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Abstract-Body slip angle is one of the most important 
information for vehicle motion control; as specific sensors for 
body slip angle measurement are expensive, it is necessary to 
investigate estimation methods using existing popular sensors 
such as gyro sensor, encoder, camera, etc. For EV (electric 
vehicle), in particular, the motor response is several milliseconds 
which enables high performance control with short control 
period; fast signal feedback is consequently desired. 
Nevertheless, the sampling rate of a normal camera is much 
slower compared with other kinds of onboard sensors and the 
time delay caused by image processing cannot be neglected. In 
this paper, the two problems are solved using a multi-rate 
Kalman filter with measurement delay included; the estimated 
body slip angle can be updated every 1 ms. First of all, vehicle 
model and visual model are explained followed with 
experimental setup introduction; then, real-time image 
processing techniques are briefly introduced; and then, single-
rate and multi-rate Kalman filters considering time delay are 
designed to estimate body slip angle; finally, conclusion and 
further works are presented. 

 

I. INTRODUCTION 

The development of EVs is a promising solution for green 
transportation, and lots of researches have focused on energy 
management and power electronics design; on the other hand, 
motion control for EV is also an important topic [1]. For 
vehicle motion control system, body slip angle is known to be 
one of the key enablers; but existing products for direct body 
slip angle measurement such as optical sensor are too 
expensive to be practically employed. Thus, estimation 
methods for vehicle body slip angle have been extensively 
studied during the last few decades, and most of them are 
based on bicycle model [2-3]; however, such model suffers 
from model uncertainty problems because it includes 
uncertain parameters, for example, tire cornering stiffness. 
Other kinds of prevailing sensors such as camera, although 
demonstrated high accuracy on position estimation for lane 
keeping [4], are seldom utilized for EV motion control due to 
their low throughput characteristic and the image processing 
often takes time. On the other hand, in contradiction to 
vehicle bicycle model, visual model is purely based on simple 
geometry which contains much fewer uncertainties and the 
estimation results can hence be more robust against bicycle 
model uncertainty. In addition, vision system can provide 
redundant information in addition to other onboard sensors; 
fault detection and fault tolerance control can then be applied. 
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Fig. 1.  System time sequence diagram. 

 
As stated above, normal cameras are not fast enough for 

electric vehicle motion estimation and control. If the updating 
rate can be boosted, information from camera can be adopted 
for electric vehicle motion control that needs fast sensor 
feedback. In addition, the performances of lane keeping and 
collision avoidance systems can be enhanced for traditional 
vehicles [4-5]. 

In this research, traditional bicycle model is augmented 
with a visual model, and the new system has four states with 
three of them available from sensor/image processing 
program. Bicycle model uses signal from gyro sensor, 
steering angle and wheel speed encoders; visual model uses 
the information calculated from the onboard vision system. 
The sampling sequence diagram is shown in Fig. 1. 
Obviously, data from visual system and from gyro/encoders 
cannot be fused directly because of sampling time mismatch. 
Two solutions can be employed, namely, increase the overall 
sampling period to fit the longest one, and use multi-rate 
estimation method. These two methods will be further 
illustrated in the following sections. 

II. COMBINED VEHICLE/VISION SYSTEM MODELING 
AND EXPERIMENT SETUP 

A. Bicycle Model 
Vehicle dynamics is highly non-linear, and it is impossible 

to describe vehicle motion precisely. Although there are 
complex models with high accuracy, from the perspective of 
implementation, simple linear model is preferable. Bicycle 
model with two degree of freedom, also known as single 
track model, is widely used in vehicle state estimation and 
motion control systems. This model is illustrated in Fig. 2, 
and the governing state space equation is given as (1). 
Detailed derivations and explanations can be found in [2-3]. 
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Fig. 2.  Bicycle model and vision model. 
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B. Vision System Model 

While bicycle model is independent of road reference, 
vision model contains geometric information by considering 
vehicle and lane/road together. Vision model is also shown in 
Fig. 2, and the gray borders are lane makers. lpre is a fixed 
preview distance need to be calibrated beforehand. In this 
model, it is assumed that the vehicle is travelling along a 
straight road with clear lane markers; the camera is equipped 
at the CoG (center of gravity) of the vehicle and can detect 
lane boundaries in real time. The lane function can be 
obtained in the coordinate with camera/vehicle as origin, and 
then, lateral distance offset yl at the preview point, as well as 
the heading angle ψ can be calculated. ycg is the lateral offset 
at vehicle CoG. 

To derive vision model, ψ and body slip angle β are 
assumed to be small. Referring to Fig. 2, yl can be 
approximately expressed as (2);  

 
(2)l cg prey y l ψ= + ⋅  

 
The derivative of ycg, i.e., the lateral speed at CoG is given 

by (3):  
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Equation (4) can be obtained by taking the derivative of (2) 

and substituting (3) into it: 
 

(4)l x pre xy V l Vβ γ ψ= ⋅ + ⋅ + ⋅&  

From (4), it can be known that, the derivative of offset at 
the preview point, i.e., lateral speed at that point, comprises 
three parts: the lateral speed of CoG, the components of yaw 
rate, and the component of longitudinal speed (resulted from 
vehicle heading angle). Heading angle ψ can be simply 
modeled as integration of yaw rate as (5). 

                                    (5)ψ γ=&  

It should be noticed that, although curved road is not 
considered here, models can still be generated in the same 
manner by taking curvature into account, i.e., this research 
can be expanded to all the roads with lane. 

 
C. Combined Model 

The combined model can also be given in continuous state 
space form as (1) with description in (6); the first two states 
are from bicycle model and the latter two are from the visual 
model. Clearly, the vision model is much simpler than the 
bicycle one. In the combined model, available system 
outputs are yaw rate, vehicle heading angle and lateral offset 
with reference to lane at the preview point. It should be 
pointed out that the first two states and the second two are 
updated at different sampling rate.  
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D. Experiment Setups 

The experiment vehicle used in this research is an in-
wheel-motor EV as in Fig. 3 (a). The prototype is COMS 
produced by Toyota Auto Body, and it was reengineered by 
our lab for capacitor research and motion control [11]. 

 

 
(a) Experimental in-wheel-motor EV. 
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(b) Sensor configuration of COMS. 

Fig. 3.  Experimental vehicle and sensor configurations. 
 

Fig. 3 (b) briefly demonstrates the sensor configurations of 
this vehicle. The vehicle controller is a PC104 embedded 
computer with ART-Linux system, and the program is 
configured to run at the speed of one millisecond per cycle. In 
addition to the central computer, four A/D converters and two 
counter boards are equipped for sensor signal reading. 
Gyroscope is installed in the vehicle CoG, and provides yaw 
rate signal to the A/D board; steering angle and wheel speed 
encoders send data to the counter board. Besides, to verify 
estimation results, a non-contact optical sensor S-400 made 
by Corrsys-Datron is also equipped for body slip angle 
acquisition. Vision system includes a camera and an image 
processing laptop; the camera is Grasshopper produced by 
Point Gray, and it is installed on the top of the vehicle with a 
tilting angle of 8 degree and a preview distance of 5.135 m. 
The frame rate of the camera is set to 30 fps. 

Images captured by the camera are then grasped by a 
CARDBUS frame grabber and processed by a laptop with 
image processing algorithms in Linux environment. The 
image processing time varies from 8 ms to 25 ms which 
depends on the CPU load and the incoming images; for later 
data processing benefits, a delay function is implemented to 
make this time constant (30 ms). The final outputs from 
vision system are the estimated ψ and yl, and they are sent to 
vehicle controller via LAN cable using UDP protocol (the 
time for data transmission is neglected). 

III. REAL-TIME IMAGE PROCESSING FOR                                
LANE DETECTION AND LOCATION 

Body slip angle estimation needs to fuse vision information 
with other sensor signals in real-time, thus, on-line image 
processing is indispensable. In this research, image 
processing is implemented in C++ with OpenCV library and 
the library released by Point Grey Research. OpenCV is Open 
Source Computer Vision for short and it is a free library 
initially developed by Intel which can facilitate vision related 
development [6]. Image processing in this research generally 
consists of two parts: coordinate mapping and mapped images 

uα
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Fig. 4.   Geometric relationship between camera and road. 

 
processing. Coordinate mapping removes the perspective 
effect geometrically; image processing extracts lane makers 
from road, and gives the lane equation with reference to the 
vehicle coordinate.  
 
A. Mapping from Image to Real World 

Camera maps the 3-D world onto its 2-D image view; 
however, this kind of mapping makes it obscure to know the 
exact distance information between two pixels in the image 
plane. Since common road can be simplified as plane, such 
kind of perspective effect can be removed based on geometry 
relationships. 

Fig. 4 shows the geometric relationships among pinhole 
camera model, image plane and road plane. In Fig. 4, h is 
height of camera, f is focal length, θ is camera tilting angle, αv 
and αu are the angle of view in vertical and horizontal axis of 
image planes respectively. To find the mapping matrix from 
image coordinate to road coordinate, one typical method is to 
calibrate the camera model which is composed of both 
intrinsic and extrinsic parameters [10]. While this method 
needs complex calibration, another more straightforward 
method can get road coordinates from image pixel positions 
by deriving functions based on geometric relationships [12, 
15]. For better demonstration, Fig. 4 is reconstructed as Fig. 5 
viewing from U axis and V axis of image plane.  

 

pixelv

 

pixelu

sin cosh xθ θ⋅ + ⋅  
Fig. 5.  View from different image plane axis. 
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Fig. 6.  Original and mapped view of the road. 

 
Let’s analyze one arbitrary pixel (upixel, vpixel) in the image 

plane and its projection (x, y) on road plane. Assume the 
resolution of image is m by n, equation (7) that mapping road 
coordinate to pixel coordinate can be derived. 
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From the above two equations, for any pixel in the image 

plane, the corresponding road coordinate can be calculated, 
and vice versa. 
 
B.  Lane Extraction and Detection 

Thanks to the strong brightness contrast between road and 
lane, they can be distinguished with suitable algorithm. Here, 
LoG (Laplacian of Gaussian) method is implemented for lane 
center extraction, and it is an algorithm that performs 
Laplacian and Gaussian in a one step manner. Fig. 7 (b) 
illustrates the LoG results. RANSAC is employed among the 
candidate white points in Fig. 7 (b). This algorithm randomly 
selects smallest data set and finds how many data in total fit 
the model with the calculated parameters within a given 
tolerance; if the fitting ratio is large enough, it ends with 
success, otherwise proceeds till a specified number of trials. 
The red line in Fig. 7 (c) shows lane finding result. Detailed 
description can be found in [5]. 

 

        
(a) Original image. 

             
(b) Binarized image.              (c)   Lane fitting result. 

Fig. 7.  Image processing results. 

IV. KALMAN FILTER DESIGN FOR  VEHICLE BODY SLIP 
ANGLE ESTIMATION 

Typical continuous state space equation has the form of 
(1); in this application, vehicle speed is not constant, and 
hence the discretized system matrix are designed to be time 
varying as in (8); Ts is the sampling time. Fig. 8 describes the 
general structure of Kalman filter. 
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Discrete Kalman filter based on combined model (6) can be 

constructed in the form of (8). However, in case of 
measurement delay, the system output equation becomes (9). 

 
 ( ) ( ) ( ) ( ) (d d d dy k C k n x k n v k n= − ⋅ − + −  

 
where Td is the time delay, and nd = Td/Ts; Td is 33 ms, and Ts 
is 1 ms in this research. 

From (9), it is known that, unlike normal system, the 
measurements are updated at time k-nd, but are not available 
until time k. To see the effect of delay on estimation results, a 
simple simulation is conducted with the model in (6) using 
Kalman filter: with the same Kalman gain, the RMSE of body 
slip angle estimation is 0.0058 rad without delay, and goes up 
to 0.01176 rad in the case of visual information delay. 
Therefore, estimation accuracy will be deteriorated without 
considering time lag. 

Augmented-state method is employed to deal with delay 
issue [14]. The basic idea of this method is to include delayed 
states into the state space equation. First, considering 
information from camera has a one step delay, (10) can be 
defined: 

 
( 1) ( ), ( 1) ( ) (10l lk k y k y k )ψ ψ+ = + =  

 
Then, the combined system model in (6) can be discretized 

to (8) with (10) as additional states, and (11) gives description 
for the new system. 

With the above transformation, delayed vision information 
is augmented to the original system. As this system is 
observable, current vision information can be estimated with 
Kalman filter based on previous ones. 

Another problem is, as mentioned before, sampling periods 
of the system are not consistent; in (11), the first two states 
and the following four states have different sampling 
frequencies. Therefore, two solutions are adopted in this 
section, namely, single-rate and multi-rate Kalman filter. 
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Fig. 8.  General Kalman filter diagram. 
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A.  Single-rate KF based on delay-augmented system 

Single-rate Kalman filter simply adapt the sampling rate of 
high speed sensor to the low speed one. In this study, to unify 
the sampling rate of gyroscope, encoders and camera, system 
sampling rate is set to adapt camera. The following work is 
the same with traditional Kalman filter design which can be 
found in many literatures [7, 9]. 

Although the traditional Kalman filter can be employed by 
making the sampling rate adjustment, other problems are 
arisen, for example, measurements from high sampling rate 
sensors cannot be fully utilized and hence deteriorate the 
accuracy of sensor feedback (this can be observed from the 
experimental results in section V); the estimated body slip 
angle is updated every 33 ms which is not fast enough for 
general motion control applications [14]. 
 
B. Multi-rate KF based on delay-augmented system 

Compared with single-rate KF, the prediction part of Multi-
rate KF is the same, and the main differences between the two 
methods are: 1) the continuous state space equations are first 
discretized using the fast sampling time, i.e., Ts is set to 1 ms; 
2) the correction part of Multi-rate KF needs to be modified 
during inter-samplings. Assume the camera measurement 
sampling period is Tc, and during the time intervals of n·Tc (n 
is an integer), there is no sensor updates from vision system, 
so the correction of Kalman filter is only based on yaw rate 
from gyro sensor; another interpretation can be: pseudo-
correction is implemented using estimated visual information 
(equal to prediction) while real-correction is done with yaw 
rate feedback. The state estimation equation for multi-rate 
Kalman filter is shown in (12). 
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The above equation illustrate that the Kalman gain is 

switching between two situations, namely, with and without 
visual updates. In other words, full measurement update is 
done when there are visual feedbacks, and partial 
measurement update is done during vision inter-samplings. 

V. SIMULATIONS AND EXPERIMENT VERIFICATIONS 

A. Simulations 
Simulations are conducted to verify the proposed multi-rate 

Kalman filter. The vehicle is assumed to run at the speed of 
30km/h, and to clearly demonstrate the effectiveness of the 
proposed method, vehicle model and Kalman filter model are 
made different from each other: the cornering stiffness and 
the mass of the vehicle plant are set 5 times and 2 times 
bigger than the estimated ones respectively. For comparison, 
bicycle model based two states Kalman filter and combined 
four states Kalman filter with 33 ms sampling intervals 
(single-rate KF) are also included. 

From Fig. 9, it can be observed that the estimation result of 
the two states bicycle model (light blue line) cannot track true 
value (green line) well due to the model discrepancy; the four 
states Kalman filter (blue line) can improve estimation 
accuracy by augmenting bicycle model with the vision model, 
however, body slip angle is only updated every 33 ms; the 
four state multi-rate Kalman filter (red line), on the other 
hand, has yaw rate measurement update during the camera 
sampling intervals, and hence can be more accurate than the 
other two methods; in addition, it can be applied to motion 
control applications which need fast signal feedback. In 
general, multi-rate KF is more robust against model error. 

1510



0 1 2 3 4 5 6 7 8 9 10

-0.2

-0.1

0

0.1

0.2

0.3

Time (s)

B
od

y 
sl

ip
 a

ng
le

 (r
ad

)

 

Bicycle model based KF
True value
Combined model based KF (33ms)
Combined model based KF (MR)

1.9 1.95 2

0.02

0.03

0.04

0.05

 

 

 
Fig. 9.  Simulation comparison. 
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(a) Single-rate combined model vs. bicycle model. 
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(b) Multi-rate combined model vs. bicycle model. 

Fig. 10.   Estimation comparison based on experiment data. 
 
B. Experiments 

Experiments are conducted with the experimental electric 
vehicle COMS introduced in section II. The vehicle was 
given a sine steering input on a road with lane markers, and 
the vehicle speed is varying from 10 km/h to 20 km/h. 

Similar to the simulation setting above, model mismatch is 
also applied to the Kalman filter model. Fig. 10 (a) gives 
comparison results of bicycle model-based Kalman filter and 
combined four states-based single-rate Kalman filter. Due to 
the model discrepancy, bicycle model-based result (blue line) 
cannot track the true value (dotted light blue line) in some 
situations; in contrary, the augmented single-rate estimator 
(red line) performs much better. However, this single-rate 
estimator gets sensor feedback every 33 ms, and hence cannot 
fully utilize sensor information; as a result, vibration occur in 
some parts of the estimation result. In Fig. 10 (b), multi-rate 
Kalman filter result (red line) that can be updated every 1 ms 
is demonstrated; as can be observed, it is much more accurate 
compared with bicycle model-based Kalman filter estimation 
result (blue line), and is smoother than the result of single-
rate Kalman filter. Compared to bicycle model-based Kalman 

filter, RMSE of the single-rate four state Kalman filter 
decreases 16%, and RMSE of the multi-rate four state 
Kalman filter decreases 28%. 

VI. CONCLUSION AND FUTURE WORKS 

In this paper, a combined vehicle and visual model is 
explained; real-time image processing techniques for lane 
detection and location are introduced; single-rate Kalman 
filter which has a low updating rate is first developed, and 
multi-rate Kalman filters that can be updated every 1ms are 
designed to estimate vehicle body slip angle for EV motion 
control. The further works of this research are: state 
estimation for varying sampling system (image processing 
time is not constant); multi-rate control using low frequency 
estimation result for EV control. In addition, in case of visual 
system malfunction, fault detection and fault tolerance control 
methods should be investigated. 
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