiment was repeated 50 times for

K-means and 10 times for representation obtained using LVQ.

The recognition rate was recorded each time and averaged

over all trials. In both cases we have used nearest neighbor

classifier to determine the location which the view came from.

The recognition rates of this experiment are in Figures 5 are

recorded as a function of total number of prototypes for all

locations. The number of prototypes per class depends on

differs between locations.

In the case of SIFT keypoints the environment model obtained

in the previous section consists of a database of model views 2.

The i-th location in the model, with i = 1, . . . N is represented

by n views Ii
1
, . . . , Ii

n with n ∈ {1, 2, 3, 4} and each view

is represented by a set of SIFT features {Sk(Ii
j)}, where

k is the number of features. In the initial stage we tested

the location recognition by using a simple voting scheme.

Given a new query image Q and its associated keypoints

{Sl(Q)} a set of corresponding keypoints between Q and each

1In spite of the fact that χ2 statistics is not a metric (triangle inequality
does not hold), we chose to use it as our distance measure due to its good
discrimination characteristics [24].

2It is our intention to attain a representation of location in terms of views
(as opposed to some abstract features) in order to facilitate relative positioning
tasks in the subsequent metric localization stage.
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Fig. 5. Recognition rates using nearest neighbor classifier given the represen-
tation learned using LVQ method (left) and nearest neighbor classifier given
the representation learned using k-means method described above (right).

model view Ii
j , {C(Q, Ii

j)}, is first computed. The correspon-

dence is determined by matching each keypoint in {Sl(Q)}
against the database of {Sk(Ii

j)} keypoints and choosing the

nearest neighbor based on the Euclidean distance between

two descriptors. We only consider point matches with high

discrimination capability, whose nearest neighbor is at least 0.6

times closer then the second nearest neighbor. More detailed

justification behind the choice of this threshold can be found

in [20]. In the subsequent voting scheme we determine the

location whose keypoints were most frequently classified as

nearest neighbors. The location where the query image Q came

from is then determined based on the number of successfully

matched points among all model views

C(i) = max
j

|{C(Q, Ii
j)}| and [l, num] = max

i
C(i)

where l is the index of location with maximum number num
of matched keypoints. Table I shows the location recognition

sequence (# of views) NO.1 (250) NO.2 (134) NO.3 (130)

one view 84% 46% 44%

two views 97.6% 68% 66%

four views 100% 82% 83%

TABLE I

RECOGNITION RATE IN % OF CORRECTLY CLASSIFIED VIEWS.

results for SIFT features as a function of number of represen-

tative views per location on the training sequence of 250 views

and two test sequences of 134 and 130 images each. The two

additional test sequences were taken at different days and times

of day, exhibiting larger deviations from the path traversed

during the training. Despite a large number of representative

views per location relatively poor performance on the second

and third test sequence was due to several changes in the

environment between the training and testing stage. In 5 out

of 18 locations several objects were moved or misplaced.

Some misclassification examples are shown in Figure 6. Note

that in examples a) and b) are the misclassification which

occurred using orientation histogram representation. These

location are quite similar in their appearance, but can be easily

disambiguated using more discriminative image representation

such as SIFT features. On the other hand in Figure 6c

the location was misclassified due to the dynamic change

of the environment between training and testing stage and



a) b) c)

Fig. 6. Examples of test images which were misclassified in the recognition
stage: the first row are the test images and the second row are the images which
are closest to the nearest neighbor class center. Changes in the appearance
of location L4 and L6 between the training and testing. In the left image
pair the bookshelve was replaced by a table and couch and in the right pair
recycling bins were removed.

neither of the two representations could successfully classify

this instance. In the next section we demonstrate how can

the use of spatial relationships between locations improve

the location recognition accuracy, while still retaining these

relatively simple image representation.

VI. MARKOV LOCALIZATION

The recognition rates reported in the previous section were

based solely on the single view and did not exploit the neigh-

borhood relationships between the views. The spatial relation-

ships between individual locations determined by temporal

context are modelled by a Hidden Markov Model (HMM). The

use of temporal context is motivated by the work of [19] which

addresses the place recognition problem in the context of wear-

able computing application. In our model the states correspond

to individual locations and the transition function determines

the probability of transition from one state to another. Since the

states (locations) cannot be observed directly each location is

characterized by its associated observation likelihood P (Lt =
li|o1:t) denoting the conditional probability of being at time

t and location li given the available observations up to time

t. The problem of localization can then be formulated as a

problem of estimating most likely location given all available

measurements up to time t. The location likelihood can then

be estimated recursively using the following formula

P (Lt = li|o1...t) ∝ p(ot|Lt = li)P (Lt = li|o1:t−1) (3)

where p(ot|Lt = li) is the observation likelihood, character-

izing how likely is the observation ot at time t to come from

location li .

a) Histogram observation likelihood: In case of orien-

tation histograms, the probability that the observation comes

from a particular location p(ot|Lt = li) is obtained by first

finding the closest cluster center among all classes based on

Bayes rule. The chosen nearest cluster is then approximated

with a spherical Gaussian distribution with the cluster center

as the mean. The probability of the test image belonging to

this cluster center then becomes the probability of the test

image belonging to the location. Alternative representation of
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Fig. 7. Test sequence classification results for orientation histograms (left
column) and SIFT features (right column) representations. The top row shows
the location label assignments for each frame of the test sequence while taking
into account the spatial relationships modelled by HMM. The bottom row
show the same experiment with HMM turned off.

individual locations in terms of Gaussian mixtures has been

proposed in [19]. We have found this soft assignment to be

less effective in our environment.

b) SIFT observation likelihood: In the case of SIFT

features the conditional probability p(ot|Lt = li) that a

query image Qt at time t characterized by an observation

ot = {Sl(Qt)} came from certain location, is directly related

to the cardinality of the correspondence set C(i), normalized

by the total number of matched points across all locations

p(ot|Lt = li) =
C(i)

∑

j C(j)
.

The second term of Equation (3) can be further decomposed

P (Lt = li|o1:t−1) =

N
∑

j

A(li, lj)P (Lt−1 = lj |o1:t−1) (4)

where N is the total number of locations and A(li, lj) =
P (Lt = li|Lt = lj) is the probability of two locations being

adjacent. All the transition probabilities between individual

locations were assigned non-zeros values despite the fact that

the transitions between certain locations did not exist. In

case of orientation histograms, in the presence of a transition

between two locations the corresponding entry was assigned

value p1 and in the absence of the transition it was assigned

value p0. In the final stage all the rows of the matrix were

normalized. The performance reported in the following exper-

iments used the ratio of p1/p2 = 1.5. The ratio of values

p1 and p0 affected the final recognition rate. In case of SIFT

features the presence of a transition between two locations the

corresponding entry of A was assigned a unit value and in the

final stage all the rows of the matrix were normalized. We

have tested the improvements in the recognition rate for both

image descriptors on training data and new test sequences. Not



surprisingly in both cases the employment of HMM improved

the recognition rate compared to single view recognition.

Although the recognition rate for training data we on average

98%, we found the orientation histograms to be inferior to

SIFT features on new test sequences. This was primarily due to

the larger deviations of the path from the original exploration

path and some dynamic changes in the environment. The

results of location recognition on new test sequence are in

Figure 7. The recognition performance using HMM enabled

us to eliminate most of the previous classification errors and

achieve classification rate around 99%. Although some of the

individual views were misclassified, the order of locations

visited during the test sequence was determined correctly by

SIFT features Hidden Markov Model in Figure 7 upper right

plot. In the case of orientation histograms frames 38 to 55 were

misclassified with the use of HMM, yielding 90% recognition

rate. Turning the HMM off by making all transitions equally

likely decreased the overall recognition rate for both image

descriptors.

VII. CONCLUSIONS

We have demonstrated an approach for vision-based topo-

logical localization by means of place recognition. While in

the single view recognition case we have observed several

classification errors, those were successfully eliminated using

the spatial relationships modelled by Hidden Markov Model.

We also compared two different image descriptors, and showed

the SIFT features to be superior to orientation histograms due

to their higher discrimination capabilities and better invariance

properties with respect to viewpoint changes. We are currently

in the process of carrying out more extensive experiments and

fully automating the model acquisition stage. The presented

work only deals with capturing the coarse spatial structure of

the indoor environment. In parallel we are developing methods

to enabling precise relative positioning within individual loca-

tions, using geometric pose estimation techniques. This step

is essential for enabling simultaneous model acquisition and

localization by means of purely visual sensing without relying

on the odometry.
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