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Abstract— Despite the stable walking capabilities of modern
biped humanoid robots, their ability to autonomously and safely
navigate obstacle-filled, unpredictable environments has so far
been limited. We present an approach to autonomous humanoid
walking that combines vision-based sensing with a footstep
planner, allowing the robot to navigate toward a desired goal
position while avoiding obstacles. An environment map including
the robot, goal, and obstacle locations is built in real-time
from vision. The footstep planner then computes an optimal
sequence of footstep locations within a time-limited planning
horizon. Footstep plans are reused and only partially recomputed
as the environment changes during the walking sequence. In
our experiments, combining real-time vision with plan reuse
has allowed a Honda ASIMO humanoid robot to autonomously
traverse dynamic environments containing unpredictably moving
obstacles.

Index Terms— Humanoid Robot, Vision, Footstep Planning,
Obstacle Avoidance, Dynamic Replanning.

I. INTRODUCTION

Given the recent advances in stable robotic bipedal walk-

ing, navigation autonomy for humanoid robots comprises an

increasingly important research area. The ability of legged

robots to step over and onto some obstacles makes them

ideally suited for environments designed for humans, which

invariably contain a wide range of objects and obstacles such as

furniture, stairs, doors, uneven ground and, of course, people.

Yet, relatively little work has been done to exploit the recent

improvements in biped locomotion for the purpose of enabling

humanoids to autonomously navigate such environments.

We view the problem of navigating towards a goal in the

presence of obstacles as a closed-loop interplay between sens-

ing the environment using vision and planning a goal-directed

sequence of footsteps that avoids obstacles. For dynamic

surroundings that include unpredictably moving obstacles, it

is crucial that any footstep path be quickly replanned if it

becomes suddenly blocked by an obstacle. This places time

constraints on both the sensing and planning components.

Changes in the robot’s surroundings need to be recognized

almost instantly, leaving the planner as much time as possible

to adjust the current footstep path. We present a vision-

based footstep planning system that computes the best partial

footstep path within its time-limited search horizon, according

to problem-specific cost metrics and heuristics. The compu-

tational cost of planning motivates the reuse of as much of

Fig. 1. Carnegie Mellon’s Honda ASIMO Humanoid (left). Stepping
over an obstacle during a vision-guided walking sequence (right).

a previous footstep path as possible, instead of starting from

scratch each time a step is taken.

The rest of this paper is organized as follows: Section II

presents related research. In Section III, we describe how

vision is used to build environment representations. The in-

cremental footstep planning process is detailed in Section IV.

Section V presents results from our online implementation us-

ing the Honda ASIMO humanoid robot [1]. Finally, Section VI

concludes with a discussion and pointers to future research.

II. RELATED WORK

Most of the literature in robotic bipedal walking has con-

centrated on various approaches to reliable, stable gait gen-

eration and feedback, while relatively little work has focused

on developing global navigation autonomy for biped robots.

Emphasis has primarily been on pre-generating walking trajec-

tories [2]–[4], online trajectory generation [5], [6] and dynamic

balance [7], without accounting for obstacles.

Obstacle avoidance and local planning based on visual

feedback has been studied in humans [8], [9] in order to

gain insight into potential robotic implementations. Several

reactive perception-based obstacle avoidance techniques for

bipeds have been developed [10]–[13], giving robots some
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Fig. 2. Overview of sensing. An environment map of obstacles on the floor and the robot/goal location and orientation are computed from ceiling-based vision.

navigation autonomy when faced with an unknown environ-

ment by directly modifying the walking trajectory when an

obstacle is detected in the robot’s path. However, such reactive

approaches do not take into account the global configuration of

obstacles between the robot and the desired goal. This makes

locomotion in truly cluttered environments challenging and

gives rise to the possibility of becoming trapped in local loops

and dead ends.

Traditional path planning techniques have been applied

to perception-based obstacle avoidance on humanoids [14].

Such methods do not, however, take the ability of a legged

robot to step over or onto obstacles into account. Planning

at the level of footsteps [15]–[17] allows these capabilities

to be directly exploited in order to compute efficient global

navigation strategies for humanoid robots.

Efficient and accurate perception plays an important role in

any online implementation. Environment mapping and obstacle

detection from onboard stereo processing [18], [19] allow three

dimensional obstacles to be localized, but stereo implementa-

tions often cannot satisfy the delay and accuracy bounds re-

quired to have the robot walk near, on, or over obstacles during

real-time locomotion. Color-based segmentation [20], [21] is

often employed when speed and accuracy are paramount.

III. SENSING THE ENVIRONMENT

The Honda ASIMO humanoid at Carnegie Mellon, shown

in Figure 1, operates in a laboratory room containing a number

of planar obstacles placed on a hard, flat floor. We employ an

overhead camera to compute the position of the robot, the

desired goal location, indicated by a marker, and all obstacles.

Global sensing is used instead of ASIMO’s onboard cameras

due to the limited control we have over head direction during

a walking sequence, which makes maintaining a steady gaze at

the floor close to robot’s legs difficult. In addition, we found

that both onboard vision processing as well as transferring

video from the onboard cameras over the robot’s wireless

link were infeasible given the time constraints placed on the

sensing process by the unpredictably changing environment.

All processing described in this section is done in real-time or

faster on commodity hardware.

We use an industrial firewire camera mounted 3.5m above

the ground, yielding a viewable floor area of about 3.2m ×
2.4m. The camera supplies a 640 × 480 pixel YUV video

stream at 25–30 frames per second. Figure 2 gives an overview

of the sensing process. The camera is initially calibrated

offline based on the algorithm proposed by Zhang [22], using

OpenCV to calculate intrinsic and extrinsic camera parameters

as well as computing the radial distortion coefficients. During

operation, the incoming camera images can then be rectified

on-the-fly.

A. Color Segmentation

We employ colored markers to denote the planar obstacles

on the floor (bright pink) and the desired goal location (light

blue). Two additional, differently colored markers (yellow and

green) attached to the top of ASIMO’s “backpack” are used

to identify the robot’s location and orientation. We use four

square delimiters (dark blue) to define a rectangular area within

which the robot operates.

Color segmentation is performed directly on the YUV

stream generated by the camera [20]. This avoids the overhead

incurred by a software-based colorspace transformation and

allows us to exploit the robustness of the YUV space to

color intensity changes arising from variability in environment

lighting. In order to segment out obstacles or other markers,

color thresholds are first defined by sampling pixel values

offline for each marker in a variety of locations on the floor.

Simple color thresholding then produces a series of binary

masks indicating presence or absence of each marker’s color

at every pixel. To eliminate noise, one pass of erosion/dilation

using a rectangular structuring element is performed. Finally,

a step of connected components labeling is applied to group

pixels corresponding to the same marker.

Calculating the moments of each resulting color blob then

yields information about its centroid, area, major/minor axes

and orientation on the floor.

B. Converting to World Coordinates

Assuming the physical distances between the four delimiters

that outline the robot’s walking area are known, scaling can
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be used to convert between the pixel coordinates of each

blob’s centroid and the corresponding real-world distances.

Alternatively, knowing the calibrated camera’s distance from

the floor also suffices, although we found the delimiter-based

approach to be somewhat more accurate. We use a right handed

coordinate system centered on the lower left delimiter when

viewed from the camera.

The orientation of the robot can be determined from the

angle the line connecting the backpack markers forms with

the horizontal. To perform footstep planning, the precise

location of the robot’s feet is required. This cannot directly

be calculated from the raw world coordinates of the the robot

markers, as these do not lie on the ground plane and are hence

affected by parallax as the robot moves towards the edges of

the camera view. Knowing the height of the backpack, the

distance of the camera from the ground, and the offset of the

markers from the center of the camera image allows us to

correct for parallax, effectively by projecting the robot markers

onto the ground plane. Figure 3 illustrates. Once parallax has

been accounted for, simple offsets from the midpoint between

the projected markers can be used to arrive at the location of

each foot.

C. Building the Environment Map

A 2D grid of binary valued cells represents the environment.

The value in each cell denotes whether the corresponding

terrain is valid (obstacle free) or invalid (totally or partially

occupied by an obstacle). The environment map is thus a

bitmap representation of the free space and obstacles as

seen from the ceiling. Figure 4 shows a ceiling view of the

environment, the robot and obstacles tracked by the vision

system, and the corresponding map generated.

The vision system creates maps with sizes on the order

of 300 × 200 cells for use by the footstep planner. The

environment map can be generated by cropping the binary

obstacle mask gathered previously from vision at the walking

area delimiters and scaling it appropriately (while maintaining

aspect ratio) to fit the map dimensions used by the footstep

planner. Alternatively, the map could be constructed by know-

ing the extents, orientation and centroid (as computed during

color segmentation) or some other geometric parameterization

of each obstacle. This relaxes the need for matching aspect

ratios, but is considerably slower.

The use of non-local, centered sensing gives rise to a

problem of obstacle occlusion. Even if the robot is perfectly

centered in the camera view (standing directly below the

camera), obstacles close to the feet may be occluded by the

robot’s own body. The occluded area increases as the robot

moves towards the edges of the image. Since obstacles in the

occluded area cannot be seen by the camera, they will show

up as free space in the environment map used by the footstep

planner, causing the robot to potentially step directly onto an

obstacle.

We overcome this problem by implementing obstacle per-

manence in a rectangular area bounding the robot in the

image. The cells corresponding to the permanence region in

the environment map are not updated from the last value they

had before entering the area. This reflects the assumption that

whatever obstacles were last seen in the area currently being

occluded by the robot are still present now. We have found

this rectangular approximation to the shape of the occluded

region to work well in our trials.

IV. FOOTSTEP PLANNING

The task of our biped planner is to find as close to an

optimal sequence of actions as possible that causes the robot

to reach the goal location while avoiding the obstacles in the

environment. It should exploit the unique capability of a legged

robot to step over obstacles. The planner operates at the level

of footsteps, ignoring the lower level details of leg movement

and control. The limited level of control we have over the

leg trajectories during a footstep limits us to using planar

obstacles, as the swing leg will not be able to clear objects

higher than a few centimeters.

A. Basic Algorithm

The planner, shown in Algorithm 1, takes as input an

environment map E, initial and goal robot states sinit, sgoal,

a mapping F of possible actions that may be taken in each

state and an action-effect mapping T . On successfully finding

a path to the goal, an ordered sequence of footstep actions to

be commanded to the robot is returned.

The planner computes the cost of each candidate footstep

location using three cost metrics: (i) a location cost determin-

ing whether the candidate location is ‘safe’ in the environment

(not part of an obstacle), (ii) a step cost which prefers ‘easy’

stepping actions and (iii) an estimated cost-to-go providing an

approximation of the candidate’s proximity to the goal using

a standard mobile-robot planner.

An A* search is performed on the possible sequences of

actions (walking instructions) that can be commanded to the

robot, until an obstacle-avoiding path to the goal is found



Fig. 4. Top-down view of the walking environment (left), vision system output (center), and corresponding environment map with current
footstep plan generated (right).

Algorithm 1: REPLANPATH(path , sinit , sgoal , F, T, E)

sbest=VerifyPath(path , sgoal , E);
if sbest 6= NULL then return sbest ;
while running time < tmax do

sbest ← Q.ExtractMin();
if GoalReached(sbest ,sgoal ) then return sbest ;
e← E(sbest .time);
A ← F (sbest , e);
foreach a ∈ A do

snext ← T (sbest , a, e);
cl ← LocationCost(e, snext );
cs ← StepCost(e, a);
ce ← ExpectedCost(e, snext );
Q.Insert(snext , sbest .cost + cl + cs, ce, sbest );

end
end

or a specified computation time limit is exceeded. To com-

bine a set of actions into a sequence, a mapping from the

commanded action to the resulting state, as well as knowl-

edge of the current environment is required. For the Honda

ASIMO, the effect of a commanded action is determined by

the state of the robot at the time of execution. Although

ASIMO’s complete state information is not directly accessible

to us, we found that the current stance foot location and

the past two commanded actions are sufficient to accurately

describe the current state, thus allowing us to establish the

T (statei, actioni, environmenti) → statei+1 mapping. The

mapping was computed offline by having ASIMO exhaustively

perform all possible walking action 3-tuples and recording the

resulting robot state using a motion capture system [23].

B. Plan Reuse

At each step, we plan a path towards the goal, but then

only have ASIMO execute the first step of this plan before

replanning for the next step. To increase our planning horizon

within our limited planning time, we would like to reuse some

of the computation performed for the previous plan. ASIMO’s

discrete set of actions forces us to use a distance threshold

instead of a unique goal configuration. Because of this and

the state-dependence of ASIMO’s actions, we use a forward

search in our planning. This method has prevented us from

Algorithm 2: VERIFYPATH(path , sgoal , E)

foreach step ∈ path do

if GoalReached(step,sgoal ) then return step;
e← E(step.time);
a← step.action;
cl ← LocationCost(e, step);
cs ← StepCost(e, a);
if cl = badval or cs = badval then return NULL;
ce ← ExpectedCost(e, step);
Q.Insert(step, step.cost + cl + cs, ce, sprev );
sprev ← step;

end

return NULL;

using D* [24] to reuse previous computation.

Instead, we use the previous planning result to seed our

search queue. While this loses the reasoning behind the path, it

allows us to try to build off of the previous result, rather than

starting from nothing. Algorithm 2 shows how the previous

path is evaluated up until the point where it is no longer valid,

or it reaches the goal. If it reaches the goal, the previous plan

can be used without modification. If the previous plan does not

reach the goal, the footstep planning can then start up from the

place where it failed, with all of the steps already in the queue.

Note that for this seeding of the queue to provide a benefit,

an inadmissible heuristic must be used, to make the planner

choose to start from the end of the seeded steps. If the heuristic

is admissible, any node in the queue will have a cost equal to

or higher than the initial position. We use an inflated heuristic

to trade off some optimality for planning speed, allowing this

seeding to shift the focus of our planning towards the previous

plan.

V. EVALUATION

A. Vision-Planner Integration

The vision-guided footstep planner for the Honda ASIMO,

illustrated in Figure 5, is implemented as three components:

a vision server, providing environment maps as well as robot

and goal positions at around 30Hz, a planning server, which

uses the data provided by vision to compute footstep paths,

and a client program which coordinates data transfer between
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the two servers and wirelessly sends footstep commands to the

robot. The components communicate via TCP/IP and run on

separate, but commodity hardware.

The client program requests a new footstep plan to be

computed from the current environment map and positioning

data every time the robot reports that its stance foot has

changed during the walking sequence (indicating completion

of a footstep). As soon as an updated plan is available, the

next command in the computed stepping sequence is sent to

the robot. The change in stance foot is thus the discrete event

which triggers replanning based on new environment data and

transmission of commands to the robot. The time between

footsteps, which averages 0.8s, bounds the planner’s time

horizon and hence determines the rate at which the perception-

action loop runs.

Figure 4 shows a view of ASIMO in a typical, obstacle-filled

environment, the robot and obstacles as tracked by the vision

system, and the corresponding environment map including

current footstep path computed by the planner.

B. Obstacle Avoidance: Unpredictably Moving Obstacles

Figure 6 shows ASIMO walking in the laboratory environ-

ment while the surrounding obstacles and the goal location

are being changed unpredictably by a human. The task of

the experimenter was to intentionally block off the currently

computed path to the goal, forcing the planner to recompute

the path, reusing from previous plans any footsteps leading up

to the occlusion. The goal marker was moved every time the

robot was about to reach it, forcing the robot to turn and walk

into the new direction of the goal.

We performed on the order of 10–20 trials lasting up to 10

minutes each, during which ASIMO continuously traversed the

room without stepping on obstacles. We found the accuracy

of the vision-based sensing to be high enough to allow the

robot to step within less than 5cm of the obstacles. Most

interestingly, in many cases the footstep planner computed

a path that caused the robot to either step over parts of an

obstacle (“cutting corners”) or traversing it altogether if the

obstacle was small enough to clear in one step (see Figure 1

for an example). This would not have been possible using a

standard mobile robot planner.

The vision-guided planner reacts quickly to the dynamic

environment, returning an new path within one second of a

change in the obstacle configuration or goal position. Only

when an obstacle was thrown directly into the floor region

occluded by the robot’s body did the robot step on obstacles.

In this case, there is no opportunity for the permanence region

to ‘absorb’ the obstacle from the surroundings, which hence

remains undetected.

VI. DISCUSSION

We have presented an approach to autonomous humanoid

walking in the presence of dynamically moving obstacles that

combines sensing, planning and execution in a closed loop.

By combining fast vision processing with an A* search-based

planner operating at the level of biped footsteps and supporting

efficient plan reuse, we have enabled a Honda ASIMO hu-

manoid to navigate unpredictable environments along optimal

footstep paths for prolonged periods of time.

We are presently working on determining the floor area

occluded by the robot at any point in time on a per-pixel basis

by projecting a 3D model of the robot in the current walking

configuration onto the environment map representing the floor.

This will yield a more realistic estimate of the floor directly

surrounding the robot’s feet.

Furthermore, we are currently investigating several options

for on-body vision that satisfy the real-time constraints of

the sensing loop and are more applicable to sensing the floor

environment than the robot’s head-mounted cameras. We hope

to thus incrementally integrate information from local on-body

sensing while the robot is walking to build environment maps

of larger areas, giving ASIMO even more freedom to navigate

its environment.
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