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Abstract 

Computer vision provides a powerful tool for the interaction between man and machine. The 

barrier between physical objects (paper, pencils, calculators) and their electronic counterparts 

limits both the integration of computing into human tasks, and the population willing to adapt to 

the required input devices. Computer vision, coupled with video projection using low cost 

devices, makes it possible for a human to use any convenient object, including fingers, as 

digital input devices. In such an "augmented reality", information is projected onto ordinary 

objects and acquired by watching the way objects are manipulated. In the first part of this paper 

we describe experiments with techniques for watching the hands and recognizing gestures. 

Vision of the face is an important aspect of human-to-human communication. We have been 

experimenting with the use of computer vision to "watch the face". In the second part of this 

paper we describe techniques for detecting, tracking and recognizing faces. When combined 

with real time image processing and active control of camera parameters, these techniques can 

greatly reduce the communications bandwidth required for video-phone and video-conference 

communications. 
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1 VISION AND MAN-MACHINE INTERACTION 

One of the effects of the continued exponential growth in available computing power has been 
an exponential decrease in the cost of hardware for real time computer vision. This trend has 
been accelerated by the recent integration of image acquisition and processing hardware for 
multi-media applications in personal computers. Lowered cost has meant more wide-spread 
experimentation in real time computer vision, creating a rapid evolution in robustness and 
reliability and the development of architectures for integrated vision systems (Crowley 1984). 

Man-machine interaction provides a fertile applications domain for this technological evolution. 
The barrier between physical objects (paper, pencils, calculators) and their electronic 
counterparts limits both the integration of computing into human tasks, and the population 
willing to adapt to the required input devices. Computer vision, coupled with video projection 
using low cost devices, makes it possible for a human to use any convenient object, including 
fingers, as digital input devices. Computer vision can permit a machine to track, identify and 
watch the face of a user. This offers the possibility of reducing bandwidth for video-telephone 
applications, for following the attention of a user by tracking his fixation point, and for 
exploiting facial expression as an additional information channel between man and machine. 

Traditional computer vision techniques have been oriented toward using contrast contours 
(edges) to describe polyhedral objects. This approach has proved fragile even for man-made 
objects in a laboratory environment, and inappropriate for watching deformable non-polyhedric 
objects such as hands and faces. Thus man-machine interaction requires computer vision 
scientists to "go back to basics" to design techniques adapted to the problem. The following 
sections describe experiments with techniques for watching hands and faces. 

2. WATCHING HANDS: GESTURE AS AN INPUT DEVICE 

Human gesture serves three functional roles (Cadoz 1994): semiotic, ergotic, and epistemic. 

• The semiotic function of gesture is to communicate meaningful information. The structure 
of a semiotic gesture is conventional and commonly results from shared cultural 
experience. The good-bye gesture, the American sign language, the operational gestures 
used to guide airplanes on the ground, and even the vulgar "finger'', each illustrates the 
semiotic function of gesture. 

• The erg otic function of gesture is associated with the notion of work. It corresponds to the 
capacity of humans to manipulate the real world, to create artefacts, or to change the state 
of the environment by "direct manipulation". Shaping pottery from clay, wiping dust, etc. 
result from ergotic gestures. 

• The epistemic function of gesture allows humans to learn from the environment through 
tactile experience. By moving your hand over an object, you appreciate its structure, you 
may discover the material it is made of, as well as other properties. 

All three functions may be augmented using an instrumenn: Examples include a handkerchief 
for the semiotic good-bye gesture, a tum-table for the ergotic shape-up gesture of pottery, or a 
dedicated artefact to explore the world (for example, a retro-active system such as the 
pantograph [Ramstein 94] to sense the invisible). 

In Human Computer Interaction, gesture has been primarily exploited for its ergotic function: 
typing on a keyboard, moving a mouse, and clicking buttons. The epistemic role of gesture has 
emerged effectively from pen computing and virtual reality: ergotic gestures applied to an 
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electronic pen, to a data-glove or to a body-suit are transfonned into meaningful expressions for 
the computer system. Special purpose interaction languages have been defined, typically 2-D 
pen gestures as in the Apple Newton, or 3-D hand gestures to navigate in virtual spaces or to 
control objects remotely (Baudel1993). 

With the exception of the electronic pen and the keyboard which both have their non
computerized counterparts, mice, data-gloves, and body-suits are "artificial add-on's" that wire 
the user down to the computer. They are not real end-user instruments (as a hammer would 
be), but convenient tricks for computer scientists to sense human gesture. 

We claim that computer vision can transfonn ordinary artefacts and even body parts into 
effective input devices. Krueger's seminal work on the videoplace (Krueger 1991), followed 
recently by Wellner's concept of digital desk (Wellner 1993) show that the camera can be used 
as a non-intrusive sensor for human gesture. However, to be effective the processing behind 
the camem must be fast and robust. The techniques used by Krueger and Wellner are simple 
concept demonstrations. They are fast but fragile and work only within highly constrained 
environments. 

We are exploring advanced computer vision techniques to non-intrusively observe human 
gesture in a fast and robust manner. In the next section, we present FingerPaint, an experiment 
in the use of cross-correlation as a means of tracking natural pointing devices for a digital desk. 
By "natural pointing device", we mean a bare finger or any real world artefact such as a pen or 
anemser. 

2.1 Projecting the workspace 

In the digital desk a computer screen is projected onto a physical desk using a video-projector, 
such as a liquid-crystal "data-show" working with standard overhead projector. A video-camem 
is set up to watch the workspace such that the surface of the projected image and the surface of 
the imaged area coincide. This coincidence can not match "pixel to pixel" unless the camem and 
projector occupy the same physical space and use the same optics. Since this is impossible, it is 
necessary to master the transformation between the real workspace, and the imaged area. This 
transformation is a mapping between two planes. 

The projection of a plane to another plane is an affine transfonnation. Thus the video projector 
can be used to project a reference frame onto the physical desk in the fonn of a set of points. 
The camem image of these four points permits the calibration of 6 coefficients (A,B,C,D,E,F) 
which transfonn image coordinates (i, j) to workspace coordinates (x, y). 

x=Ai +Bj+C y=Di+Ej+F. 

The visual processes required for the digital desk are relatively simple. The basic operation is 
tracking of a pointing device, such as a finger, a pencil or an eraser. Such tracking should be 
supported by methods to determine what device to track and to detect when tracking has failed. 
A method is also required to detect the equivalent of "mouse-down" and "mouse-up" events. 

The tracking problem can be expressed as: "Given an observation of an object at time t, 
determine the most likely position of the same object at time t+L\T". If different objects can be 
used as a pointing device, then the system must include some fonn of "trigger" which includes 
presentation of the pointing device to the system. The observation of the pointing device gives a 
small neighbourhood, w(n,m), of an image p(i, J). This neighbourhood will serve as a 
"reference template". The tracking problem can then be expressed as, given the position of the 
pointing device in the kth image, determine the most likely position of the pointing device in the 
k+lth image. The size of the tracked neighbourhood must be detennined such that the 
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neighbourhood includes a sufficiently large portion of the object to be tracked with a minimum 

of the background. 

We have experimented with a number of different approaches to tracking pointing devices: these 

include color, correlation tracking, principal components and active contours (snakes) (Berard 
1994) (Martin 1995). The active contour model (Kass 1987) presented problems which we 
believe can be resolved, but which will require additional experiments. Our current 

demonstration uses cross-correlation and principal components analysis. 

Figure 1 Drawing and placing with "Fingerpaint". 

2.2 FingerPaint 

As a simple demonstration, we constraucted a program called "FingerPaint"". FingerPaint runs 
on an Apple Quadra A V 1840 and uses a work-space projected with an overhead projector using 
a liquid-crystal display "data-show". A CCD camera with an 18mm lens observes this 
workspace and provides visual input. "Finger down" and "finger up" events are simulated 
using the space bar of the keyboard but they could be sensed using a microphone attached to the 
surface of the desk. As illustrated in Figure 1, any "natural pointing device" such as a finger 
can be used to draw pictures and letters, or to move a drawing. 

The image at time (k+ 1 )A.T to be searched will be noted as Pk+J(i, j). The search process can 
generally be accelerated by restricting the search to a region of this image, denoted s(iJ), and 

called a "Region of Interest". Our system uses a square search region of size M by M centered 

on the location where the reference template was detected in the previous image. 

The robustness of the tracking system is reasonable but, as discussed below, its performance is 
inadequate with respect to Fitt's law (Card 1983). Preliminary experiments with local users 

indicate however that the current performance is acceptable for investigation purposes. In 
addition, the widespread availability of image acquisition and processing hardware adequate for 

real time correlation should alleviate our current performance problem. Most importantly, this 
demonstration has permitted us to explore the problems involved in watching gesture. 

• The finger paint system has been implemented by Francois Berard. 
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2.3 Correlation as a tracking technique for the digital desk 

The basic operation for a digital desk application is tracking some pointing device, such as a 
finger, a pencil or an eraser. The tracking problem can be expressed as: "Given an observation 
of an object at time t, determine the most likely location of the same object at time t+-1 T". The 
pointing device can be modelled as a reference template. The reference template is a small 
neighbourhood, i.e., a window w(m, n) of a picture p(i, j) obtained at some prior time, t. The 
reference template is compared to an image neighborhood (i, j), by computing a sum of squared 
differences (SSD) between the N by N templace and the neighborhood of the image whose 
upper left comer is at (i, j). 

N N 

SSD(i, j) = L L (pk(i+m,j+n) - w(m, n))2 

m=O n=O 

A SSD value is computed for each pixel, (i, j), within the MxM search region. A perfect match 
between the template and the neighborhood gives a SSD value of 0. Such a perfect match is 
rarely obtained because of differences and appearance due to lighting and other effects. These 
effects can be minimized by normalising the energy in the template and the neighborhood. 

Completing the squares of the SSD equation gives three terms, which can be written as: 

SSD(i,j) = f?p(i,j) + f?w-2 <pk(i+mj+n),w(m, n))> 

The term <Pk(i+m,j+n),w(m, n)> is the inner product of the template w(m, n) with the 

neighborhood Pk(i, j). The term ~(i, j) represents the energy in the image neighborhood and 

t'fv is the energy in the reference window. The neighborhood and reference window may 

normalized by dividing by Ej,(i, j) and f?w, to give a normalized cross correlation, or NCC. 

NCC(i, j) <pk(i+mj+n) w(m, n)> 

E2 (" .) E2 p l,J w 

Normalised cross correlation produces a peak with a value of 1.0 at a perfect match between 
window and neighborhood, and is relatively robust in the presence of noise, changes in scale 
and gray level, and image deformations (Martin and Crowley 1995). Hardware exists for 
computing a normalized cross correlation at video rates. However, in software, it is more 
efficient to use SSD. 

Implementing cross-correlation by SSD requires solving practical problems such as determining 
the sizes of the reference template and of the search region, triggering and breaking tracking, 
and updating the reference template. 

2.4 The size of the reference template 

The size of the reference template must be determined such that it includes a sufficiently large 
portion of the device to be tracked and a minimum of the background. If the template window is 
too large, correlation may be corrupted by the background. On the other extreme, if the template 
is composed only of the interior of the pointing device then the reference template will be 
relatively uniform, and a high correlation peak will be obtained with any uniform region of the 
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image, including other parts of the pointing device. For a reasonable correlation peak, the 

reference template size should be just large enough to include the boundary of the pointing 
device, which contains the information used for detection and localisation. 

In fingerpaint, our workspace is of size 40 em by 32 em. This surface is mapped onto an image 

of 192 x 144 pixels, giving pixel sizes of 2 mm by 2.2 mm. At this resolution, a finger gives a 
correlation template of size 8 by 8 pixels or 16mm by 18mm, as shown in figure 2. 

Figure 2 Reference template for a finger. 

2.5 The size of the search region 

The size M of the search region depends on the speed of the pointing device. Considerations 

based on Pitt's law (Card 1983) indicate a need for tracking speeds of up to 180 em/sec. To 
verify this, we performed an experiment in which a finger was filmed making typical pointing 

movements in our workspace. The maximum speed observed in this experiment was V m = 139 

em/sec. Expressed in pixels this gives Vm = 695 pixels/sec· 

Given an image processing cycle time of AT seconds and a maximum pointer speed of V m 
pixels/sec, it is possible to specify that the pointing device will be found within a radius of M = 

AT V m pixels of its position in the previous frame. For images of 192 x 144 pixels, our built-in 
digitizer permits us to register images at a maximum frame rate of 24 frames per second, giving 
a cycle time of ~Tmax = 41.7 msec. This represents an upper limit on image acquisition speed 
which is attainable only if image tracking were to take no computation time. 

The computational cost of cross-correlation is directly proportional to the number of pixels in 
the search region. Reducing the number of pixels will decrease the time needed for the inner 

loop of correlation by the same amount. This, in turn, increases the number of times that 
correlation can be operated within a unit time, further decreasing the region over which the 
search must be performed. Thus there is an inverse relation between the width of the search 
region, M, and the maximum tracking speed, V m· The smaller the search region, the faster the 

fmger movement that can be tracked, up to a limit set by the digitizing hardware. 

The fastest tracking movement can be expected at a relatively small search region. This is 

confirmed by experiments. To verify the inverse relation between M and V m. we systematically 
varied the size of the search region from M = 10 to 46 pixels and measured the cycle time that 
was obtained. The maximum speed of 126 pixels/sec is obtained with M=26. Although this is 
5.5 times less than the maximum desirable speed (i.e., 695 pixels/sec), the system is quite 

usable to perform drawing and placements in a "natural" way. 

2.6. Triggering and breaking tracking 

When tracking is not active, the system monitors anN by N pixel "tracking trigger", Tk(ij), 

located in the lower right corner of the workspace. As each image is acquired at time k, the 
contents of this tracking trigger are subtracted from the from the contents at the previous image 
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k-1. This creates a difference image as shown in figure 3. The energy of the difference image is 
computed as 

N-1 N-1 

Ek = L L (Tt(m,n)- Tt.J(m,n))2 
m=O n=O 

When a pointing device enters the tracking trigger, the energy rises above a threshold. In order 
to assure that the tracking device is adequately positioned, the system waits until the difference 
energy drops back below the threshold before acquiring the reference template. At that point, 
the contents of the tracking trigger, Tk(m, n) are saved as a reference image, and the tracking 
process is initiated. 

Figure 3 Temporal difference of images in the reference square. 

Tracking continues as long as the minimum value of SSD remains below a relatively high 
threshold. However, it can happen that the tracker locks on to a pattern on the digital desk (for 
example a photo of the pointing device!). To cover this eventuality, if the tracked location of the 
pointer stops moving for more than a few seconds (say 10), the system begins again to 
observe the difference energy in the tracking trigger. If the trigger energy rises above threshold, 
the tracker will break the previous track and re-initialise the reference pattern with the new 
contents of the tracking trigger. 

2.7. Updating the reference mask 

Figure 4 : Change in reference template as a function of finger orientation. 

As the user moves the pointing device around the workspace, there is a natural tendency for the 
device to rotate, as shown in figure 4. This, in turn, may cause loss of tracking. In order to 
avoid loss of tracking, the smallest SSD value from each search is compared to a threshold. If 
the smallest SSD rises above this threshold, then the reference template is updated using the 
contents of the image at time k-1 at the detected position. 

Tracking fingertips is an example of a simple fast visual process which can be used to change 
the nature of the interaction between man and machine. Vision can also be used to make the 
machine aware of the user by detecting, tracking and watching his face. 

3 FACES: DETECTING, TRACKING, AND WATCHING THE USER 
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Face to face communication plays an important role in human to human communication. Thus it 
is natural to assume that an imponant quantity of non-verbal information can be obtained for 
man-machine interaction by watching faces. However, even more than hands, face 
interpretation poses difficult problems for established machine vision techniques. In this section 
we briefly report on experiments with simple techniques for detecting, tracking and interpreting 
images offaces. The key to robustness in such tracking and interpretation is the integration of 
complementary techniques. 

3.1 Why watch a face? 

Detection and interpretation of a face image can have a number of applications in machine 
vision. The most obvious use is to know whether a person is present in front of a computer 
screen. This makes a cute, but very expensive, screen saver. It is also possible to use face 
recognition as a substitute for a login password, presenting a person with his preferred 
workspace as soon as he appears in front of the computer system. Slightly more practical is the 
use of computer vision to watch the eyes and lips of a user. Eye tracking can be used to 
determine whether the user is looking at the computer screen and to which part his fixation is 
posed. This could conceivably be used to activate the currently active window in an interface. 
Observing the mouth to detect lip movements can be used to detect speech acts in order to 
trigger a speech recognition system. 

None of the above uses would appear to be compelling enough to justify the cost of a camera 
and digitizer. However, there is an application for which people are ready to pay the costs of 
such hardware: video communications. Recognizing and tracking faces can have several 
imponant uses for the applications of video telephones and video conferencing. We are 
currently experimenting with combining face interpretation with a rudimentary sound 
processing system to determine the origin of spoken words and associate speech with faces. 
Each of the applications which we envisage require active computer control of the direction 
(pan and tilt) zoom (focal length), focus and aperture of a camera. Fortunately, such cameras 
are appearing on the market. 

In the video-telephone application, we use an active camera to regulate zoom, pan, tilt, focus 
and aperture so as to keep the face of the user centered in the image at the proper size and focus, 
and with an appropriate light level. Such active camera control is not simply for esthetics. 
Keeping the face at the same place, same scale and same intensity level can dramatically reduce 
the information to be transmitted. One possible such coding is to define (on-line) a face space 
using principle components analysis (defined below) of the sample images from the last few 
minutes. Once the face basis vectors are transmitted, subsequent images can be transmitted as a 
short vector of face space coefficients. Effective use of this technique is only possible with 
active camera control. Other image codings can also be accelerated if the face image is 
normalized in position, size, gray level and held in focus. 

In the video-conference scenario, a passive camera with a wide angle lens provides a global 
view of the persons seated around a conference table. An active camera provides a closeup of 
which ever person is speaking. When no one is speaking, and during transitions of the close-up 
camera, the wide-angle camera view can be transmitted. Face detection, operating on the wide
angle images, can be used to estimate the location of conference participants around the table. 
When a participant speaks, the high resolution camera can zoom onto the face of the speaker 
and hold the face in the center of the image. 

What are the technologies required for the above applications? Both scenarios require an ability 
to detect and track faces, and an ability to servo control pan, tilt, zoom, focus and aperture so as 
to maintain a selected face in the desired position, scale and contrast level. From a hardware 
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standpoint, such an application requires a camera for which these axes can be controlled. Such 
camera heads are increasingly appearing on the market. For example, we have purchased a 
small RS232 controllable camera from a Japanese manufacturer which produces excellent color 
images for little more than the price of a normal color camera. 

A second hardware requirement is the ability to digitize and process images at something close 
to video-rates. The classic bottle-neck here is communication of the image between the frame
grabber and the processor. Fortunately, the rush to multi-media applications has pushed a 
number of vendors to produce workstations in which a framegrabber is linked to the processor 
by such a high speed bus. Typical hardware available for a reasonable cost permits acquisition 
of up to 20 frames per second at full image size and full video rates for reduced resolution 
images. Adding simple image processing can reduce frame rates to 2 to 10Hz (depending on 
image resolution). Such workstations are suitable for concept demonstrations and for 
experiments needed to defme performance specifications. An additional factor of 2 (18 months) 
in band-width and processing power will bring us to full video-rates. 

The questions we ask in the laboratory are: What software algorithms can be used for face 
detection, tracking and recognition, and what are the systems concepts needed to tie these 
processes together. Systems concepts have been the subject of our ESPRIT Basic Research 
Project "Vision as Process", described in the book (Crowley and Christensen 1994) or the 
paper (Crowley 94) for more details. 

3.2 Detection: Finding a face with color 

One of the simplest methods for detecting pixels which might be part of a face is to look for 
skin color. Human skin has a particular hue and saturation. The intensity, however, will vary 
as a function of the relative direction to the illumination. Of course, the perceived hue and 
saturation will be the product of the color of the ambient light and the skin color (Schiele and 
Weibul1995). 

We have found that candidate pixels for faces and hands can be detected very rapidly using a 
normalized color histogram. Histogram color can be normalised for changes in intensity by 
dividing the color vector by the luminance. This permits us to convert a color vector [R, G, B] 
having three dimensions into a vector [r, g] of normalised color having two dimensions. The 
normalized color histogram H(r, g) provides a fast means of skin detection. The histogram is 
initialised by observing a patch of skin and counting the number of times each normalized color 
value occurs. The histogram contains the number of pixels which exhibit a particular color 
vector [r, g]. Dividing by the total number of pixels in the histogram, N, gives the probability 
of obtaining a particular vector given that the pixel observes skin. 

P(color I skin)= ~ H(r, g) 

Bayes rule can be used to determine the probability of skin given the color has values [r, g]. 

P(skin I color) 
P(skin) . 

P( color) P( color I skm) 

P(skin) can be taken as constant. P(color) is the global statistic for the vector [r, g]. In practice 
this ratio is often approximated by a constant. The result at each pixel is the estimate of the 
probability of skin. An example (unfortunately printed here in black and white) is shown in 
figure Sa through 5d. 
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Figure 5 a. Black and white rendition of 
color image of Y.H. Berne. 
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Figure 5 c. Thresholded skin probability with 
bounding box of connected components. 

Figure 5d Bounding box for the face. 
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Histogram matching can provide a very fast indicator that a face is present at a part of an image. 
However, reliability requires that this information be confirmed by another detection means. 
Such a means can be provided by a blink detector. 

3.3 Finding a face by blink detection 

A human must periodically blink to keep his eyes moist. Blinking is involuntary and fast. Most 
people do not notice when they blink. However, detecting a blinking pattern in an image 
sequence is an easy and reliable means to detect the presence of a face. Blinking provides a 
space-time signal which is easily detected and unique to faces. The fact that both eyes blink 
together provides a rendundance which permits blinking to be discriminated from other motions 
in the scene. The fact that the eyes are symmetrically positioned with a fixed separation 
provides a means to normalize the size and orientation of the head. 

We have built a simple blink detector which works as follows: As each image is acquired, the 
previous image is subtracted. The resulting difference image generally contains a small 
boundary region around the outside of the head. If the eyes happened to be closed in one of the 
two images, there are also two small roundish regions over the eyes where the difference is 
significant. 

The difference image is thresholded, and a connected components algorithm is run on the 
thresholded image. A bounding box is computed for each connected components. A candidate 
for an eye must have a bounding box within a particular horizontal and vertical size. Two such 
candidates must be detected with a horizontal separation of a certain range of sizes, and little 
vertical difference in the vertical separation. When this configuration of two small bounding 
boxes is detected, a pair of blinking eyes is hypothesized. The position in the image is 
determined from the center of the line between the bounding boxes. The distance to the face is 
measured from the separation. This permits to determine the size of a window which is used to 
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extract the face from the image. This simple technique has proven quite reliable for determining 
the position and size of faces. 

3.4 Tracking the face by correlation (SSD) 

Detection of a face by color is fast and reliable, but not always precise. Detection by blinking is 
precise, but requires capturing an image pair during a blink. Correlation can be used to 
complete these two techniques and to hold the face centered in the image as the head moves. 
The crucial question is how large a window to correlate (N) and over how large a search region 
to search. 

We have found that a 7 by 7 search region extracted from the center of a face is sufficient to 
determine the precise location of the face in the next image. The size of the search region is 
determined by the speed with which a face can move between two frames. Calling on the finger 
tracking results above, we optimised the search region to maximize the frequency of image 
acquisition. With our current hardware this is provided by a search region to 26 by 26 pixels, 
but must be adjusted when several image processes are running in parallel. 

Correlation can also be used in isolation to track a face. As a test of the robustness of 
correlation, we acquired a sequence of images of a head turning (shown in figure 6 below). We 
then correlated the center image from the sequence to produce the correlation graph shown in 
figure 7. The graph shows the results of zero-mean normalized correlation for the 40th face 
image with the other images in this set 

Figure 6 Every 5th image from a sequence of 70 images of Jerome Martin turning. 
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Figure 7 Correlation values for correlation of face number 40 with the face images from 
figure 6. 



Vision for man machine interaction 39 

3.5 Identifying the face by EigenSpace decomposition 

The pixels which compose an image can be considered as a very long vector. Thus, an image of 
a prototypical face can be considered as a basis vector for describing other images by inner 
product. A set of such images can form a space for describing a shape. For example, images 
number 0, 30 and 60 from figure 6 can be used to defme a space of a face turning. A particular 
face image can be represented by the vector of 3 inner products obtained with these three 
images. It is necessary to compute this inner product at an appropriate location, but since 
correlation is a sequence of inner products, it is possible to find the peak correlation, and then 
describe the image by the vector of inner products obtained at that position. 

The problem with this approach is that it can rapidly become expensive as the number of images 
increases. However, the image set can be reduced to minimal orthogonal basis set, and the 
correlation with this basis set used to describe the contents. This is the idea behind the 
EigenSpace coding made popular by Turk and Pentland ( 1991 ). Correlation with a set of Eigen 
images is commonly thought of as a technique for recognition. However, it is also possible to 
use such a coding as a compact image transmission code provided that the position, scale and 
contrast are suitably normalised. 

To construct an eigenspace, we begin with a database of images, as for example shown in 
figure 8. We then compute an average image as shown in figure 9. Finally, an fast algorithm is 
used to compute the covariance of the of the image data based. For a 128 by 128 = 65,536 pixel 
image, this covariance matrix has, in theory, 65,5362 coefficients. Fortunately, this covariance 
is highly diagonal, and a fast algorithm can be used to compute and diagonalise this covariance. 
The principal components of the covariance matrix form an orthogonal basis set, which are the 
axis of the EigenSpace as shown in figure 9. 

One of the simplest applications of the eigenfaces method is the recognition of a subject We 
have prepared a simple demo which works as follows. At the beginning of a session, the 
system classifies the subjects face in order to determine if the subject is known. Classification is 
performed by multiplying the normalized face by each of the principle component images in 
order to obtain a vector. The vector positions the image in the "face space" defined by the 
current Eigenfaces. If the face is near a position of this space which corresponds to a known 
subject, then the subject's image from the face-space database is displayed. If the vector is not 
near a known subject, the subject is classified as unknown and no face is displayed. Using the 
Eigenface technique, our Quadra 700 with no additional hardware can digitize and classify a 
face within a 108 by 120 image for a database of 12 images at about 1 frame per second. 

It is possible to use the Eigenface technique to measure parameters. One example of this is for 
eye-tracking. We train a set of images of the subject looking in different directions and use 
these images to form an Eigen-Space. During execution of a task, a high-resolution window is 
placed over the subjects eyes, and the position in the Eigen-Space is computed. The nearest 
principle components are used to interpolate the current horizontal and vertical direction. 

We are experimenting with this technique to determine the trade-off between resolution of the 
windows on the eyes, the number of eigen-images needed, and the precision which we can 
obtain in eye tracking. The goal is to be able to drive a pointing device, such as a mouse with 
such eye tracking. 
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Figure 8 A small face data base composed of 4 images. 

Figure 9 The average image and the three principal components of the covariance matrix. 

Facial expression contains useful informations about the user's state of mind. The Eigenfaces 
principle can be easily extended to classifying the users facial expression. A set of facial 
expressions are obtained as the subject performs his task. These facial expressions are then 
used to form an Eigenspace. At each instant, the system determines the face expression class 
which most closely corresponds to the users current expression. In this way, we can 
experiment with anticipating the users "mood" based on facial expression. 

4. CONCLUSION 

In this paper we have presented some preliminary results with detection and tracking of fingers 
and faces. We have also experimented with eyetracking using snakes and other techniques 
based on signal processing, as well as face interpretation using EigenFaces. It is increasingly 
apparent that computer vision has the potential to provide a rich new source of interaction 
modes for computer human interaction. Vision can make the machine "aware" of the user, his 
movements and environment, in ways that are yet to be invented. 
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Discussion 

Pedro Szekely: How large can the face database be for the namespace recognition using 

Principal Components Analysis. 

James Crowley: There have been reports that the database can hold up to 1000 images and still 

perform at a recognition rate of 95%. 

Rick KazTflllTI: Actually, there have been reports of 95% recognition on databases of up to 

10,000 images. 

James Crowley And it is usual to have 3-4 images per person in the database, meaning that 

10,000 images would support 2500 different people with a recognition rate of 95%. 

Wendy Mackay: Your work is more technology driven, as opposed to the work at Xerox on 

the digital desk and other systems, in which the approach was distinctly application driven. 

What kinds of applications have you considered beyond the Digital Desk? 

James Crowley: You are correct in assessing my approach as technology driven. It is important 

to note that only in the past few years has the technology to do vision work reached a 

sufficient price-performance ratio to enable realistic application to problems such as the digital 

desk. In addition to the commercially enticing applications of video phones and conferencing 

that I mentioned in my talk, recently I have discovered that the domain of air traffic control 

provides great promise for vision as an augmented reality application. 

Wendy Mackay: It is interesting to note how more and more computer technology research is 

taking the approach suggested by the digital desk, that is, the computer is trying to move into 

the real world rather than the work of the real world being translated into the digital realm. 

Gilbert Cockton: Have you considered use of simulation as used with speech input to expose 

usability problems before technology is perfected? Also, have you considered applications 

where there is some operator correction (as in machine translation) for recognition errors? 

James Crowley: In answer to the first question, Joi!lle Coutaz is looking at the usability 

problems and we can do this before the technology is perfected. As for the recognition of 

errors, the use of complementary techniques (in addition to the techniques I have shown here) 

can raise the recognition rate to very near 100%. Simple techniques with 90-95% accuracy can 

in partnership produce very robust recognition systems for tracking and recognition tasks and I 
believe that is the way to go. 

Michel Beaudouin-Lafon: How much has your work in vision been influenced by the work in 

the psychology of perception? 

James Crowley: I have tried to keep current in the research fields of both psychophysics and 

neurobiology as well as computer vision. For the most part, it is fair to assess computer vision 

research as I have described as being more concerned with the engineering problem. We want 

to transition whatever knowledge we have of how vision works in humans into computer 

technology to support applications in which vision will provide greater utility and usability. 

From an engineering perspective, we mainly use results from signal processing, 

communications theory and control theory, all of which are bread and butter for the practical 

computer vision researcher. 
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Joi!lle Coutaz: The tracking results you are showing are all too low-level to be of real use in 
HCI applications. 

James Crowley: Agreed, but it's a good start and now that the price of very powerful vision 

technology is within the grasp of so many with products such as the Canon VCCl camera, 

there is much more opportunity for a fusion between HCI and vision research. 

Gregory Abowd: How much longer will this kind of HCI and vision research be of interest to 
the computer vision researcher? 

James Crowley: Obviously, it depends on where the money is for funding such research. You 

have to realize that I am only one part of the vision research community, the applied side. A 

great deal of the vision community is concerned with more esoteric and mathematical problems 

associated with making a single vision technique optimal. I am concerned with building 

interesting tools using combinations of vision techniques. We should look to people such as 
Sandy Petuland at MIT, the acknowledged guru of applications of vision research, to further 
motivate this HCI-vision synergy. 


