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Abstract

 

Substantial progress has been made recently towards design-

ing, building and test-flying remotely piloted Micro Air Vehicles

(MAVs) and small UAVs. We seek to complement this progress in

overcoming the aerodynamic obstacles to flight at very small

scales with a 

 

vision-guided flight stability and autonomy system

 

,

based on a robust horizon detection algorithm. In this paper, we

first motivate the use of computer vision for MAV autonomy, ar-

guing that given current sensor technology, vision may be the

only practical approach to the problem. We then describe our sta-

tistical vision-based horizon detection algorithm, which has been

demonstrated at 30Hz with over 99.9% correct horizon identifica-

tion. Next, we develop robust schemes for the detection of extreme

MAV attitudes, where no horizon is visible, and for the detection

of horizon estimation errors, due to external factors such as video

transmission noise. Finally, we discuss our feedback controller

for self-stabilized flight, and report results on vision-based auton-

omous flights of duration exceeding ten minutes.

 

1. Introduction

 

Ever since humankind’s first powered flight, research efforts

have continually pushed the envelope to create flying machines

that are faster and/or larger than ever before. Now, however, there

is an effort to design aircraft at the other, largely unexplored end

of the spectrum, where the desire for portable, low-altitude aerial

surveillance has driven the development and testing of aircraft

that are as small and slow as the laws of aerodynamics will permit

— in other words, on the scale and in the operational range of

small birds. Vehicles in this class of small-scale aircraft are

known as 

 

Micro Air Vehicles 

 

or 

 

MAVs

 

.

Equipped with small video cameras and transmitters, MAVs

have great potential for surveillance and monitoring tasks in areas

either too remote or too dangerous to send human scouts. Opera-

tional MAVs will enable a number of important missions, includ-

ing chemical/radiation spill monitoring, forest-fire

reconnaissance, visual monitoring of volcanic activity, surveys of

natural disaster areas, and even inexpensive traffic and accident

monitoring. Additional on-board sensors can further augment

MAV mission profiles to include, for example, airborne chemical

analysis. In the military, one of the primary roles for MAVs will

be as small-unit battlefield surveillance agents, where MAVs can

act as an extended set of eyes in the sky for military units in the

field. This use of MAV technology is intended to reduce the risk

to military personnel and has, perhaps, taken on increased impor-

tance in light of the U.S.’s new war on terrorism, where special

operations forces are playing a crucial role. Virtually undetectable

from the ground, MAVs could penetrate potential terrorist camps

and other targets prior to any action against those targets, signifi-

cantly raising the chance for overall mission success.

Researchers in the Aerospace Engineering Department at the

University of Florida have established a long track record in de-

signing, building and test-flying (remotely human-piloted) practi-

cal MAVs [6-8,11]. For example, Figure 1 shows one of our

recently developed MAVs as well as a small UAV design. While

much progress has been made in the design of ever smaller MAVs

by researchers at UF and others in the past five years, significantly

less progress has been made towards equipping these MAVs with

autonomous capabilities that could significantly enhance the util-

ity of MAVs for a wide range of missions. 

The first step in achieving such MAV autonomy is basic sta-

bility and control. Here, we present such a 

 

flight stability and con-

trol system

 

, based on vision processing of video from a camera

on-board our MAVs. In this paper, we first motivate the use of

computer vision for such a control system, and describe our 

 

vi-

sion-based horizon detection algorithm

 

, which forms the basis of

the flight stability system presented here. Next, we address real-

time control issues in the flight stability system, including ex-

treme attitude detection (i.e. no horizon in the image), confidence

measures for the detected horizon estimates, and filtering of hori-

zon estimates over time. Finally we report some results of self-

stabilized MAV flights over the campus of the University of Flor-

ida and over Fort Campbell, Kentucky. 

 

2. Horizon detection

 

MAV flight stability and control presents some difficult chal-

lenges. The low moments of inertia of MAVs make them vulner-

able to rapid angular accelerations, a problem further complicated

by the fact that aerodynamic damping of angular rates decreases

with a reduction in wingspan. Another potential source of insta-

bility for MAVs is the relative magnitudes of wind gusts, which

are much higher at the MAV scale than for larger aircraft. In fact,

wind gusts can typically be equal to or greater than the forward

airspeed of the MAV itself. Thus, an average wind gust can im-

mediately affect a dramatic change in the vehicle’s flight path.



 

Birds, the biological counterpart of mechanical MAVs, can of-

fer some important insights into how one may best be able to

overcome these problems. In studying the nervous system of

birds, one basic observation holds true for virtually all of the thou-

sands of different bird species: 

 

Birds rely heavily on sharp eyes

and vision to guide almost every aspect of their behavior

 

 [2-5,12].

Biological systems, while forceful evidence of the importance of

vision in flight, do not, however, in and of themselves warrant a

computer-vision based approach to MAV autonomy. Other equal-

ly important factors guide this decision as well. Perhaps most crit-

ical, the technologies used in rate and acceleration sensors on

larger aircraft are not currently available at the MAV scale. It has

proven very difficult, if not impossible, to scale these technolo-

gies down to meet the very low payload requirements of MAVs.

While a number of sensor technologies do currently exist in small

enough packages to be used in MAV systems, these small sensors

have sacrificed accuracy for reduced size and weight. Even if suf-

ficient rate and acceleration sensors did exist, however, their use

on MAVs may still not be the best allocation of payload capacity.

For many potential MAV missions, vision may be the only prac-

tical sensor than can achieve required and/or desirable autono-

mous behaviors. Furthermore, given that surveillance has been

identified as one their primary missions, MAVs must necessarily

be equipped with on-board imaging sensors, such as cameras or

infrared arrays. Thus, computer-vision techniques exploit already

present sensors, rich in information content, to significantly ex-

tend the capabilities of MAVs, without increasing the MAV’s re-

quired payload.

 

2.1 Horizon-detection algorithm

 

Fundamentally, flight stability and control requires measure-

ment of the MAV’s angular orientation. While for larger aircraft

this is typically estimated through the integration of the aircraft’s

angular rates or accelerations, a vision-based system can directly

measure the aircraft’s orientation with respect to the ground. The

two degrees of freedom critical for stability — the 

 

bank angle

 

 

and the 

 

pitch angle

 

 

 

1

 

 — can be derived from a line correspond-

ing to the horizon as seen from a forward facing camera on the air-

craft. Therefore, we have developed a vision-based horizon-

detection algorithm that lies at the core of our flight stability sys-

tem, and which rests on two basic assumptions: (1) the horizon

line will appear as approximately a straight line in the image; and

(2) the horizon line will separate the image into two regions that

have different appearance; in other words, sky pixels will look

more like other sky pixels and less like ground pixels, and vice

versa. The question now is how to transform these basic assump-

tions into a workable algorithm. 

The first assumption — namely, that the horizon line will ap-

pear as a straight line in the image — reduces the space of all pos-

sible horizons to a two-dimensional search in line-parameter

space. For each possible line in that two-dimensional space, we

must be able to tell how well that particular line agrees with the

second assumption — namely that the correct horizon line will

separate the image into two regions that have different appear-

ance. Thus our algorithm can be divided into two functional parts:

(1) for any given hypothesized horizon line, the definition of an

optimization criterion that measures agreement with the second

assumption, and (2) the means for conducting an efficient search

through all possible horizons in two-dimensional parameter space

to maximize that optimization criterion. 

 

2.2 Optimization criterion

 

For our current algorithm we choose color, as defined in RGB

space, as our measure of appearance. In making this choice, we do

not discount the potential benefit of other appearance measures,

such as texture; however, in exploring possible feature extraction

methods, we believe that simple appearance models ought to pre-

cede pursuit of more advanced feature extraction methods.

For any given hypothesized horizon line, we label pixels

above the line as sky, and pixels below the line as ground. Let us

denote all hypothesized sky pixels as,

, , (1)

where  denotes the red channel value,  denotes the green

channel value and  denotes the blue channel value of the th

sky pixel, and let us denote all hypothesized ground pixels as,

, . (2)

Given these pixel groupings, we want to quantify the assumption

that sky pixels will look similar to other sky pixels, and that

ground pixels will look similar to other ground pixels. One mea-

sure of this is the degree of variance exhibited by each distribu-

tion. Therefore, we propose the following optimization criterion:

 

1. Instead of the pitch angle , we actually recover the closely 

related pitch percentage , which measures the percentage of 

the image above the horizon line.

Fig. 1: (a) six-inch UF MAV, (b) six-inch UF MAV in flight with view through its on-board camera, and (c) 24-inch small UAV.
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(3)

based on the covariance matrices  and  of the two pixel dis-

tributions,

(4)

 (5)

where,

, , (6)

and  and , , denote the eigenvalues of  and

 respectively. 

For video frames with sufficient color information, the deter-

minant terms in (3) will dominate, since the determinant is a prod-

uct of the eigenvalues; however, for cameras with poor color

characteristics or video frames exhibiting loss of color informa-

tion due to video transmission noise, the covariance matrices may

become ill-conditioned or singular. When this is the case, the

sum-of-eigenvalues terms will become controlling instead, since

the determinants will evaluate to zero for all possible horizon

lines.

Assuming that the means of the actual sky and ground distri-

butions are distinct (a requirement for a detectable horizon, even

for people), the line that best separates the two regions should ex-

hibit the lowest variance from the mean. If the hypothesized hori-

zon line is incorrect, some ground pixels will be mistakenly

grouped with sky pixels and vice versa. The incorrectly grouped

pixels will lie farther from each mean, consequently increasing

the variance of the two distributions. Moreover, the incorrectly

grouped pixels will skew each mean vector slightly, contributing

further to increased variance in the distributions.

 

2.3 Maximizing the optimization criterion

 

Given the  optimization criterion in equation (3), which al-

lows us to evaluate any given hypothesized horizon line, we must

now find that horizon line which maximizes . As we have stated

previously, this boils down to a search in two-dimensional line

parameter space, where our choice of parameters are the bank an-

gle  and pitch percentage  with ranges,

 and . (7)

To meet real-time processing constraints

 

1

 

, we adopt a two step

approach in our search through line-parameter space. We first

evaluate  at discretized parameter values in the ranges specified

by (7) on down-sampled images with resolution . Then,

we fine-tune the coarse parameter estimate from the previous step

through a bisection-like search about the initial guess on a higher

resolution image ( , , ). Further details

on the search part of the algorithm may be found in [4].

Thus, we can summarize the horizon-detection algorithm as

follows. Given a video frame at  resolution:

1. Down-sample the image to , where , 

.

2. Evaluate  on the down-sampled image for line parameters

, where,

, , (8)

3. Select  such that,

, . (9)

4. Use bisection search on the high-resolution image to fine-tune

the values of .

At this point, the reader might be wondering whether a full

search of the line-parameter space (even at coarse resolution) is

really required once flying, since the horizon at the current time

step should be very close to the horizon at the previous time step;

perhaps speed improvements could be made by limiting this ini-

tial search. There is, however, at least one very important reason

for not limiting the initial search — namely robustness to single

frame errors in horizon estimation. Assume, for example, that the

algorithm makes an error in the horizon estimate at time ; then,

at time , a limited search could permanently lock us into the

initial incorrect horizon estimate, with potentially catastrophic re-

sults. A full, coarse search of line parameter space, on the other

hand, guards against cascading failures due to single-frame errors.

 

2.4 Horizon-detection examples

 

Figure 2 illustrates several examples of the horizon-detection

algorithm at work, while Figure 3 illustrates a more detailed ex-

ample plotting  as a function of the bank angle and pitch per-

centage, and the consequent classification of pixels as sky and

ground in RGB space. Additional examples and videos can be

found at http://mil.ufl.edu/~nechyba/mav. Our horizon-detection

algorithm has been demonstrated to run at 30 Hz on a 900 MHz

x86 processor with a down-sampled image of

 resolution, a search resolution of ,

and a final image of  resolution. If such

computing power is not available, we have shown only slightly

reduced performance at values as low as ,

 and .

At different times of the day, and under both fair and cloudy

conditions, we have gathered hours of video on-board our MAV,

flying under manual control over terrain that includes roads,

buildings large and small, meadows, wooded areas, and a lake.

For these data, our horizon-detection algorithm correctly identi-

fies the horizon in over 99.9% of cases.

 

3. Flight stability and control

 

In this section, we extend the basic horizon-detection algo-

rithm developed in the previous section to 

 

real-time horizon

tracking

 

. Below, we consider the following important issues: (1)

extreme attitude detection, (2) error detection in horizon estima-

tion, (3) filtering of the horizon estimate over time, and (4) basic

feedback control and stabilization of the MAV.

 

1. See [4] for details on additional algorithmic optimizations.
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3.1 Extreme attitude detection

One of the implicit assumptions of the horizon detection algo-

rithm is that there will always be a horizon in the images from the

forward looking camera on board the MAV. In real-time control

of the MAV, the MAV may, however, encounter times when no

visible horizon appears in the image, if, for example, a gust of

wind forces the nose of the aircraft too far up or down. Such cases

cannot simply be ignored; if the aircraft is heading straight to-

wards the ground, no horizon will be visible in the camera image,

yet the control system will certainly be required to take action to

save the MAV from certain and possibly catastrophic crashing.

It is desired then, to be able to detect instances when the hori-

zon is not in view of the camera, and if so to determine what ac-

tion to take in order to bring the horizon back into view. There are

two valuable sources of information which we can draw on to de-

tect these types of extreme attitudes: (1) recent appearance of the

sky and ground from previous time steps, and (2) recent location

of the horizon line from previous time steps. For example, if the

horizon line was recently estimated to lie near the top of the im-

age, it is logical that a subsequent image without a horizon line is

most likely a view of the ground. We can use these two pieces of

information to quantitatively determine if the horizon line exists

in the image and if not, to determine whether we are looking at the

sky or the ground.

Using the statistics already computed as part of the horizon-

detection algorithm, we can model the appearance of the sky and

ground over a recent time history of the MAV’s flight. Our gen-

eral approach for detection of extreme attitudes keeps running sta-

Fig. 2: Various horizon-detection examples under different lighting conditions (sunny and cloudy), and with varying degrees of 

video transmission noise. For each example, the yellow line indicates the algorithm’s horizon estimate.

Fig. 3: (a) original image, (b) optimization criterion as a function of bank angle and pitch percentage and (c) resulting classification 

of sky and ground pixels in RGB space.
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tistical models for both the sky and ground from previous frames,

where horizon lines were detected with a high degree of confi-

dence. With each new frame, the result of the horizon detection

algorithm can be checked by comparing the sky and ground mod-

els for the current frame with the computed, time-dependent sta-

tistical models for sky and ground. If the distributions on either

side of the line in the current frame both appear to be more similar

to the known ground distribution, then it would appear that the

aircraft is pointing towards the ground. Conversely, if they both

match the sky better, then it is advisable to nose downward. Inter-

estingly, if the sky in the current frame matches the ground model

while the ground in the current frame matches better with the sky

model, we can detect situations where the plane is flying upside

down. 

One additional piece of information is required to implement

the extreme attitude detection scheme, namely, a time history of

the horizon line estimate. For the purposes of detecting extreme

attitudes, we are most concerned with a recent history of the pitch

percentage , the percentage of the image below the horizon line.

One measure of that history is a running average  of the pitch

percentage over the previous ten frames.

Upon startup of the system, the camera is assumed to be ori-

ented such that the horizon is in its view. When the first frame of

video is processed by the system, the means and covariance ma-

trices of the ground and sky models are set equal to those found

by the horizon detection algorithm. The system then begins to up-

date the models using the results of the horizon detection algo-

rithm for a set number of initialization frames. Our current

implementation uses 100 initialization frames (3.3 seconds).

Once boot-strapped, it is necessary to continually update the sky

and ground models as the aircraft flies to account for changes in

lighting associated with changes in orientation and changes in

landscape, etc. The running statistical models are updated as fol-

lows: 

, (10)

, (11)

where , ,  and  are the time-dependent mod-

el covariances and means, respectively, while , ,  and

 are the covariances and means for the current frame. Note that

the constant  controls how rapidly the models change over time.

For a new image, we first compute th estimated horizon for

that image. We then compare the resultant current statistics with

the running statistical models from previous frames, using the fol-

lowing four distance measures:

(12)

(13)

(14)

(15)

The value of  measures the similarity between the region se-

lected as the sky by the horizon detection algorithm in the current

frame and the sky model from recent frames.  represents the

similarity between the currently computed sky region and the

ground model from recent frames. Likewise, the values of 

and  are the similarity measures between the current ground

region and the sky and ground models from recent frames, respec-

tively. Table 1 now summarizes four possible cases and the con-

clusions we are able to draw for each case.

The determinations in the above table can now be combined

with the past history of the horizon line to decide what action to

take. If the current frame is determined to be normal by the valid-

ity test (case 1), then the horizon estimate is assumed to be accu-

rate, and commands sent to the MAV are determined by the

normal control system loop described in Section 3.4. Also, the

statistics of the validated frame are used to update the sky and

ground models per equations (10) through (11). If the validity test

returns a higher likelihood of all ground (case 2), we verify that

result with the recent history of the horizon line  to deter-

mine what action to take. When the value of  is above a set

threshold, then the system goes into a “pull-up” mode that sends

commands to the aircraft to rapidly increase its pitch angle. A val-

ue of 0.8 was used for this threshold. While the system is in pull-

up mode, the time-dependent statistical models are not updated

since the horizon estimate during this time will most likely be in-

correct. Also during pull-up mode,  is only updated with the

estimated value of  if the validity test indicates the current

frame has returned to a visible horizon line; otherwise,  is

updated using a value of 1.01. The system will stay in pull up

mode until a valid horizon is detected. Similarly, if the validity

test returns a higher likelihood of all sky (case 3) and the value of

 is below a given threshold (set at 0.2), the system goes into

a “nose-down” mode. Updating of the time-dependent statistical

models and  in nose-down mode is the same as in pull-up

mode, except that the default update value for  is 0.01 in-

stead of 1.01.

3.2 Error detection in horizon estimates

Extreme attitude detection can also help us to detect possible

errors in the horizon estimation algorithm; such errors can occur

when transient noise causes video degradation. Consider, for ex-

ample, the following possibility: the validity test returns case 2

(all ground), but . In this situation, we must assume an

σ
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error occurred in horizon detection, because the aerodynamic

characteristics of the plane do not permit such sharp changes in

pitch over 1/30th of a second. More generally, if the validity test

returns any of the non-normal cases (2, 3 or 4) and the value of

 does not conform to the appropriate threshold values, we

consider the horizon detection for that frame to be in error. In this

case, the horizon estimate from the previous frame is used to esti-

mate the horizon parameters for the current frame. 

From extensive flight testing, we observer qualitatively that

this extreme attitude and error detection system performs well. It

is difficult to quantitatively assess the performance of the system

on real-time data since there is no “correct” answer with which to

compare it. Both the qualitative viewing of the output, however,

along with successful flight tests indicate that the system per-

forms adequately. 

3.3 Kalman filtering

In order to make the horizon estimates usable for self-stabili-

zation and control, the horizon estimates, after being processed by

the extreme attitude and error detector, are passed through a Kal-

man filter [1]. The Kalman filter provides an optimal estimate of

a system’s current state, given a dynamic system model, a noise

model, and a time series of measurements. While a dynamic mod-

el of the system is desirable, the formalism of the Kalman filter

can be employed even without an accurate dynamic model. Since

no dynamic model is readily available for our flexible-wing

MAVs1, we model the system state (the two parameters of the ho-

rizon estimate) as two simple first-order, constant-velocity sys-

tems. As such, the Kalman filter has the effect of removing high

frequency noise from the system measurements and eliminating

any radical single frame errors not first caught by the error detec-

tion system. The principal benefit of the Kalman filter for our ap-

plication is that it effectively eliminates unnecessary small control

surface deflections due to noise.

3.4 Feedback control

To date, we have employed a very simple controller to validate

vision-based flight stability and control for MAVs. For simplicity,

the bank angle  and pitch percentage  are treated as indepen-

dent from one another, and for both parameters, we implement a

simple PD (proportional/derivative) feedback control loop, with

gains determined experimentally from flight tests; each control

loop is updated at full frame rate (i.e. 30 Hz). In initial flight tests,

the derivative gains were set to zero.

4. Self-stabilized flight

4.1 Experimental setup

Figure 4 illustrates our current experimental setup. The video

signal from the MAV is transmitted from the plane through an an-

tenna to a ground-based computer, where all vision processing is

performed. In manual mode, the plane is controlled during flight

by a remote human pilot through a standard radio link. In autono-

mous mode, the plane is controlled through the feedback control-

ler which sends control surface commands to the MAV through a

custom designed interface over the same radio link. Our interface

allows the PC to control a standard Futaba radio transmitter

through an RS-232 serial port.

The MAV used for test flights is the one depicted in Figure

1(c). While we have designed and flown MAVs with wing spans

as small as six inches, we selected the somewhat larger platform

both for its increased dynamic time constants and its ability to car-

ry a high-powered video transmitter (i.e. increased payload). The

on-board camera is a monolithic CMOS type camera with a 1/3

inch sensor area, and is connected to an 80 mW video transmitter.

The MAV is powered by electric propulsion and has differential

elevons for control, although the software is written to support

both elevon and rudder-elevator control designs.

The PC interface uses a PIC microcontroller to translate serial

commands from the PC into the pulse width modulated signals re-

quired for input to the transmitter. A carbon fiber housing was

constructed to hold the circuit board and port connectors for the

interface. 

4.2 Flight testing

Flight testing proceeds as follows. Prior to launch, the aircraft

is oriented such that the horizon is in the field-of-view of the cam-

era. This allows the algorithm to build initial models of the sky

and the ground; while these models are not used in the horizon-

detection algorithm itself, they are used for extreme attitude and

error detection. 

Upon launch, flights are controlled by a human pilot until the

MAV reaches sufficient altitude. At that point, control is trans-

ferred to the automated flight control and stability system; in case

of catastrophic failure (loss of video signal, etc.), the radio trans-

mitter is equipped with an override button to allow the human pi-

lot to regain control at any time if necessary.

A joystick connected to the PC can be used to adjust the de-

sired heading for the controller. The joystick input effectively

commands a bank and pitch angle for the aircraft to follow. Later

flights used a pre-programmed set of maneuvers for truly autono-

mous flight. To date, we have flown uninterrupted autonomous

flights of over 10 minutes, flights that ended only due to video

transmission interference, or low on-board battery power. 

1. A dynamic model for our MAV airframes is currently being 

developed at NASA Langley Research Center. 
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Fig. 4: Experimental setup.
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Figure 5(a) below plots a 72-second run of actual flight data,

where the flight vehicle was under vision-guided control above

the University of Florida campus (the full length of the flight ex-

ceeded 10 minutes, and was primarily limited by low battery pow-

er). During this flight, the MAV was instructed to execute a

trajectory that consisted of straight line segments, followed by

left-bank turns (to keep the MAV within range of the receiving

video antenna). For comparison, we also plot a 65-second seg-

ment of manual (human-controlled) flight in Figure 5(b). Note

how much more erratic the human controlled flight is with respect

to both the bank angle and pitch percentage. (Videos correspond-

ing to these and other flight segments can be viewed at http://

mil.ufl.edu/~nechyba/mav.) More recently, the same vision-

based control system successfully flew over substantially differ-

ent terrain at a Special Ops demo over Fort Campbell, Kentucky,

where audience members, who had never previously controlled

any type of aircraft (e.g. model airplane, MAV, etc.) successfully

kept the MAV in the air for extended flights times.

Qualitatively, even our simple PD control system provides

much more stable control than that of our best human pilots, both

in terms of steady, level flight, and in coordinated turns. As illus-

trated by Figure 5(b), human pilots can typically not hold the

plane on a steady, level heading for more than a few fractions of

a second; under vision-guided control, however, we were able to

fly long straight segments that were limited only by the range of

the video transmitter. Prior to the development of the horizon-

tracking control system, only pilots with extensive training could

learn to fly our micro air vehicles; with the automated control sys-

tem, however, people who have never piloted any aircraft before

are able to easily guide the MAV above the flying arena. It is this

fact alone that speaks the most to the potential value of this work.

Ideally, one wants MAVs to be deployable by a wide range of

people, not only expert RC pilots; while much remains to be done,

including automating landings and take-offs, the work in this pa-

per is a big step towards the development and deployment of us-

able and practical MAVs.
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Fig. 5: (a) Bank angle and pitch percentage for a self-stabilized flight (sequence of level-flight and left-turn segments), and (b) bank 

angle and pitch percentage for typical human-controlled flight.
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