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Vision–IMU Integration Using a Slow-Frame-Rate
Monocular Vision System in an Actual

Roadway Setting
Duminda I. B. Randeniya, Member, IEEE, Sudeep Sarkar, Senior Member, IEEE, and Manjriker Gunaratne

Abstract—We present results of an effort where position and
orientation data from vision and inertial sensors are integrated
and validated using data from an actual roadway. Information
from a sequence of images, which were captured by a monocular
camera attached to a survey vehicle at a maximum frequency of
3 frames/s, is fused with position and orientation estimates from
the inertial system to correct for inherent error accumulation
in such integral-based systems. The rotations and translations
are estimated from point correspondences tracked through a
sequence of images. To reduce unsuitable correspondences, we
used constraints such as epipolar lines and correspondence flow
directions. The vision algorithm automatically operates and in-
volves the identification of point correspondences, the pruning of
correspondences, and the estimation of motion parameters. To
simply obtain the geodetic coordinates, i.e., latitude, longitude,
and altitude, from the translation-direction estimates from the
vision sensor, we expand the Kalman filter space to incorporate
distance. Hence, it was possible to extract the translational vector
from the available translational direction estimate of the vision
system. Finally, a decentralized Kalman filter is used to integrate
the position estimates based on the vision sensor with those of
the inertial system. The fusion of the two sensors was carried
out at the system level in the model. The comparison of in-
tegrated vision–inertial-measuring-unit (IMU) position estimates
with those from inertial–GPS system output and actual survey
demonstrates that vision sensing can be used to reduce errors in
inertial measurements during potential GPS outages.

Index Terms—Inertial navigation, intelligent vehicles, multi-
sensor fusion, vision–inertial–Globall Positioning System (GPS)
fusion.

I. INTRODUCTION

LONG-TERM error growth in the position and orientation
(pose) estimates obtained from the integration of the

accelerations and angular rates of inertial systems is a major
issue that limits the accuracy of inertial navigation. However,
inertial systems are known for their precision in short-term
and high-frequency data rates. To leverage these advantages,
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many techniques based on Differential Global Positioning
Systems (DGPSs) have been proposed by researchers to be
used in conjunction with inertial systems to overcome long-
term error growth [1]–[4]. However, intermittent loss of the
GPS signal is a common problem encountered in navigation
based on GPS-integrated inertial systems [3]. Hence, there is
a need for an alternative technology that would ensure smooth
and reliable inertial navigation during GPS outages.

Due to advances in computer vision, potentially promising
studies that engage vision sensing have been carried out in the
areas of intelligent transportation systems (ITS) and automatic
highway systems [5], [6]. These studies have used sequences
of images obtained from a forward-view camera, which was
rigidly installed on a vehicle, to estimate the position and
orientation (pose) of the vehicle [7], [8]. In these studies, the
vision system has been used as a supplementary data source to
overcome the issue of time-dependent error growth in inertial
system estimations.

Most vision-augmented inertial integration has been
performed in controlled environments such as laboratories or
indoor domains [9], [10]. They used artificial landmarks to
simplify the establishment of feature correspondences needed
for motion estimation [10], [11]. However, correspondence
methods developed indoors do not generalize to outdoor
conditions due to the unstructured nature of outdoor scenes.
Thus, one cannot expect the algorithms designed for indoor
conditions to perform with the same degree of accuracy in
an uncontrolled environment. Therefore, it is essential that
algorithms designed for uncontrolled (outdoor) environments
also incorporate tools to filter out erroneous correspondences.
To address this, one needs to employ an additional validation
criterion to filter the correspondences based on epipolar
geometry and correspondence-based motion fields [12].

Some researchers [13]–[16] have experimented with vision
sensors to aid autonomous navigation without fusing the vision
sensor to other sensor systems that measure absolute position,
such as GPS. However, they do not incorporate inertial nav-
igation system measurements to estimate the position of the
vehicle. In Table I, we present a summary of the works that
integrate an inertial measuring unit (IMU) with vision for land
navigation and differentiate our current work from them.

Roumeliotis et al. [17] designed a vision–inertial fusion
system for use in landing a space vehicle, using aerial pho-
tographs and an IMU. This system was designed using an
indirect Kalman filter that is based on the errors in the estimated
measurement instead of the direct measurements from camera
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TABLE I
PUBLISHED WORK ON IMU–VISION INTEGRATION (X—NO AND

√
—YES, KF, EKF, MLKF, AND PMM STAND FOR KALMAN FILTER, EXTENDED

KALMAN FILTER, MODIFIED LINEAR KALMAN FILTER, AND PARAMETERIZED MODEL MATCHING, RESPECTIVELY)

and IMU systems. According to Roumeliotis et al. [17], the
Kalman filter algorithms used in conjunction with IMUs can be
categorized into two different types, namely, direct and indirect
Kalman filters. The aforementioned categorization is based on
the measurement vector of the filter. If the filter is directly based
on the measurements from the instruments, then it is called a
direct Kalman filter. On the other hand, in an indirect filter, the
measurement differences, i.e., differences between IMU veloc-
ities and GPS velocities, are used as inputs. Two disadvantages
of using the direct Kalman filter are the following: 1) The filter
has to maintain explicit and accurate awareness of the vehicle’s
angular motion and attempt to suppress noisy and erroneous
data at relatively high frequencies, and 2) the entire navigation
algorithm will fail if the filter fails. More information on
indirect Kalman filters can be found in [18]–[20]. However, the
fusion was performed on the relative pose estimated from the
two sensor systems, and for this reason, a much simpler inertial
navigation model (compared to an absolute pose estimation
system) was used. Testing was performed on a gantry system
designed in the laboratory.

Chen and Pinz [21] investigated motion estimation using a
camera, structure from motion, and an inertial system, without
updating the IMU error accumulation. The main task of this
fusion was to estimate the motion parameters using the vision
system as the primary sensor and not the IMU, as is our case.

Foxlin and Naimark [10] used an inertial–vision integration
strategy to develop a miniature self-tracker that uses artificial
fiducials. Fusion was performed using a bank of Kalman filters
designed for acquisition, simple tracking, and hybrid tracking
of these fiducials. The IMU data were used to predict the
vicinity of the fiducials in the next image. On the other hand,
You and Neumann [22] developed an integration method that
could be used in augmented-reality applications. The authors
used a vision sensor to estimate the relative position, while
the rotation was estimated using gyroscopes. Dial et al. [9]
used an IMU and vision integration system for robot navigation
under indoor conditions. Gyroscopes were used to estimate the
rotation of the cameras, and the main target of the fusion was to
interpret the visual measurements. Finally, Huster et al. [8] used
the vision–inertial fusion to position an autonomous underwater
vehicle (AUV) relative to a fixed landmark. Only one landmark

was used in this process, making it impossible to estimate the
pose of the AUV using a camera, and the IMU system was used
to fulfill this task.

The contributions of our work are threefold. First, the vision
system used in this work uses a slow-frame-rate monocular
camera, which differentiates this work since most research
has carried out the use of high-frame-rate cameras and, in
some cases, more than one camera. Our constraint introduces
a major challenge in ITS applications, since the movement
of the camera between two consecutive images is significant,
forcing one to use feature-tracking approaches, as opposed to
optic flow, to estimate the motion. The motivation behind using
slow frame rates lie in that it would act as a baseline accuracy
measurement for high-frame-rate cameras and would give nec-
essary tools to perform cost–benefit analysis at implementation.
Additionally, high frame rates come at the cost of high power
and memory-storage requirement, which can be an issue in
many applications such as space exploration.

The second contribution is the introduced fusion architecture,
i.e., fusing the vision and the inertial information at the system
level, incorporating the error dynamics of both systems. Inte-
grating the two systems at the system level adds two important
benefits: 1) the ability to incorporate the nonlinearities of both
systems into the fusion algorithm and more accurately estimate
the position and orientation of the vehicle and 2) enabling
flexibility to use different architectures in the fusion process
such as loosely coupled, tightly coupled, and ultratightly cou-
pled architectures. Although fusion using the system approach
provides more accurate results for the IMU–GPS systems than
with other approaches [23], [24], after an exhaustive literature
review, we could not find any literature on the fusion of vision
with IMUs that uses this system approach. We used a Kalman
filter to fuse the two systems for two reasons: 1) It has extremely
efficiently and accurately performed in many other nonlinear
processes, exhibiting only small differences when compared
with nonlinear filters applied to the same systems, and 2) as
this is a preliminary work on fusing vision and inertial systems
at the system level, it was desirable to know what a linear filter
would yield before resorting to nonlinear filtering algorithms.

The third contribution of this paper is the validation of the
fusion algorithm based on data obtained from an actual roadway
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setting. Only some literature [8], [10] on vision inertial research
reports results in data obtained from an actual setting. The
test data for our study were obtained from an unstructured
roadway setting with both moving and stationary landmarks,
including traffic. Under these conditions, it is impossible to
guarantee correct feature correspondences all the time. Errors
in correspondences will result in erroneous vision estimates. In
this regard, we have found two constraints based on epipolar
lines and correspondent flow directions to be very effective in
filtering potentially misleading features.

II. BACKGROUND FOR INERTIAL NAVIGATION

A. Coordinate Frames

The inertial frame (i-frame) is the fundamental reference
frame for any navigation. It can be defined as a right-handed
coordinate frame based on Newtonian mechanics [25]. The
Earth-centered Earth-fixed frame [24], [26], or the e-frame, is
a right-handed coordinate frame that is centered at the Earth’s
center of mass with the third axis parallel to the mean and fixed
polar axis and the first axis as the axis connecting the center
of mass of the Earth and the intersection of the prime meridian
(zero longitude) with the equator.

On the other hand, the navigation coordinate frame (n-frame)
is a locally leveled right-handed reference frame with the third
axis of the system aligned with the local normal to the Earth’s
surface (gravity direction), and the first axis is set along the
local tangent to the meridian (north).

We express the IMU and vision measurements with respect
to the right-handed orthogonal coordinate frames defined for
the respective sensor system. The reference frame relevant to
the IMU measurements is the b-frame, which has its origin at
a predefined location on the sensor and has its first axis toward
the forward direction of the vehicle, its third axis toward the
direction of gravity, and its second axis toward the right side
of the navigation system, composing a right-handed coordinate
frame. Similarly, the reference frame for the camera system
(c-frame) has its third axis along the principal axis of the camera
system, its first axis toward the right side of the image plane,
and its second axis set up to make the c-frame a right-handed
frame.

B. Inertial Navigation

The IMU in the survey vehicle that we use is a strap-down
microelectromechanical system unit [24], [27]. When the vehi-
cle is in motion, the accelerometers measure the specific forces,
while the gyroscopes measure the rates of change of rotations
of the vehicle in the respective direction and senses [24], [26].
Therefore, it is clear that to geolocate the vehicle, one has
to integrate the outputs of the accelerometers and gyroscopes
from a known initial position (in a fixed coordinate frame, i.e.,
e-frame).

The angular rates, which are measured by the gyroscopes,
are the rates of change of rotations in the b-frame with respect
to the i-frame, i.e., ωb

ib. These can be transformed to rotations
with respect to the n-frame [24] by

ωb
nb = ωb

ib − Cb
nωn

in (1)

where ωb
nb = (ω1 ω2 ω3)T , with ωj representing the angu-

lar rates about the jth axis (j = 1, 2, and 3), ωb
ib in (1) is the

angular rate of the b-frame (IMU) with respect to the i-frame
given in the b-frame, and n and b represent the n-frame and the
b-frame, respectively. The term Cb

n denotes the transformation
matrix from the n-frame to the b-frame. The angular rates of the
n-frame with respect to the i-frame, i.e., ωn

in, can be estimated
using geodetic coordinates as

ωn
in =

(
(λ̇ + ωe) cos(η) − η̇ − (λ̇ + ωe) sin(η)

)T

(2)

where λ̇ and η̇ denote the rates of change of the longitude and
latitude during vehicle travel, and ωe is the Earth’s rotation rate.
The transformation between the n-frame and the b-frame, i.e.,
Cb

n, can be found in terms of quaternions using the following
time propagation equation of quaternions:

q̇ =
1
2
Aq (3)

where q is any unit quaternion that expresses Cb
n, and A is a

skew-symmetric transformation matrix [24]
Finally, using (1)–(3), one can obtain the transformation

(Cb
n) between the n-frame and the b-frame, in terms of Euler

angles, from the gyroscope measurements. However, due to
problems inherent in the Euler format, such as singularities
at poles and the complexity introduced due to trigonometric
functions, quaternions are commonly preferred in deriving the
differential equation (3).

The accelerometers inside the IMU measure the specific
forces expressed as

ẍi = gi(xi) + ai (4)

where ai is the specific force measured by the accelerometers
in the i-frame, and gi(xi) is the acceleration due to the gravi-
tational field, which is a function of the position xi. From the
Cb

n estimated from gyroscope measurements in (3) and the spe-
cific force measurements from accelerometers in (4), one can
deduce the navigational equations of the vehicle in any frame.
Generally, what is desired in terrestrial navigation are 1) the
final position; 2) the velocity; and 3) the orientations expressed
in the n-frame, although the measurements are made in another
local frame, i.e., b-frame. This is not possible since the n-frame
also moves with the vehicle, making the vehicle horizontally
stationary on this local coordinate frame. Therefore, the desired
coordinate frame is the fixed e-frame. Hence, all the navigation
solutions are given in the e-frame but along the directions of the
n-frame.

Considering the effects of the fictitious forces, i.e., forces due
to acceleration in non-i-frames, the equations of motion can be
written in the n-frame [24], [26] as

Acceleration
d

dt
vn = an − (Ωn

in + Ωn
ie) vn + gn (5)

Velocity
d

dt
xn = vn. (6)

The second and third terms in (5) are, respectively, the Corio-
lis acceleration and the gravitational acceleration of the vehicle.
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The vector multiplication of the angular rates is denoted as
Ω(= [ω×]) [25]. On the other hand, the orientation of the
vehicle can be obtained [24], [26] by

d

dt
Cn

b = Cn
b Ωn

nb. (7)

In (7), Ωn
nb can be obtained using the ωb

nb estimated
in (1). Therefore, once the gyroscope and accelerometer mea-
surements are obtained one can set up the complete set of navi-
gational equations by using (5)–(7). Then, one can estimate the
traveling velocity and the position of the vehicle by integrating
(5) and (6). The gravitational acceleration can be estimated us-
ing the definition of the geoid given in WGS-84 standards [25].

Finally, the positions can be obtained by integrating veloc-
ities, which can then be converted to the geodetic coordinate
frame as

φ(k+1) = φ(k) +
(vn

N )k Δt

(Mk + hk)
(8)

λ(k+1) = λ(k) +
(vn

E)k Δt

(Nk + hk) cos(φk)
(9)

h(k+1) = h(k) − (vD)kΔt (10)

where vN , vE , and vD are the respective velocities in the
n-frame, while φ, λ, and h are, respectively, the instantaneous
latitude, longitude, and altitude. Moreover, M and N are,
respectively, the radii of curvature of the Earth at the meridian
and the prime vertical passing through the point on the Earth
where the vehicle is located. They are given as follows [24]:

N =
p√

(1 − e2 sin2 φ)
(11)

M =
p(1 − e2)

(1 − e2 sin2 φ)3/2
(12)

where p is the semimajor axis of the Earth assumed as an
ellipsoid, and e is the first eccentricity.

C. IMU Error Model

To develop an accurate navigation solution that accounts
for the various biases in accelerometers and gyroscopes, it
is important to model the error characteristics of the system.
In this paper, we consider only the first-order error terms,
implicitly assuming that the higher order terms [25] contribute
only to a minor portion of the error. This assumption, which has
been used by others as well [24], [25], allows the use of Kalman
filtering for the fusion of the vision and inertial systems.

The error dynamics used in this paper were obtained by
differentially perturbing the navigation solution [25] by small
increments and then considering only the first-order terms of
the perturbed navigation solution. Therefore, by perturbing
(5)–(7), one can obtain the linear error dynamics for the IMU
in the following form [26]:

δẋ = −ωn
en × δxn + δϕ × vn + δvn (13)

where δ denotes the small perturbation introduced to the posi-
tion differential equation (6), and ϕ denotes the rotation vector

for the position error. “×” is the vector multiplication of the
respective vectors

δvn = Cn
b δab + Cn

b ab × ε + δgn

− (ωn
ie + ωn

in) δvn − (δωn
ie + δωn

in) × vn (14)

where ε denotes the rotation vector for the error in the trans-
formation between the n-frame and the b-frame. The first two
terms on the right-hand side of (14) are, respectively, due to
the errors in specific force measurement and those in trans-
formation between the two frames, i.e., errors in gyroscope
measurements

δΨ̇ = −ωn
in × ε + δωn

in − Cn
b δωb

ib. (15)

Equations (13)–(15) are linear with respect to the error
of the navigation equation. Therefore, they can be used
in a linear Kalman filter to statistically optimize the error
propagation.

III. ROTATION AND TRANSLATION FROM VISION

In revising the IMU pose estimation data with respect to
their inherent error accumulation problem, one needs to obtain
the position and orientation at each camera location. Since the
camera is rigidly fixed to the vehicle, these camera positions
and orientations can be considered as the vehicle’s navigation
parameters as well. However, it is essential that the camera
be first calibrated for its intrinsic parameters such as the focal
length, principal point, and distortion parameters. Furthermore,
the fixed transformation between the b-frame and the c-frame
[28], [29] must be determined. Once the camera is calibrated
for its intrinsic parameters, it can be used in the estimation of
motion parameters from a sequence of images. These calibra-
tion parameters were estimated in two separate runs performed
on two test sections other than the roadway sections that were
used to check the validity of the fusion algorithm based on
the procedure described in [28] and kept constant in all the
subsequent runs. The estimation of motion from a sequence of
images is performed by establishing objects that are common
to and visible in consecutive images (correspondences). The
motion estimation process involves two essential stages [11].
They are

1) the determination of correspondences;
2) the estimation of translation and rotation.
In this paper, we used point features since they are easily

detected in a computationally efficient manner. These point
features are points in the image that can clearly be distin-
guished from the rest of the image and can also easily be
located in the subsequent images. To establish correspon-
dences between point features, we used the well-established
Kanade–Lucas–Tomasi (KLT) feature tracker [30]. This pro-
gram is completely automated, and the point features are
tracked in the sequence of images with replacement. In ad-
dition, the parameters have not been customized in this stan-
dard and established vision algorithm. The only parameters
that we changed were the parameters of the camera, such
as the focal length and the number of correspondences. It is
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Fig. 1. Epipolar lines drawn for the second-image points.

Fig. 2. Filtering point correspondences using motion tracking (a) before
(b) after.

understood that there would be some ambiguity involved in
determining correspondences arising from the confusion among
the features, as well as unreliable tracking constraints [12]. To
reduce this ambiguity, one can exploit several constraints. We
used two constraints to remove unsuitable correspondences;
the constraints were based on 1) epipolar lines (see Fig. 1)
and 2) correspondence motion fields [see Fig. 2(a) and (b)].
These methods compare the general motion pattern of the
correspondence points in two consecutive images and then
remove correspondences with erroneous tracks.

One of the most common constraints in establishing accurate
point correspondences in two images is to employ the corre-
spondences that are only matched by epipolar lines. Epipolar
lines are established using the first point of a correspondence
pair and information from the eight-point algorithm [31]. Such
epipolar lines pass through a common point (epipole) that
corresponds to the image of the center of the camera at the
first position on the second image plane. Then, the second
point of any correspondence pair (such as a point A in Fig. 1)
must lie on the epipolar line (BC in Fig. 1) obtained from its
partner point in the first image with the epipole. This is only
applicable in situations where the locus of the c-frame center is
not parallel to any of the consecutive image planes considered,
which is a condition that is generally satisfied in autonomous
driving tasks. Thus, the importance of an epipolar line lies in
that it restricts the placement of any correspondence point on
the second image to a straight line obtained using its partner
point in the first image (some examples are shown in Fig. 1).
Therefore, epipolar lines can be used to filter out the erroneous
correspondences from the second image.

The data used in this paper were collected in an outdoor
setting, and the captured images contained moving vehicles
and other roadway landmarks. Although some of the inaccurate
correspondences were removed using the epipolar lines (see
Fig. 1), nonstationary features were not completely removed.
Hence, the tracked paths of correspondences in consecutive
images were utilized. Fig. 2(a) and (b) illustrates how the
correspondence flow direction (tracked paths) can be utilized
to remove erroneous features from the sequence of images.
Once the erroneous feature correspondences are removed, the
remaining features that are tracked in more than five images
are identified and subsequently used as input to the motion-
estimation algorithm to obtain the vehicle’s rotation and trans-
lation between each of the frames.

A. Motion Parameters From Point Correspondences

The algorithm used to estimate the position and orienta-
tion (pose) requires at least eight point correspondences that
are noncoplanar. A detailed description of the aforementioned
eight-point algorithm can be found in [12], [32], and [33].

However, the output of the eight-point algorithm is extremely
noisy to be directly used in the fusion algorithm. Therefore, in
this paper, a separate Kalman filter was specifically designed
for the vision system to filter out the noise in rotations and
translations. We will refer to this as the “vision-only Kalman
filter” in the following sections.

B. Position Residual From the Two Sensor Systems

Due to the perspective projection of the 3-D points onto
the image plane [12], the recovery of the absolute depth is
not possible in the vision sensor. Therefore, the translations
derived from the vision algorithm are just normalized trans-
lations or unit vectors, providing only directional information
and not the actual magnitude. However, one of the inputs to
the Kalman filter that executes the fusion between the IMU and
vision information is the position residual estimated by those
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two sensors. Of these, the IMU provides a vector expressing
the actual translations, while the vision sensor expresses the
translation as a unit vector. Thus, the fusion of vision and in-
ertial measurements requires the aforementioned vision-based
translation to be expressed as a regular vector rather than a unit
vector. Hence, a special technique had to be devised to obtain
the position residual from the unit translations obtained from
the vision system.

First, we transform both measurements (IMU and vision)
into the e-frame. Then, the translations measured by both
sensors are projected onto a unit sphere. Hence, the differ-
ence between these two unit vectors that would produce the
measurement residuals can be estimated. Finally, as needed by
the input to the fusion algorithm, this unit residual has to be
multiplied by a distance term. We made this distance a state in
the Kalman filter algorithm. The reason for using this distance
term as a state of the system model is to account for possible
correlations with any sensor measurement when estimating the
position residual from the two sensors and, thus, reduce the
possibility of error propagation during estimation.

Let PIMU represent the position vector between two con-
secutive camera locations in the e-frame as estimated by the
IMU, and let Uvis and UIMU denote the unit translation vectors
estimated from the vision system and the IMU, respectively,
transformed into the e-frame. First, the transformation of the
vision system measurements from the c-frame into the e-frame
can be performed as

Ue
vis(tk) = Ce

n(tk)Cn
b (tk)Cb

cT
c (16)

where Cb
c is the transformation between the c-frame and the

b-frame, which can be obtained using the vision system cali-
bration procedure outlined in [28], and Cn

b is estimated using
(3). The superscript e indicates that the quantities are expressed
in the e-frame. The transformation between the n-frame and the
e-frame can be obtained by considering the instantaneous lati-
tude and the longitude. It can be deduced that

Ce
n = R3 (−λ(tk)) R2 (π/2 + φ(tk)) (17)

where Ri represents the Euler rotation about the ith axis
(i = 2, 3). The first camera location can be established as the
corresponding IMU position in the e-frame. Then, the position
at any other time is estimated using (16). Similarly, the IMU
translations can be transformed into the e-frame by

P e
IMU(tk) = Ce

n(tk)Cn
b (tk)T b

IMU (18)

where the term T b
IMU is the translation estimated by the IMU

measurements between two consecutive camera locations. The
IMU position vector obtained from (18) is then normalized,
and the unit vector Ue

IMU(tk) associated with the IMU is
determined. Once the two unit vectors are estimated, the mea-
surement residual, which is an input to the fusion filter, is
obtained by

dT e = |ρe(tk)| (Ue
vis(tk) − Ue

IMU(tk)) (19)

where |ρe(tk)| is the magnitude estimated from the distances
obtained at each time instance the fusion algorithm outputs a

Fig. 3. Schematic of the fusion procedure.

position estimate, and dT e is the required translation residual
in the e-frame. ρe(tk) can be given as

ρe(tk) = ρe(tk−1) + δρe(tk−1). (20)

δρe(tk−1) in (20) can be estimated from

(δρe(tk−1))
2 = (δpφ(tk−1))

2 + (δpλ (tk−1))
2 + (δph (tk−1))

2

(21)

where δpφ, δpλ, and δph denote distance differences in the
latitude, the longitude, and the altitude, respectively, estimated
by the fusion algorithm for time step (k − 1).

IV. DESIGN OF THE KALMAN FILTER

To minimize the error growth in the IMU pose estimations,
these IMU estimations have to be updated by an independent
measurement at regular intervals. In this paper, vision-based
translations and rotations (see Section IV) and a master Kalman
filter are used to achieve this objective, thus modeling only the
first-order error dynamics for inertial and vision systems. The
architecture for this Kalman filter is illustrated in Fig. 3.

A. Design of the Master Kalman Filter

The Kalman filter designed to fuse the IMU and vision
pose estimation measurements continuously evaluates the error
between the two sensor systems and statistically optimizes it.
A decentralized Kalman filter architecture [2], [34], [35] is
used in this paper to fuse the two sensor systems. The primary
reason for using a decentralized architecture was the necessity
for a separate error-estimation process (local Kalman filter)
for the vision sensor system. This architecture allows one to
integrate the processed vision system parameters with IMU
measurements. Since the main aim of the integration of the
two systems is to correct the errors in high-frequency IMU
pose estimates, the vision system is used due to the stability
of the vision system from error accumulation over time. The
IMU system is the process of the Kalman filter algorithm. Since
the two sensor systems possess two distinct data-acquisition
frequencies, the multirate fusion approach [36] has been used
to fuse the IMU and vision systems. On the other hand, the
function of the vision-only Kalman filter (local Kalman filter;
see Fig. 3) is to remove the significantly high noise associated
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Fig. 4. Master Kalman filter.

with the vision reading because of the relatively high accuracy
of measurements demanded by the fusion algorithm. The sys-
tem architecture of this master Kalman filter is shown in Fig. 4.

The typical inputs to update the master Kalman filter con-
sist of the positions (the e-frame) and the orientations of the
b-frame and the c-frame with respect to the n-frame. Since the
vision system provides rotations and translations between
the relative motion parameters of the camera frames, one needs
the absolute position and orientation of the first camera loca-
tion. For convenience, these can be considered as, respectively,
the IMU position in the e-frame and the orientation between the
b-frame and the n-frame. The orientation update of the camera
between two consecutive images (at tk−1 and tk) with respect
to the n-frame can be given as

V Cn
c (tk) = V Cn

c (tk−1)R(tk) (22)

where V Cn
c (tk) is the transformation matrix between the cam-

era orientation with respect to the n-frame at tk, and R(tk) is
the rotation estimated by the eight-point algorithm at tk [12].
The IMU used in the test vehicle is a navigational grade IMU
that was assumed to be calibrated and aligned. Therefore, the
main source of error that could occur in the IMU measurements
is the biases of gyroscopes and accelerometers. A more detailed
explanation of inertial system errors can be found in [37]. In
this paper, only bias errors were considered in error compensa-
tion for the IMU. To correct the measurements of gyroscopes
and accelerometers, the manufacturer-specified bias terms were
used. These bias terms were considered to be propagating in
time as

bi(tk+1) = bi(tk) + w(tk) (23)

where bi(tk) denotes the bias of the ith sensor (accelerometer
or gyroscope) at time tk, and w(tk) is a random number.
The processing system of the Kalman filter consists of the
error terms obtained by the perturbation analysis described in
Section II. Since, in this paper, only the first-order (linear)
errors are considered, the standard Kalman filter equations
can be utilized without any linearization. There are 17 system
states used for the Kalman filter employed in the IMU–vision
integration. These are 1) three states for the position; 2) three
states for the velocity; 3) four states for the orientation, which

are given in quaternions; 4) six states for accelerometer and
gyroscope biases; and 5) distance estimation. Therefore, the
entire state vector for the system takes the form (in quaternions)
in (24), shown at the bottom of the page, where δ denotes the
estimated error in the state, and vn, ve, and vd are, respectively,
the velocity components along the n-frame directions, while
φ, λ, and h are the latitude, the longitude, and the altitude,
respectively. The error in the orientation is converted to the
quaternion form, and its elements are represented as qi, where
i = w, x, y, z. Furthermore, the bias terms in both accelerom-
eters and gyroscopes, i.e., i = a, g, along three directions,
i.e., j = x, y, and z, are given as bij . The term ρe represents the
distance estimated in the Earth’s frame. The system equations in
the form of the following are used in the Kalman filter process
since the measurements from both the IMU and the vision
system are discrete:

xk = ϕkxk−1 + uk, yk = Hkxk + vk (25)

where xk is the state matrix, yk is the measurement at kth time
step, and Rk and Qk are defined as follows:

uk ∼ N(0,Qk), vk ∼ N(0,Rk). (26)

ϕk is the state transition matrix, and Hk is the measurement
sensitivity matrix.

The state transition matrix for this problem would be a 17 ×
17 matrix with the terms obtained from (13)–(15). The mea-
surement equation is similarly obtained considering the mea-
surement residual as

yk = [(Pvis − PIMU) (Ψvis − ΨIMU)]T (27)

where Pi and Ψi represent the position vector (3 × 1)
given in geodetic coordinates and the orientation quaternion
(4 × 1), respectively, measured using the ith sensor system
(i = vision or IMU). Then, the measurement sensitivity matrix
would take the form

Hk =
[
I3×3 0 0 0 0 0
0 0 I4×4 0 0 0

]
. (28)

The last critical step in the design of the Kalman filter is to
evaluate the process (Rk) and measurement (Qk) variances of
the system. These parameters are quite important in that they
define the reliability of the Kalman filter on the system and the
measurements [38]. The optimum values for these parameters
must be estimated based on the accuracy of the navigation
solution. If not, the noisy input will dominate the filter output,
making it erroneous. In this paper, to estimate Rk and Qk, we
used a separate data set; one of the three trial runs on the same
section that was not used for the subsequent computations. For
this purpose, the same Kalman filter was used as a smoother,
which was specifically important for the vision measurements
since they involve more noise in their measurements.

Xk = [ δφ δλ δh δvn δve δvd qw qx qy qz bax bay baz bgx bgy bgz ρe ]T (24)
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Fig. 5. Comparison of (a) the latitude error and (b) the longitude error for the
curve test section.

V. RESULTS

A. Experimental Setup

The data for the fusion exercise were collected on two test
sections on eastbound State Road 26 in Gainesville, FL. One
of the test sections was a straight section, whereas the other
included a horizontal curve. The curved test section was divided
into two separate segments: a short run and another relatively
longer run. On the short segment, data from three measuring
frames, i.e., survey, vision, and inertial, were collected. The
longer section was selected in such a way that it would include
the typical geometric conditions encountered on a roadway,
such as straight sections, horizontal curves, and vertical curves.
Data collected on the longer run were used for the validation of
IMU–vision system with IMU–DGPS system data, whereas the
short section was used to validate fusion data with the ground
truth.

B. Results of the IMU–Vision Integration

The translations and rotations of the test vehicle were es-
timated from vision sensors using the point correspondences
tracked by the KLT tracker on both sections. To estimate
the pose from the vision system, the correspondences given
in Fig. 2 filtered out using the two methods mentioned in
Section III were used.

These data were then used in the fusion process to obtain
the positions shown in Figs. 5(a) and (b) and 6(a) and (b).
From Figs. 5 and 6, we note that the IMU–vision system
estimates are closer to those of the IMU–GPS system than the
corresponding estimates of the IMU-only system. This is true
for both test sections. However, there are some minor deviations
associated with the system that can be seen at some occasions.
The comparison results are further summarized in Table II in
terms of the maximum errors observed at each of the runs.

Table II summarizes the two errors associated with both
the IMU–vision and IMU-only systems with respect to the

Fig. 6. Comparison of (a) the latitude and (b) the longitude for the straight
test section.

IMU–GPS for the two runs. The data in Table II represent
the maximum error occurrence point during the two runs. The
number given in the last column is the percentage distance that
the IMU-only reading has moved away from the IMU–GPS
estimation with respect to the IMU–vision system estimation.
It is clear from Table II that the IMU-only data consistently
deviate from those of the IMU–GPS system, and this deviation
is significant relative to the inertial–vision system. For the
curved section, the respective latitude and longitude estimates
of the IMU–vision system are 33.6% and 97% closer to the
IMU–GPS system than the corresponding estimates of the
IMU-only system. For the straight section, the aforementioned
figures are 61% and −8.3%, respectively. Hence, the longitude
value estimated for the straight section is the only instance
that the IMU-only system has better performance. Table II
shows that the position estimated by the IMU–vision integra-
tion agrees well with those given by the IMU–DGPS integration
and consistently performs better than the IMU-only reading.

Figs. 7 and 8 plot the discrepancy between the IMU–vision
and IMU–DGPS systems for two test sections. The estimated
errors plotted in Figs. 7 and 8 show a maximum error of
12 cm, which is quite acceptable in land-navigation systems.
These results clearly show that the IMU–vision system can
supplement the IMU measurements without a significant loss
in accuracy during a GPS outage.

These results are encouraging since it further signifies the
potential use of the vision system as an alternative to GPS in
updating IMU errors.

C. Validation of Orientation Results With Ground Truth

Five intermediate points, which were spaced at 11.5 ft, were
demarcated and taped in on the shorter test roadway segments
in such a way that the vehicle would undergo translations in all
three directions and rotations about all three axes (roll, pitch,
and yaw) between two consecutive locations.
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TABLE II
MAXIMUM ERRORS BETWEEN IMU–GPS, IMU-ONLY, AND IMU–VISION SYSTEMS GIVEN IN FIGS. 5 AND 6

Fig. 7. Error associated with (a) the latitude and (b) the longitude for the curve
test section.

Fig. 8. Error associated with (a) the latitude and (b) the longitude for the
straight test section.

A manual survey was performed using a total station that
could capture all the locations from one temporary benchmark.
At each taped location, four separate points on the cross section
of the pavement, i.e., edge, center, and two points in between,
were surveyed.

Fig. 9. Comparison of IMU–vision orientations with survey data.

TABLE III
ERROR PERCENTAGES BETWEEN THE IMU–VISION AND IMU–GPS

ORIENTATION ESTIMATES WITH MANUAL SURVEY

Moreover, at each of these points, the total station measure-
ments were repeated to eliminate any possible errors in the
line of collimation. By considering the first surveyed point
as the reference, horizontal and vertical angles between each
pair of measurement points were estimated. From these mea-
surements, the roll, pitch, and yaw of the vehicle at all con-
sequent measurement points could be estimated with respect
to the first point. The aforementioned survey measurements
were then compared with the IMU–vision system orientations
transformed into the appropriate frame using the transformation
found in [28]. Fig. 9 illustrates the comparison between the
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TABLE IV
ERROR PERCENTAGES BETWEEN THE IMU–VISION AND IMU–GPS TRANSLATION ESTIMATES WITH MANUAL SURVEY

IMU–DGPS, IMU–vision, and survey orientations for the short
test section.

In Fig. 9, one sees that the IMU–vision orientations are
relatively closer to the survey orientations than those of
IMU–DGPS. Since these results are obtained from a single test
on an actual roadway, one must be cautious and employ further
experimentation in the future to generalize the aforementioned
conclusion. Table III shows the maximum error percentages for
the orientations estimated from the IMU–vision and IMU–GPS
systems with respect to the survey for the curved test section. It
is clear from Fig. 9 and Table III that the maximum percentage
errors are quite satisfactory, considering the relatively large
distance interval at which the images were captured.

Table III shows that IMU–vision system predicts better ori-
entations than the IMU–GPS system compared with the survey
orientations. Table IV shows the errors estimated from the
translation predictions of IMU–vision and IMU–GPS systems
with respect to the manual survey, which are given as percent-
ages and in inches.

It is clear that the deviation of translations in both cases is
small and that the IMU–GPS estimation is closer to the survey
measurement in most instances than IMU–vision estimation.
However, if one considers the discrepancy in inches, it is mostly
within an inch, which is acceptable in autonomous driving tasks
under loss of GPS signals. It must be noted that, in the fourth
row, the IMU–vision comes closer to the survey reading than
the IMU–GPS estimation.

Finally, Tables III and IV also compare the orientation and
translation measurements of the IMU–vision and IMU–GPS
systems with respect to those of the actual survey. We can see
that, for this particular test run, the IMU–vision system esti-
mates of the orientations are closer to the survey measurements
than those measured from the IMU–GPS system.

VI. CONCLUSION

It has been shown that a vision system attached to a ve-
hicle can be used to estimate the rotations and translations
of that vehicle using a sequence of images. The results have
also showed that vision data can be used to update the IMU
measurements and control the error growth in such systems.
The fusion of IMU–vision measurements has been performed
using a sequence of images obtained on an actual roadway
and compared with the IMU–DGPS readings, since the main
objective of this paper was to explore a reliable alternative
system that yields results very close to IMU–DGPS results in
situations where the GPS signal is unavailable. The orientations

and translations obtained from the fused system have been vali-
dated with respect to a manual survey performed at the section.
The accuracy of the IMU–vision integrated system can further
be improved by a more frequently captured image sequence.
The use of accurate correspondences is essential in successfully
executing the vision algorithm. We have found that significant
improvements can be made by employing constraints such
as epipolar lines and correspondence motion fields to prune
potentially false correspondences.
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