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Abstract

Intelligent vehicle detection and counting are becoming increasingly important in the field of highwaymanagement.

However, due to the different sizes of vehicles, their detection remains a challenge that directly affects the accuracy of

vehicle counts. To address this issue, this paper proposes a vision-based vehicle detection and counting system. A

new high definition highway vehicle dataset with a total of 57,290 annotated instances in 11,129 images is published

in this study. Compared with the existing public datasets, the proposed dataset contains annotated tiny objects in the

image, which provides the complete data foundation for vehicle detection based on deep learning. In the proposed

vehicle detection and counting system, the highway road surface in the image is first extracted and divided into a

remote area and a proximal area by a newly proposed segmentation method; the method is crucial for improving

vehicle detection. Then, the above two areas are placed into the YOLOv3 network to detect the type and location of

the vehicle. Finally, the vehicle trajectories are obtained by the ORB algorithm, which can be used to judge the driving

direction of the vehicle and obtain the number of different vehicles. Several highway surveillance videos based on

different scenes are used to verify the proposed methods. The experimental results verify that using the proposed

segmentation method can provide higher detection accuracy, especially for the detection of small vehicle objects.

Moreover, the novel strategy described in this article performs notably well in judging driving direction and counting

vehicles. This paper has general practical significance for the management and control of highway scenes.
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Introduction
Vehicle detection and statistics in highway monitoring

video scenes are of considerable significance to intel-

ligent traffic management and control of the highway.

With the popular installation of traffic surveillance cam-

eras, a vast database of traffic video footage has been

obtained for analysis. Generally, at a high viewing angle, a

more-distant road surface can be considered. The object

size of the vehicle changes greatly at this viewing angle,

and the detection accuracy of a small object far away

from the road is low. In the face of complex camera

scenes, it is essential to effectively solve the above prob-

lems and further apply them. In this article, we focus

on the above issues to propose a viable solution, and we
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apply the vehicle detection results tomulti-object tracking

and vehicle counting.

Related work on vehicle detection

At present, vision-based vehicle object detection is

divided into traditional machine visionmethods and com-

plex deep learning methods. Traditional machine vision

methods use the motion of a vehicle to separate it from

a fixed background image. This method can be divided

into three categories [1]: the method of using background

subtraction [2], the method of using continuous video

frame difference [3], and the method of using optical flow

[4]. Using the video frame difference method, the vari-

ance is calculated according to the pixel values of two

or three consecutive video frames. Moreover, the mov-

ing foreground region is separated by the threshold [3].

By using this method and suppressing noise, the stop-

ping of the vehicle can also be detected [5]. When the
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background image in the video is fixed, the background

information is used to establish the backgroundmodel [5].

Then, each frame image is compared with the background

model, and the moving object can also be segmented. The

method of using optical flow can detect the motion region

in the video. The generated optical flow field represents

each pixel’s direction of motion and pixel speed [4]. Vehi-

cle detection methods using vehicle features, such as the

Scale Invariant Feature Transform (SIFT) and Speeded

Up Robust Features (SURF) methods, have been widely

used. For example, 3Dmodels have been used to complete

vehicle detection and classification tasks [6]. Using the

correlation curves of 3D ridges on the outer surface of the

vehicle [7], the vehicles are divided into three categories:

cars, SUVs, and minibuses.

The use of deep convolutional networks (CNNs) has

achieved amazing success in the field of vehicle object

detection. CNNs have a strong ability to learn image fea-

tures and can perform multiple related tasks, such as

classification and bounding box regression [8]. The detec-

tion method can be generally divided into two categories.

The two-stage method generates a candidate box of the

object via various algorithms and then classifies the object

by a convolutional neural network. The one-stage method

does not generate a candidate box but directly converts

the positioning problem of the object bounding box into

a regression problem for processing. In the two-stage

method, Region-CNN (R-CNN) [9] uses selective region

search [10] in the image. The image input to the con-

volutional network must be fixed-size, and the deeper

structure of the network requires a long training time

and consumes a large amount of storage memory. Draw-

ing on the idea of spatial pyramid matching, SPP NET

[11] allows the network to input images of various sizes

and to have fixed outputs. R-FCN, FPN, and Mask RCNN

have improved the feature extraction methods, feature

selection, and classification capabilities of convolutional

networks in different ways. Among the one-stage meth-

ods, the most important are the Single Shot Multibox

Detector (SSD) [12] and You Only Look Once (YOLO)

[13] frameworks. TheMutiBox [14], Region Proposal Net-

work (RPN) and multi-scale representation methods are

used in SSD, which uses a default set of anchor boxes

with different aspect ratios tomore accurately position the

object. Unlike SSD, the YOLO [13] network divides the

image into a fixed number of grids. Each grid is responsi-

ble for predicting objects whose centre points are within

the grid. YOLOv2 [15] added the BN (Batch Normaliza-

tion) layer, which makes the network normalize the input

of each layer and accelerate the network convergence

speed. YOLOv2 uses amulti-scale trainingmethod to ran-

domly select a new image size for every ten batches. Our

vehicle object detection uses the YOLOv3 [16] network.

Based on YOLOv2, YOLOv3 uses logistic regression for

the object category. The category loss method is two-class

cross-entropy loss, which can handle multiple label prob-

lems for the same object. Moreover, logistic regression is

used to regress the box confidence to determine if the IOU

of the a priori box and the actual box is greater than 0.5.

If more than one priority box satisfies the condition, only

the largest prior box of the IOU is taken. In the final object

prediction, YOLOv3 uses three different scales to predict

the object in the image.

The traditional machine vision method has a faster

speed when detecting the vehicle but does not produce a

good result when the image changes in brightness, there

is periodic motion in the background, and where there are

slow moving vehicles or complex scenes. Advanced CNN

has achieved good results in object detection; however,

CNN is sensitive to scale changes in object detection [17,

18]. The one stage method uses grids to predict objects,

and the grid’s spatial constraints make it impossible to

have higher precision with the two-stage approach, espe-

cially for small objects. The two stage method uses region

of interest pooling to segment candidate regions into

blocks according to given parameters, and if the candidate

region is smaller than the size of the given parameters,

the candidate region is padded to the size of the given

parameters. In this way, the characteristic structure of a

small object is destroyed and its detection accuracy is low.

The existing methods do not distinguish if large and small

objects belong to the same category. The same method is

used to deal with the same type of object, which will also

lead to inaccurate detection. The use of image pyramids

or multi-scale input images can solve the above problems,

although the calculation requirements are large.

Vehicle detection research in Europe

Vision-based vehicle detection methods in Europe have

achieved abundant results. In [19], between the “Hofold-

ing” and “Weyern” sections of the A8 motorway in

Munich, Germany, the Multivariate Alteration Detection

(MAD) method [20] was used to detect the change of two

images with a short time lag. The moving vehicles are

highlighted in a change image, which is used to estimate

the vehicle density of the road. In [21], using the motor-

ways A95 and A96 near Munich, the A4 near Dresden,

and the “Mittlere Ring” in Munich as the test environ-

ments, the Canny edge algorithm [22] is applied to the

road image, and the histogram of the edge steepness is

calculated. Then, using the k-means algorithm, the edge

steepness statistics are divided into three parts, and a

closed vehicle model is detected based on the steepness.

A contrast-based approach was used to create a colour

model to identify and remove vehicle shadow areas [23],

which eliminates interference caused by movement in

the scene. After eliminating the shadow area, the vehicle

detection performance can be significantly improved. The
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experiment in [23] was conducted on Italian and French

highways. The HOG and Haar-like features were com-

pared in [24], and the two features were merged to con-

struct a detector for vehicle detection that was tested on

French vehicle images. However, when the above method

is used for vehicle detection, the type of vehicle cannot

be detected. Additionally, when the illumination is insuf-

ficient, it is difficult to extract the edge of the vehicle or

detect the moving car, which causes problems in low vehi-

cle detection accuracy and affects the detection results for

further use. Pictures of aerial view angles were used by

[19, 20] but cannot clearly capture the characteristics of

each car and produce false vehicle detections.

Nonetheless, with the development of deep learning

technology, vehicle detection based on CNN has been

successfully applied in Europe. In [25], Fast R-CNN was

used for vehicle detection in traffic scenes in the city of

Karlsruhe, Germany. Fast R-CNN uses a selective search

strategy to find all candidate frames, which is notably

time-consuming, and the vehicle detection speed is slow.

In short, research on vision-based vehicle detection is

still progressing, and major challenges are gradually being

overcome, which will make a significant contribution to

the development of European traffic construction.

Related work on vehicle tracking

Advanced vehicle object detection applications, such as

multi-object tracking, are also a critical ITS task [26].

Most multi-object tracking methods use Detection-Based

Tracking (DBT) and Detection-Free Tracking (DFT) for

object initialization. The DBT method uses background

modeling to detect moving objects in video frames before

tracking. The DFT method needs to initialize the object

of the tracking but cannot handle the addition of new

objects and the departure of old objects. The Multiple

Object Tracking algorithm needs to consider the similar-

ity of intra-frame objects and the associated problem of

inter-frame objects. The similarity of intra-frame objects

can use normalized cross-correlation (NCC). The Bhat-

tacharyya distance is used to calculate the distance of the

colour histogram between the objects, such as in [27].

When inter-frame objects are associated, it is necessary

to determine that an object can only appear on one track

and that one track can only correspond to one object. Cur-

rently, detection-level exclusion or trajectory-level exclu-

sion can solve this problem. To solve the problems caused

by scale changes and illumination changes of moving

objects, [28] used SIFT feature points for object tracking,

although this is slow. The ORB feature point detection

algorithm [29] is proposed for use in this work. ORB can

obtain better extraction feature points at a significantly

higher speed than SIFT.

In summary, it can be considered that the method

of vehicle object detection has been transferred from

research on traditional methods to that on deep con-

volutional network methods. Moreover, there are fewer

public datasets for specific traffic scenes. The sensitivity

of convolutional neural networks to scale changes makes

small object detection inaccurate. It is challenging to con-

duct multi-object tracking and subsequent traffic analysis

when highway surveillance cameras are used. In summary,

our contributions include the following:

1. A large-scale high definition dataset of highway vehi-

cles is established that can provide many different vehicle

objects fully annotated under various scenes captured by

highway surveillance cameras. The dataset can be used

to evaluate the performance of many vehicle detection

algorithms when dealing with vehicle scale changes.

2. A method for detecting small objects in highway

scenes is used to improve vehicle detection accuracy. The

highway road surface area is extracted and divided into the

remote area and the proximal area, which are placed into

the convolution network for vehicle detection.

3. A multi-object tracking and trajectory analysis

method is proposed for highway scenes. The detection

object feature points are extracted and matched by the

ORB algorithm, and the road detection line is determined

to count the vehicle movement direction and the traffic

flow.

This research will be described in the following sections.

“Vehicle dataset” section introduces the vehicle dataset

used in this paper. “The system structure” section

introduces the overall process of the proposed system.

“Methods” section describes our strategy in detail.

“Results and discussion” section presents the experiments

and related analysis. “Conclusions” section summarizes

the entire article.

Vehicle dataset
Surveillance cameras in roads have been widely installed

worldwide but traffic images are rarely released publicly

due to copyright, privacy, and security issues. From the

image acquisition point of view, the traffic image dataset

can be divided into three categories: images taken by

the car camera, images taken by the surveillance camera,

and images taken by non-monitoring cameras [30]. The

KITTI benchmark dataset [31] contains images of high-

way scenes and ordinary road scenes used for automatic

vehicle driving and can solve problems such as 3D object

detection and tracking. The Tsinghua-Tencent Traffic-

Sign Dataset [32] has 100,000 images from car cameras

covering various lighting conditions and weather condi-

tions, although no vehicles are marked. The Stanford Car

Dataset [33] is a vehicle dataset taken by non-monitoring

cameras with a bright vehicle appearance. This dataset

includes 19,618 categories of vehicles covering the brands,

models, and production years of the vehicles. The Com-

prehensive Cars Dataset [34] is similar to the Stanford Car
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Dataset but contains many pictures. The 27,618 images

include the vehicle’s maximum speed, number of doors,

number of seats, displacement, and car type. The 136,727

images include the overall appearance of the vehicle. The

datasets are taken by surveillance cameras; an example

is the BIT-Vehicle Dataset [35], which contains 9,850

images. This dataset divides the vehicle into six types:

SUV, sedan, minivan, truck, bus, and micro-bus; however,

the shooting angle is positive, and the vehicle object is too

small for each image, which is difficult to generalize for

CNN training. The Traffic and Congestions (TRANCOS)

dataset [36] contains pictures of vehicles on highways cap-

tured by surveillance cameras and contains a total of 1,244

images. Most of the images have some occlusion. This

dataset has a small number of pictures, and no vehicle

type is provided, whichmakes it less applicable. Therefore,

few datasets have useful annotations, and few images are

available in traffic scenes.

This section introduces the vehicle dataset from the per-

spective of the highway surveillance video we produced.

The dataset has been published in: http://drive.google.

com/open?id=1li858elZvUgss8rC_yDsb5bDfiRyhdrX.

The dataset picture is from the highway monitoring video

of Hangzhou, China (Fig. 1). The highway monitoring

camera was installed on the roadside and erected at 12

meters; it had an adjustable field of view and no preset

position. The images from this perspective cover the far

distance of the highway and contains vehicles with dra-

matic changes in scale. The dataset images were captured

from 23 surveillance cameras for different scenes, differ-

ent times, and different lighting conditions. This dataset

divides the vehicles into three categories: cars, buses, and

trucks (Fig. 2). The label file is stored in a text document

that contains the numeric code of the object category and

the normalized coordinate value of the bounding box.

As shown in Table 1, this dataset has a total of 11,129

images and 57,290 annotation boxes.. The images have

an RGB format and 1920*1080 resolution. Note that we

annotated the smaller objects in the proximal road area,

and the dataset thus contains vehicle objects with massive

scale changes. An annotated instance near the camera has

more features, and an instance far from the camera has

few features. Annotated instances of different sizes are

beneficial to the improvement of the detection accuracy

of small vehicle objects. This dataset is divided into two

parts: a training set and a test set. In our dataset, cars

accounted for 42.17% , buses accounted for 7.74%, and

trucks accounted for 50.09%. There are 5.15 annotated

instances in each image on average. Figure 3 compares the

difference between the number of annotated instances

in our dataset and the PASCAL VOC, ImageNet, and

COCO datasets. Our dataset is a universal dataset for

vehicle targets that can be used in a variety of areas, such

as Europe. Compared with the existing vehicle datasets,

Fig. 1 Scenes taken by multiple highway surveillance cameras. a Scene 1; b Scene 2; c Scene 3

http://drive.google.com/open?id=1li858elZvUgss8rC_yDsb5bDfiRyhdrX
http://drive.google.com/open?id=1li858elZvUgss8rC_yDsb5bDfiRyhdrX


Song European Transport Research Review           (2019) 11:51 Page 5 of 16

Fig. 2 Vehicle labelling category of the dataset

our dataset has a large number of high definition images,

sufficient lighting conditions, and complete annotations.

The system structure
This section describes the main structure of the vehi-

cle detection and counting system. First, the video data

of the traffic scene are entered. Then, the road surface

area is extracted and divided. The YOLOv3 deep learn-

ing object detection method is used to detect the vehicle

object in the highway traffic scene. Finally, ORB feature

extraction is performed on the detected vehicle box to

complete multi-object tracking and obtain vehicle traffic

information.

According to Fig. 4, the road surface segmentation

method is used to extract the road area of the high-

way. The road area is divided into two parts based on

the position where the camera is erected, a remote area

and a proximal area. Then, the vehicles in the two road

areas are detected using the YOLOv3 object detection

algorithm. This algorithm can improve the small object

detection effect and solve the problem that the object is

difficult to detect due to the sharp change of the object

scale. The ORB algorithm is then used for multi-object

tracking. The ORB algorithm extracts the detected box’s

features andmatches them to achieve correlation between

the same object and different video frames. Finally, traf-

fic statistics are calculated. The trajectory generated by

the object tracking is generated, the vehicle driving direc-

tion is determined, and traffic information such as the

number of vehicles in each category is collected. This sys-

tem improves the accuracy of object detection from the

highway surveillance video perspective and constructs a

detection tracking and traffic information acquisition plan

within the full field of the camera view.

Methods
Road surface segmentation

This section describes the method of highway road sur-

face extraction and segmentation. We implemented sur-

face extraction and segmentation using image processing

methods, such as Gaussian mixture modelling, which

enables better vehicle detection results when using the

deep learning object detection method. The highway

surveillance video image has a large field of view. The

vehicle is the focus of attention in this study, and the

region of interest in the image is thus the highway road

surface area. At the same time, according to the cam-

era’s shooting angle, the road surface area is concen-

trated in a specific range of the image. With this feature,

we could extract the highway road surface areas in the

video. The process of road surface extraction is shown

in Fig. 5.

As shown in Fig. 5, to eliminate the influence of vehi-

cles on the road area segmentation, we used the Gaus-

sian mixture modeling method to extract the background

in the first 500 frames of the video. The value of the

pixel in the image is Gaussian around a certain cen-

tral value in a certain time range, and each pixel in

each frame of the image is counted. If the pixel is far

from the centre, the pixel belongs to the foreground.

If the value of the pixel point deviates from the centre

value within a certain variance, the pixel point is consid-

ered to belong to the background. The mixed Gaussian

model is especially useful in images where background

pixels have multi-peak characteristics such as the highway

surveillance images used in this study.

After extraction, the background image is smoothed by

a Gaussian filter with a 3*3 kernel. The MeanShift algo-

rithm is used to smooth the colour of the input image,

Table 1 Vehicle dataset information published in this study

Image format Size Total number of images Total number of instances Totalnumberofinstances
Totalnumberofimages

RGB 1920 x 1080 11,129 57,290 5.15
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Fig. 3 Annotated instances per image (average numbers of annotated instances are shown in parentheses)

neutralize the colour with a similar colour distribution,

and erode the colour area with a smaller area. On this

basis, the flooding filling algorithm is used to separate the

road surface area. The flooding filling algorithm selects

a point in the road surface area as a seed point and fills

the adjacent continuous road surface areas with the pixel

value of the seed point. The pixel value of the adjacent

continuous road surface areas is close to the seed point

pixel value. Finally, the hole filling and morphological

expansion operations are performed to more completely

extract the road surface. We extracted the road surfaces of

different highway scenes (Fig. 6), and the results are shown

in Fig. 7.

We segmented the road surface area to provide accurate

input for subsequent vehicle detection. For the extracted

road surface image, a minimum circumscribed rectangle

is generated for the image without rotation. The processed

image is divided into five equal parts, the 1/5 area adja-

cent to the origin of the coordinate axis is defined as the

near remote area of the road surface, and the remaining

4/5 area is defined as the near proximal area of the road

surface. The near proximal area and the near remote area

overlap by 100 pixels (as shown in the red part of Fig. 8) to

address the problem that the vehicle in the image may be

divided into two parts by the above procedure. The pixel

values of the near proximal area and the near remote area

are searched column by column. If the pixel values in the

column are all zero, the image of the column is all black

and is not the road surface area; it is then deleted. After the

not-road-surface areas are excluded, the reserved areas

are called remote areas and proximal areas of the road

surface.

Vehicle detection using YOLOv3

This section describes the object detection methods

used in this study. The implementation of the highway

vehicle detection framework used the YOLOv3 network.

The YOLOv3 algorithm continues the basic idea of the

first two generations of YOLO algorithms. The convo-

lutional neural network is used to extract the features

Fig. 4 Overall flow of the method
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Fig. 5 Overall flow of road surface extraction

of the input image. According to the size of the fea-

ture map, such as 13*13, the input image is divided into

13*13 grids. The centre of the object label box is in a

grid unit, and the grid unit is responsible for predicting

the object. The network structure adopted by YOLOv3

is called Darknet-53. This structure adopts the full con-

volution method and replaces the previous version of the

direct-connected convolutional neural network with the

residual structure. The branch is used to directly con-

nect the input to the deep layer of the network. Direct

Fig. 6 Process of road surface area extraction. a Original image; b image foreground; c image background; d Gaussian filter and MeanShift filter; e

diffuse filling; f road surface area mask
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Fig. 7 Road surface extraction results for different highway scenarios. a Scene 1; b Scene 2; c Scene 3

learning of residuals ensures the integrity of image fea-

ture information, simplifies the complexity of training,

and improves the overall detection accuracy of the net-

work. In YOLOv3, each grid unit will have three bounding

boxes of different scales for one object. The candidate box

that has the largest overlapping area with the annotated

box will be the final prediction result. Additionally, the

YOLOv3 network has three output scales, and the three

scale branches are eventually merged. Shallow features

are used to detect small objects, and deep features are

used to detect large objects; the network can thus detect

objects with scale changes. The detection speed is fast,

and the detection accuracy is high. Traffic scenes taken by

highway surveillance video have good adaptability to the

YOLOv3 network. The network will finally output the

coordinates, confidence, and category of the object.

When using YOLO detection, images are resized to

the same size, such as 416*416, when they are sent to

the network. Since the image is segmented, the size of

the remote road surface becomes deformed and larger.

Therefore, more feature points of a small vehicle object

can be acquired to avoid the loss of some object features

due to the vehicle object being too small. The dataset

presented in “Vehicle dataset” section is placed into the

YOLOv3 network for training, and the vehicle object

detection model is obtained. The vehicle object detection

model can detect three types of vehicles: cars, buses, and

trucks (Fig. 9). Because there are few motorcycles on the

Fig. 8 Road surface segmentation
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Fig. 9 Segmented image sent to the detection network and detected results merging. (Green, blue, and fuchsia boxes are labelled to indicate the

“car”, “bus”, and “truck” regions, respectively.)

highway, they were not included in our detection. The

remote area and proximal area of the road surface are

sent to the network for detection. The detected vehicle

box positions of the two areas are mapped back to the

original image, and the correct object position is obtained

in the original image. Using the vehicle object detection

method for obtaining the category and location of the

vehicle can provide necessary data for object tracking. The

above information is sufficient for vehicle counting, and

the vehicle detectionmethod thus does not detect the spe-

cific characteristics of the vehicle or the condition of the

vehicle.

Multi-object tracking

This section describes how multiple objects are tracked

based on the object box detected in “Vehicle detection

using YOLOv3” section. In this study, the ORB algorithm

was used to extract the features of the detected vehi-

cles, and good results were obtained. The ORB algorithm

shows superior performance in terms of computational

performance and matching costs. This algorithm is an

excellent alternative to the SIFT and SURF image descrip-

tion algorithms. The ORB algorithm uses the Features

From Accelerated Segment Test (FAST) to detect fea-

ture points and then uses the Harris operator to perform

corner detection. After obtaining the feature points, the

descriptor is calculated using the BRIEF algorithm. The

coordinate system is established by taking the feature

point as the centre of the circle and using the centroid

of the point region as the x-axis of the coordinate sys-

tem. Therefore, when the image is rotated, the coordinate

system can be rotated according to the rotation of the

Fig. 10 Process of multi-object tracking
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Fig. 11 Features of the detection object extracted by the ORB algorithm

image, and the feature point descriptor thus has rotation

consistency. When the picture angle is changed, a con-

sistent point can also be proposed. After obtaining the

binary feature point descriptor, the XOR operation is used

to match the feature points, which improves the matching

efficiency.

The tracking process is shown in Fig. 10. When the

number of matching points obtained is greater than the

set threshold, the point is considered to be successfully

matched and the matching box of the object is drawn.

The source of the prediction box is as follows: feature

point purification is performed using the RANSAC algo-

rithm, which can exclude the incorrect noise points of the

matching errors, and the homographymatrix is estimated.

According to the estimated homography matrix and the

position of the original object detection box, a perspective

transformation is performed to obtain a corresponding

prediction box.

We used the ORB algorithm to extract feature points in

the object detection box obtained by the vehicle detection

algorithm. The object feature extraction is not performed

from the entire road surface area, which dramatically

Fig. 12 Trajectory of the vehicle and detection line
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reduces the amount of calculation. In object tracking, the

prediction box of the object in the next frame is drawn

since the change of the vehicle object in the continuous

frame of the video is subtle according to the ORB feature

extracted in the object box. If the prediction box and the

detection box of the next framemeet the shortest distance

requirement of the centre point, the same object success-

fully matches between the two frames (Fig. 11). We define

a threshold T that refers to the maximum pixel distance of

the detected centre point of the vehicle object box, which

moves between two adjacent video frames. The positional

movement of the same vehicle in the adjacent two frames

is less than the threshold T. Therefore, when the cen-

tre point of the vehicle object box moves over T in the

two adjacent frames, the cars in the two frames are not

the same, and the data association fails. Considering the

scale change during themovement of the vehicle, the value

of the threshold T is related to the size of the vehicle

object box. Different vehicle object boxes have different

thresholds. This definition can meet the needs of vehicle

movement and different input video sizes. T is calculated

by Eq. 1, in which box height is the height of the vehicle

object box.

T =
box height

0.25
(1)

We delete the trajectory that is not updated for ten

consecutive frames, which is suitable for the camera

scene with a wide-angle of image collection on the high-

way under study. In this type of scene, the road sur-

face captured by the camera is distant. In ten consec-

utive video frames, the vehicle will move farther away.

Therefore, when the trajectory is not updated for ten

frames, the trajectory is deleted. At the same time, the

vehicle trajectory and the detection line will only inter-

sect once, and the threshold setting thus does not affect

the final counting result. If the prediction box fails to

match in consecutive frames, the object is considered

to be absent from the video scene, and the predic-

tion box is deleted. From the above process, the global

object detection results and tracking trajectories from

the complete highway monitoring video perspective are

obtained.

Trajectory analysis

This section describes the analysis of the trajectories of

moving objects and the counting of multiple-object traf-

fic information. Most of the highways are driven in two

directions, and the roads are separated by isolation bar-

riers. According to the direction of the vehicle tracking

trajectory, we distinguish the direction of the vehicle in

the world coordinate system and mark it as going to the

camera (direction A) and driving away from the camera

(direction B). A straight line is placed in the traffic scene

image as a detection line for vehicle classification statis-

tics. The detection line is placed at the 1/2 position on the

high side of the traffic image (Fig. 12). The road traffic flow

in both directions is simultaneously counted. When the

trajectory of the object intersects the detection line, the

information of the object is recorded. Finally, the number

of objects in different directions and different categories

in a certain period can be obtained.

Results and discussion
In this section, we describe the performance testing of

the methods presented in “Methods” section. We exper-

imented with the vehicle object dataset established in

“Vehicle dataset” section. Our experiment used high defi-

nition highway videos for three different scenes, as shown

in Fig. 1.

Table 2 Number of objects under different detection methods

Scenes

Video Vehicle Total number of vehicle objects

frames category
Our method Full-image detection method Actual number of vehicles

Remote area Proximal area Remote area Proximal area Remote area Proximal area

Scene 1 3,000

Car 6,128 8,430 493 6,616 6,849 8,550

Bus 535 459 92 379 582 483

Truck 5,311 5,320 840 4,703 5,792 5,471

Scene 2 3,000

Car 1,843 3,615 192 3,356 1,914 3,654

Bus 194 364 82 295 207 382

Truck 3,947 4,709 922 3,738 4,169 4,731

Scene 3 3,000

Car 1,774 2,336 224 2,188 1,834 2,352

Bus 415 516 56 495 483 529

Truck 3,678 3,490 731 2,662 3,726 3,507
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Network training and vehicle detection

Weused the YOLOv3 network for vehicle object detection

and our established dataset for network training. In net-

work training, there is no perfect solution for the dataset

division. Our dataset dividing method follows the usual

usage. We split the dataset into an 80% training set and a

20% test set. Our dataset has 11,129 images, the training

set images, and the test set images are randomly selected

from the dataset. Due to a large number of dataset pic-

tures, the rate of the test set and training set is sufficient to

obtain the model. To obtain an accurate model, the rate of

the training set should be high. The training set has 8,904

images, and numerous vehicle samples can be trained

to obtain accurate models for detecting cars, buses, and

truck targets. The test set has 2225 images with vehicle

targets that are completely different from the training set,

which is sufficient to test the accuracy of the model that

has been trained. We used a batch size of 32 and set the

weight attenuation to 0.0005 and the momentum value

to 0.9 for the maximum number of training iterations of

50,200. We used a learning rate of 0.01 for the first 20,000

iterations, which changed to 0.001 after 20,000 iterations.

This approachmade the gradient fall reasonably andmade

the loss value lower. To make the default anchor box more

suitable for the dataset annotation box to be annotated,

we used the k-means++ method to make changes. The

training set of our dataset calculated the default anchor

box size at the network resolution of 832*832, and we

obtained nine sets of values: [13.2597, 21.4638], [24.1990,

40.4070], [39.4995, 63.8636], [61.4175, 96.3153], [86.6880,

137.2218], [99.3636, 189.9996], [125.6843, 260.8647],

[179.7127 , 198.8155], [189.3695, 342.4765], with an aver-

age IOU of 71.20%. To improve the detection effect of

small objects, we did not discard samples with less than

1-pixel value during training but put them into the net-

work for training. We output the result of splicing the

feature map of the previous layer of the routing layer

before the last yolo layer of Darknet-53 and the 11th layer

Fig. 13 Single-frame video object detection results. Green, blue, and fuchsia boxes are labelled to indicate the “car”, “bus”, and “truck” regions,

respectively. a Our method; b the full-image detection method
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Table 3 Comparison of actual vehicle numbers by using different methods

Vehicle Remote area Proximal area Average correct rate

category
Our method Full-image Our method Full-image Our method Full-image

detection method detection method detection method

Actual number of vehicles

Car 91.96% 8.58% 98.79% 83.54% 95.375% 46.06%

Bus 89.94% 18.08% 96.05% 83.86% 92.995% 50.97%

Truck 94.51% 18.21% 98.61% 80.99% 96.56% 49.6%

Overall correct rate 92.14% 14.96% 97.82% 82.80% 94.976% 48.86%

of Darknet-53. We set the step size to 4 in the upsampling

layer before the last yolo layer. When we set the image

input to the network, the network resolution was 832*832

instead of the default 416*416 resolution. After the input

resolution is increased, when the network is output in the

yolo layer, it can have a correspondingly larger resolution

and can thus improve the accuracy of the object detection.

A continuous 3000 frames of images were used for vehi-

cle detection in a variety of highway scenes by using our

trained model. We extracted and divided the road sur-

face area and put it into the network for vehicle detection.

Then, we compared our method with the detection of

images with 1920*1080 resolution into the network (with-

out dividing the road surface); the results are shown in

Table 2 and Fig. 13. We compared the number of object

detections under different methods with the actual num-

ber of vehicles, as shown in Table 3.

Compared with the actual number of vehicles, our

method comes close to the actual number of vehicles

when the proximal area object of the road is large. When

the object at the remote area of the road is small, the

detection deviation is still less than 10%. The full-image

detection method did not detect a large number of small

objects in the remote area of the road. Our method

effectively improves the detection of small objects in the

remote area of the road. At the same time, in the proxi-

mal area of the road, our method is also better than the

full-image detection method. However, the deviation is

inaccurate. CNN may detect the wrong object or detect

the non-object as an object, which results in an inaccu-

rate total number of vehicles. Therefore, we calculated the

average accuracy of the dataset in Table 4. Based on the

80% training set and 20% test set, we used the test set to

calculate the model’s average precision (map); map rep-

resents the average of the average accuracy (ap) of the

total object class number (the class number in the exper-

iment is 3). For each category, ap describes the average

of 11 points for each possible threshold in the category’s

precision/ recall curve. We used a set of thresholds [0,

0.1, 0.2, ..., 1]. For recall greater than each threshold (the

threshold in the experiment is 0.25), there will be a corre-

sponding maximum precision pmax(recall). The above 11

precisions are calculated, and ap is the average of these 11

pmax(recall). We used this value to describe the quality of

our model.

ap =
1

11

1∑

recall=0

pmax(recall), recall ∈ [ 0, 0.1, ..., 1],

map =

∑
ap

class number
(2)

The calculation of precision and recall is as follows:

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
(3)

where TP, FN, and FP are the numbers of true posi-

tives, false negatives, and false positives, respectively. We

obtained a final map value of 87.88%, which indicates that

the method is a good way to locate and classify different

vehicle objects. It can be concluded from the above anal-

ysis that the correct overall rate of our object detection is

83.46%, which indicates good location and classification

of different vehicle objects and provides better detection

results for multi-object tracking.

Tracking and counting

After obtaining the object box, we performed vehi-

cle tracking based on the ORB feature point matching

method and performed trajectory analysis. In the experi-

ment, when the matching point of each object was greater

than ten, the corresponding ORB prediction position was

generated. Based on the direction in which the tracking

trajectory was generated, we used the detection line to

Table 4 Accuracy of the network model

Parameters
ap

Precision Recall Average IoU mAP
Car Bus Truck

Results 86.46% 88.57% 88.61% 0.88 0.89 71.32% 87.88%
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judge the direction of motion of the vehicle and clas-

sify it for counting. We conducted experiments on the

other three videos that are the same as the scene in

“Network training and vehicle detection” section but with

a different number of frames. We used the real time rate

to evaluate the speed of the system proposed in this

paper, which is defined as the ratio of the time required

for the system to process a video to that of the origi-

nal video played. In Eq. 4, the system running time is the

time required for the system to process a video, and the

video running time is the time required for the original

video played. The smaller the real time rate value is, the

faster the system performs the calculations. When the

value of the real time rate is less than or equal to 1, the

input video can be processed in real time.

real time rate =
system running time

video running time
(4)

The results are shown in Table 5. The results show that

the average accuracies of vehicle driving direction and

vehicle counting are 92.3% and 93.2%, respectively. In the

highway monitoring video, the car class has a small object

and is easily blocked by large vehicles. At the same time,

there will be multiple cars in parallel, which will affect

the accuracy of the track counting. Our original video

runs at 30 frames per second. From the calculation of the

speed, it can be found that the vehicle tracking algorithm

based on the ORB feature is fast. The system processing

speed is related to the number of vehicles in the scene.

The greater the number of vehicles, the more features

need to be extracted, and the system processing time will

thus become longer. In general, the vehicle counting sys-

tem proposed in this manuscript is very close to real-time

processing.

Conclusions
This study established a high-definition vehicle object

dataset from the perspective of surveillance cameras and

proposed an object detection and tracking method for

highway surveillance video scenes. A more effective ROI

area was obtained by the extraction of the road sur-

face area of the highway. The YOLOv3 object detec-

tion algorithm obtained the end-to-end highway vehicle

detection model based on the annotated highway vehi-

cle object dataset. To address the problem of the small

object detection and the multi-scale variation of the

object, the road surface area was defined as a remote

area and a proximal area. The two road areas of each

frame were sequentially detected to obtain good vehicle

detection results in the monitoring field. The position of

the object in the image was predicted by the ORB fea-

ture extraction algorithm based on the object detection

result. Then, the vehicle trajectory could be obtained by

tracking the ORB features of multiple objects. Finally,

the vehicle trajectories were analyzed to collect the data

under the current highway traffic scene, such as driving

direction, vehicle type, and vehicle number. The experi-

mental results verified that the proposed vehicle detec-

tion and tracking method for highway surveillance video

scenes has good performance and practicability. Com-

pared with the traditional method of monitoring vehicle

traffic by hardware, the method of this paper is low in

cost and high in stability and does not require large-scale

construction or installation work on existing monitoring

equipment. According to the research reported in this

paper, the surveillance camera can be further calibrated to

obtain the internal and external parameters of the cam-
era. The position information of the vehicle trajectory is

thereby converted from the image coordinate system to

Table 5 Track counting results

Scenes Scene 1 Scene 2 Scene 3

Direction correct rateVideo frames 11000 22500 41000

Vehicle category Car Bus Truck Car Bus Truck Car Bus Truck

Direction A

Our method 29 21 3 110 40 21 287 141 22

Actual number of vehicles 32 21 3 117 43 22 297 150 24

Extra Number 3 0 0 8 3 2 15 13 3 0.92

Missing number 0 0 0 1 0 1 5 4 1

Correct rate 0.906 1 1 0.923 0.930 0.864 0.933 0.887 0.833

Direction B

Our method 41 37 4 117 69 13 300 168 15

Actual number of vehicles 43 38 4 125 77 13 311 172 17

Extra Number 2 2 0 11 10 0 15 8 2 0.931

Missing number 0 1 0 3 2 0 4 4 0

Correct rate 0.953 0.947 1 0.888 0.844 1 0.939 0.930 0.882

Real time rate 1.27 1.35 1.48

Average correct rate 0.967 0.911 0.917 0.932
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the world coordinate system. The vehicle speed can be

calculated based on the calibration result of the camera.

Combined with the presented vehicle detection and track-

ing methods, abnormal parking events and traffic jam

events can be detected to obtain more abundant traffic

information.

In summary, vehicles in Europe, such as in Ger-

many, France, the United Kingdom, and the Nether-

lands, have similar characteristics to the vehicles in

our vehicle dataset, and the angle and height of the

road surveillance cameras installed in these countries

can also clearly capture the long-distance road surface.

Therefore, the methodology and results of the vehicle

detection and counting system provided in this anal-

ysis will become important references for European

transport studies.
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