
Vision:
mClouds – Computing on Clouds of Mobile Devices

Emiliano Miluzzo, Ramón Cáceres, Yih-Farn Chen

AT&T Labs – Research, Florham Park, NJ, USA

ABSTRACT
When we think of mobile cloud computing today, we typ-
ically refer to empowering mobile devices – in particular
smartphones and tablets – with the capabilities of stationary
resources residing in giant data centers. But what happens
when these mobile devices become as powerful as our per-
sonal computers or more? This paper presents our vision
of a future in which mobile devices become a core compo-
nent of mobile cloud computing architectures. We envision
a world where mobile devices will be capable of forming mo-
bile clouds, or mClouds, to accomplish tasks locally without
relying, when possible, on costly and, sometimes, inefficient
backend communication. We discuss a possible mClouds ar-
chitecture, its benefits and tradeoffs, and the user incentive
scheme to support the mCloud design.

Categories and Subject Descriptors: C.2 [Computer-
Communication Networks]: Distributed Systems

General Terms: Algorithms, Design

Keywords: Mobile Cloud Computing, Mobile Devices, Dis-

tributed Systems

1. INTRODUCTION
The tremendous explosion of mobile devices is far from

over. Smartphones and tablets are at the center of a new
modern revolution, one that is taking mobile computing to
a whole new level. These devices become even smarter with
the introduction of novel and powerful services that can take
advantage of the computational resources on both the de-
vice itself and on the cloud. The game-changing application
markets (Apple App Store and Google Android Market), ar-
tificial intelligence breakthroughs (AT&T Watson [2], Apple
Siri, Google voice search), sensing and communication capa-
bilities are pushing the envelope for a new class of devices
towards the realization, one day, of an ambitious grand vi-
sion: all-in-one smart, powerful, and versatile devices – the
ultimate fusion of phones, tablets, and personal computers.
It is not too hard to imagine a world where we will be able to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MCS’12, June 25, 2012, Low Wood Bay, Lake District, UK.
Copyright 2012 ACM 978-1-4503-1319-3/12/06 ...$10.00.

2012 2022

dual-core 1.2 GHz 16 coresCPU

RAM: 1 GB

storage: 32 GB
MEMORY

RAM: 32 GB

storage: 1 TB

BATTERY

NETWORK WiFi / 4G WiFi / xG

8 h talk time

270 h stand-by -

Figure 1: Mobile devices today and in ten years from
now. While computation and memory will likely in-
crease considerably, network bandwidth and battery
capacity will not grow at the same pace.

carry a single device to answer phone calls, use it as our pri-
mary personal computer at work by hooking it up to external
monitors and keyboards, and install our favorite games as
much as we do nowadays on tablets and smartphones.

If we then look ten years into the future, how would mo-
bile cloud computing be different from now? Or, putting
it differently, how would we redefine it given the enormous
capabilities that our future mobile devices will expose? It
is guaranteed that the answers to these questions are not
straightforward, nor have a single solution. But at the same
time, it wouldn’t be wise for future mobile cloud comput-
ing architects to continue to look at these mobile devices as
only capable of thin-layer interactions with remote clouds
and not take into account the new exciting opportunities
from their extraordinarily powerful hardware support.

A schematic and approximate representation of the evolu-
tion of these devices’ characteristics is shown in Figure 1.
While computation and storage will most likely continue to
increase according to Moore’s law, it is not clear if the cel-
lular communication channel and the battery capacity will
present similar trends. Battery still remains a bottleneck,
not being able to cope with larger screens, computation,
and data exchange requirements of many applications, ei-
ther coming with the device itself or from the market places.
Even the cellular wireless bandwidth might not exhibit sub-
stantial upgrades in the short term and often a new wireless

technology soon experiences lack of capacity given the con-
tinuous traffic growth due to the unstoppable demand for
new data-intensive applications. It is the case of applica-
tions that, for example, nowadays heavily rely on the cloud
to accomplish their tasks – speech and image processing are
examples. Moreover, service providers prefer to design ap-
plications that accomplish most of the audio, video, and
image processing in the cloud in order to be able to collect
(and own) large amounts of user data, a precious resource
for building more accurate machine learning classification
models, for example.

Relying heavily on the backend cloud means, however, pay-
ing a cost on the network, where a large fraction of its band-
width is employed to deliver “overhead” data (sent to the
cloud for remote processing for example), which might over-
all degrade the network performance. Can we offload some
of this traffic from the network when possible? Can we re-
think the architecture of mobile computing systems in order
to reduce the amount of unnecessary traffic on the cellu-
lar wireless links by accomplishing tasks locally? The freed
bandwidth would be made available to other services, im-
proving network usability and customers’ satisfaction. The
growing capabilities of mobile devices certainly open a door
towards this possibility.

This paper presents our vision of mClouds, a mobile cloud
computing architecture that runs resource-intensive applica-
tions on collections of cooperating mobile devices. Section 2
describes the mClouds design, particularly the mechanisms
for managing the distributed computing operations between
mCloud members. Section 3 discusses the user incentive
scheme for mClouds, an important driver for the adoption
of this technology.

2. MCLOUDS
In this section, we present the mCloud design and the

role of mClouds within the context of future mobile cloud
computing system architectures. mClouds are introduced
to:

• take advantage of the improving hardware capabilities
on mobile devices;

• reduce the impact on the cellular data channel, hence
reducing bandwidth usage.

In what follows, we highlight the mClouds design princi-
ples and the motivations driving them.

2.1 Do It Locally If You Can
Recent studies on smartphone data usage show that the

launch of the latest mobile device generations has triggered
an exponential growth of wireless bandwidth demand, while
highlighting that “Just 1% of all users now consume half of
the entire downlink data” [5]. As an example of this growth,
wireless data traffic handled by AT&T’s network went from
0.1 Petabytes in 2006 to 27.1 Petabytes in 2011 – a 27,000%
increase in 5 years [1]. A major reason for this increase is
that many applications and services involving some compu-
tation – in the speech, image, and audio domains for exam-
ple – heavily rely on the cloud to complete their tasks. The
mobile device is in fact often considered only as a thin-layer
abstraction for collecting data (audio, pictures, etc.), send-
ing it to the cloud for processing, and receiving the output

of this processing back. It’s not hard to identify a draw-
back to this approach: it can suffer from network scalability
issues when millions of devices engage in backend communi-
cation for cloud processing. With the growing popularity of
smart, mobile devices and services, this issue may have an
even larger impact in the future.

While the preferable repository for long-lived content (e.g.,
personal files, backups, etc.) will probably remain the back-
end cloud due to its security, reliability, and availability ad-
vantages, much of the processing could be gradually trans-
ferred to the mobile devices as their hardware becomes in-
creasingly capable of handling heavy computational loads.
Mobile devices will at some point be as powerful as today’s
backend machines, and task processing will require little or
no support from the backend. This hypothesis is already
reality for some applications that rely entirely on local pro-
cessing. It is the case of PocketSphinx, for example, a suc-
cessful effort of a speech recognition engine implementation
for mobile devices without backend interaction [9]. Conti et
al. [7] also introduce the opportunistic computing idea as a
means to move computation to the mobile devices.

It has also been shown that a 3G cellular data interface re-
quires 3 to 5 times more energy than WiFi transmissions [8].
Sending data remotely then not only claims large shares of
wireless bandwidth, but also takes its toll on mobile device
energy. By promoting local processing, mClouds is intended
to: i) syphon data off the cellular data channel, and ii) re-
duce the backend cloud complexity by pushing intelligence
to the edge, i.e., onto the mobile devices.

Local data exchanges between mCloud members can oc-
cur over free high-bandwidth WiFi networks, both ad-hoc
and multicast, or through emerging short-range radio tech-
nologies specifically designed for direct interaction between
mobile devices [4]. Should any remote data be required to
support a local processing task – such as machine learning
models or specific datasets – the data could be transferred
to a mobile device opportunistically via WiFi, during off-
peak hours via the cellular network, and, possibly, when the
device is charging.

2.2 MCloud Processing
The mobile devices forming an mCloud are named mDevs.

We use the term mTasks to denote the processing tasks car-
ried out by mDevs. An example of an mTask is a speech
processing procedure after collecting a voice sample from the
user, or an image processing algorithm on a picture taken
with the mobile device. We envision mechanisms within the
mCloud such that mTasks can be executed either on the
single device itself or, when possible, by distributing smaller
portions of an mTask among members of the mCloud to
parallelize the processing and alleviate the burden on single
devices. We thus identify two scenarios: individual and dis-
tributed processing.

Individual Processing. This is the case of an mTask
that can be autonomously accomplished by a single device,
without the intervention of external entities. Single device
computation is possible for mTasks that do not require too
many resources (CPU, RAM, battery) to complete. Pocket-
Sphinx [9] is an example of individual processing.

(a) (b)

mDev
3

(c)

mTask
1

output
1

mDev
2

mDev
1

mDev
3

mDev
2

mDev
1

mDev
3

mDev
2

mDev
1

output
2

output
3

Figure 2: Distributed mCloud processing: (a)
mDev1 needs to accomplish mTask1 and mTask1 can
be split into smaller subtasks; (b) master mDev1 dis-
tributes the subtasks to the surrounding slaves; (c)
master mDev1 collects the results from the slaves.

Distributed Processing. There will be situations, how-
ever, where mDevs won’t be able to act alone because the
task requires too many resources. In such a scenario, mDevs
could invoke the cooperation of nearby devices to alleviate
its computational burden by slicing up a task into smaller
subtasks for which independent execution is possible. We
call the mobile device requesting the cooperation the mas-
ter mDev and the others the slave mDevs. This scenario is
depicted in Figure 2. If an mTask can be split into subtasks
that can be safely executed independently from each other
(as for mTask1 from master mDev1 in Figure 2a), the master
can assign subtasks to those slaves willing to accept them.

Examples of mTasks that can be split into independent
computation units are image and video processing opera-
tions, which can exploit high levels of parallelism. Each
slave mDev independently proceeds to the processing of its
assigned subtask and returns the result back to the mas-
ter mDev. After collecting the results from the slaves, the
master combines these results to produce the final output.
Researchers have already proposed ideas to advance mo-
bile computing, and mobile sensing in particular, to boost
machine-learning inference accuracy by promoting inter-device
cooperation [14]. Given the growing interest in mobile sens-
ing applications to profile people’s context and behavior,
machine learning algorithms are among the main drivers for
the mCloud technology: typical machine learning routines
require heavy computation for which the support of power-
ful, backend machines is needed. With mClouds these tasks
could be accomplished locally without needing to send large
quantities of data to the backend cloud.

In order to support mCloud operations in any conditions,
mDevs can always rely on the backend cloud for complet-
ing operations whenever it is not possible to successfully in-
stantiate a distributed processing task in collaboration with
nearby mDevs. This might occur because of the heteroge-
neous mCloud environment, where mDevs might have dif-
ferent capabilities that cannot fulfill the requests of the mas-
ter. An mCloud is also a highly dynamic ecosystem, where
members join and leave with little guarantees about the per-
sistence of some of the resources. It might be also the case
that nearby mDevs are not willing to accept a master’s task.

2.3 MCloud Management
mClouds relies on two important principles. They are

the ability to: i) easily manage the mCloud – its formation
and functionality – which we discuss in this section, and

ii) identify proper and effective incentive mechanisms for
people to lend their devices for other people’s computations
(see Section 3).

An mCloud is an ensemble of mDevs that are usually mo-
bile, dynamically joining and leaving the mCloud forma-
tion. Because of this, several questions arise: Would it be
ever possible to form and maintain stable mCloud configu-
rations? How do we know if the surrounding mDevs have
enough resources to participate in a distributed processing
task? What if there aren’t enough mDevs in an mCloud to
complete a task? This is only a small sample of the ques-
tions and challenges that need to be addressed. At a high
level, we envision the following procedural steps:
Resource Discovery. An mDev (the master) that in-
tends to instantiate a distributed processing task first needs
to identify nearby mDevs that could potentially form the
mCloud. At this stage, the master initiates a discovery phase
by broadcasting solicitation messages, announcing the intent
of forming an mCloud and the scope of the task. We only
focus on one-hop master-slave interactions. Nearby mDevs
willing to join the mCloud and take part in the cooperation,
reply to the solicitation messages. If there are no nearby
mDevs willing to join the mCloud, or there aren’t enough
mDevs to receive all the subtasks, the master relies on the
backend cloud for the entire task or for the subtasks that
cannot be accommodated by the slaves.
Formation. The mDevs (the slaves) willing to join respond
to the master by sending their unique identifiers. The mas-
ter maintains a list with the slaves’ identifiers and the tasks
assigned to them.
Maintenance. This is probably the most challenging phase,
because due to mobility, the topology of the mCloud may
vary over time (mDevs may move in and out of the master’s
short-range radio coverage). To this end, the resource dis-
covery phase needs to be executed multiple times following
the mCloud formation. The discovery could be scheduled
to run periodically or, to reduce overhead and energy us-
age for message transmission, only in response to certain
activity events. Researchers have shown how to run a user’s
activity classifiers on mobile devices using the motion sen-
sors [12]. If then a slave detects the user’s movement (e.g.,
walking), it might inform the master that it will be soon
out of range and stop the processing. If the master detects
its own movement, it would inform the slaves, which would
react by halting their processes. Uncompleted tasks could
be resumed on other mDevs or on the backend cloud.
Release. A release message, announcing the intention to
leave the mCloud, can be sent by an mDev at anytime.
Triggering factors are the assessment of lack of resources
(e.g., the battery is depleting, the user launching a resource-
intensive application on the device), mobility, or simply be-
cause the mDev doesn’t intend to participate anymore with-
out any particular reason. It is the master’s responsibility to
find other mDevs or involve the backend cloud for processing
the tasks that haven’t been completed by the released slaves.

Naturally, our design for mCloud topology discovery, forma-
tion, maintenance, and release can borrow techniques pre-
viously introduced and developed in other domains, such as
mobile ad-hoc networks for example [6, 3].

3. INCENTIVES
Proper incentive policies are needed for users with mobile

devices to opt-in to mCloud participation. In this section, we
analyze possible incentive strategies that may help mClouds
become a viable and effective alternative to the current mo-
bile cloud computing model.

There has been recent work on managing cellular conges-
tion by using economic incentives to modify the behavior of
wireless users. Uninor [17] employs a dynamic pricing plan
that gives different discounts based on the location and time
of a voice call. TUBE [10] studies how time-shifting the wire-
less data demand helps the service provider by dynamically
varying the incentives. We are interested in finding out what
incentives (and from whom) should be provided to mobile
device users to encourage them to participate in mClouds—
since each mDev may bear the cost of cellular wireless band-
width usage and battery drainage to help complete portions
of mTasks.

Let’s assume that a smartphone user has an mTask that
can be distributed to other mDevs. We first start with a
simple model (a revision of a classic pricing model proposed
by Mendelson [13]) with the following parameters:

u – utility of a mobile service, a measure of satisfaction
perceived by the mobile user, which may be indirectly re-
vealed by the price the user is “willing to pay”;
T – time to complete the service without using mClouds;
w – cost of waiting per second, which reduces the satisfac-
tion and is highly dependent on the application;
p – cellular usage payment to carrier without using mClouds.

A mobile user will consider a mobile service useful if:

u− w ∗ T − p > 0 (1)

That is, there is still surplus in the utility after deducting
the cost of the waiting time and cellular payment. When the
network is congested, the delay component w ∗ T becomes
a significant factor and fewer users would be willing to use
the network. For example, a user may consider the value of
watching a 100MB YouTube video of highlights of the latest
NBA game to be $5, and the cost of waiting (before con-
tinuous streaming starts) to be $0.25 per second. Assuming
the wireless service plan to be $25 for 2GB, the cellular pay-
ment (without dynamic pricing) would be $1.25. Under this
model, the user would have no desire to watch the video if
the delay is longer than 15 seconds (waiting cost of $3.75).

If mClouds is available, then the user will have the option
to distribute its tasks to multiple smartphones to reduce the
time to completion. Let’s first consider the scenario where
the carrier does not provide incentives—and the user with
the master mDev will have to pay other slave mDevs for
their support:

t – time to completion with mClouds, typically smaller than
T because the tasks are distributed;
m – number of slave mDevs;
s – average incentive payment to each slave mDev; each
slave may price the same subtask differently;
q – cellular usage payment from the master mDev to carrier
when mClouds is used.

Note that each slave mDev may handle some of the cellular
wireless communications on behalf of the master mDev, and

in that case q is likely to be less than p (less data to send
to the backend). The payment s is typically made by the
master mDev, but the carrier may also decide to pay the
incentive to reduce network congestions in certain areas in
order to keep the service at an acceptable level. A mobile
user with the master mDev will consider a mobile service
with mClouds useful if there is surplus in utility after paying
the slaves:

u− w ∗ t−m ∗ s− q > 0 (2)

And mClouds provides real cost savings (compared to equa-
tion 1) only if:

w ∗ T + p > w ∗ t + m ∗ s + q (3)

That is, the added payment to the slaves should be lower
than the savings achieved through reduced waiting time and
reduced payment to the wireless carrier by using mClouds.

Note that if the carrier is willing to cover the cost to sig-
nificantly reduce the network congestion, then the slave pay-
ment cost (q) from the master is reduced to 0 and mClouds
is beneficial to the master as long as:

w ∗ T + p > w ∗ t + q (4)

In other words, incentives provided by carriers—intended to
reduce congestion in their networks—may significantly boost
the adoption of mClouds.

Now we turn the attention to the slave mDev. Note that
the benefit of participating in mClous (through the incen-
tives received) must outweigh the cost of the battery drain
and cellular wireless bandwidth usage incurred by the slave.
If bi is the battery drain cost and vi is the cellular data
cost (as perceived by the slave i), then the following must
hold for an mDev receiving payment si to be interested in
participating:

si > bi + vi (5)

For example, a recent measurement we conducted shows
that the use of the “personal hotspot” application on an
iPhone 4 device to support a WiFi-only iPad device con-
sumes roughly 200MB of data during one hour of usage. In
this case, vi would be $2.50 on a 2GB/$25 monthly plan.
The battery on the iPhone 4 drops by 22% for one hour of
usage serving as a hotspot. If the slave mDevi considers
every 10% of battery drain to be worth $1, then bi would
be $2.20. So the incentive payment si to the slave must be
higher than $4.70 if the task it received consumes the same
amount of cellular data and battery usage.

Whether the incentives are paid by the master mDev or
the carrier, the carrier can serve as the clearinghouse that
handles all the transactions (or micro payments) on behalf
of the owners of the mobile device participating in mClouds.

To help explain how incentives work in a real application
scenario, let’s consider an mCloud-based “real-time confer-
ence attendance” app, which allows a mobile user to take a
snapshot of a crowd (say attendees in a particular session)
and match faces in the crowd against the stored photos of
all conference attendees to figure out who is attending which
session. Furthermore, the conference organizers want to get
real-time updates on the distribution of attendees in various
sessions for logistics planning.

A conference volunteer may decide to use mClouds to
quickly recognize all faces in the room since her own device
may not have sufficient computation power and communi-
cation bandwidth to do that in real time. Let’s assume that

there are 1000 attendees at the conference and a centralized
database of all their faces is stored in the backend cloud.
Let’s assume that the app allows a user to upload a small
image of a face to the backend cloud, which returns the name
of the conference attendee. We also assume that there are
typically 50 attendees in each session and 10 of them are
available to participate in mClouds.

If the volunteer (with the master mDev) does it on her
own device, the on-device app may take the following steps:
(a) detect the number of faces in the snapshot and crop a
small image for each face, (b) submit each face separately for
recognition, and (c) return the list of attendees to the user.
Let’s assume that step (a) takes 10 seconds, step (b) takes
5 seconds for each face, and step (c) takes 2 seconds. The
volunteer would need 10+5*50+2=262 seconds (T) without
mClouds to accomplish the task. By using mClouds with
10 slave mDevs (each performing 5 face recognition tasks),
the time will be reduced significantly since step (b) can be
distributed to 10 mDevs. If we assume that the overhead of
communicating with all slave mDevs is 2 seconds (through
multicast), then the total time (t) with mClouds would be
10+2+5*5+2=39 seconds.

Now let’s consider the surplus utility of the master mDev
without mClouds. Let’s assume that the utility of real-time
face recognition (u) of 50 users in a conference session is
worth $10 to the conference organizers, and it costs $0.03 in
cellular payment for any phone to submit a face recognition
request to the cloud, and $0.02 is the cost of delay per second
(w). Then w ∗ T would be $0.02 * 262 =$5.24 and p would
be $0.03 * 50 = $1.50. So the surplus in utility (see equation
1) after subtracting the waiting cost and cellular payment
would be $10 -$5.24 - $1.50 = $3.26.

Now we consider the case with mClouds. Let’s assume
that the average cost equivalent to the battery drainage bi
for performing the subtask on each slave mDevi is $0.10.
The average cellular payment is simply $0.03*5=$0.15 each.
The master mDev may decide to pay $0.3 (> $0.25) to each
slave mDev to cover their costs. So the surplus utility for
the master mDev (see equation 2) is $10 - $0.02*39 - 10*$0.3
- 0 = $6.22. Note that there would be no cellular payment
on the master mDev since the tasks have been distributed.
The use of mClouds would result in a saving of $2.96.

If we further assume that each slave mDev is powerful
enough to perform face recognition on its own, then all the
cellular payments can be removed; however, each bi would
become higher since each slave mDevi would have to work
harder to finish its subtask without contacting the cloud.
Note that the face recognition application on each slave
mDevi will only need a face classification model, with a much
smaller memory footprint than the training data, to perform
its task.

4. DISCUSSION
This paper takes the position that mClouds will be a core

component of our future computing landscape. As we have
described, running processing and storage-intensive applica-
tions on increasingly resourceful mobile devices would reduce
demands on rapidly saturating cellular data networks.

It is important to note that mClouds will complement, but
not replace, other approaches in the spectrum of mobile
cloud computing solutions. In particular, we see two other
approaches that will also play important roles. One is the

currently dominant model of offloading computation and
storage from mobile devices to centralized cloud resources.
There are many scenarios in which this approach will con-
tinue to make sense, for example applications that need ac-
cess to datasets too large to move away from centralized
data centers. The other approach is Cloudlets, which shifts
computation and storage to stationary resources close to the
edge of the network [15]. This approach promises to re-
duce latency with respect to the centralized solution, and
makes available more computing, storage, and energy re-
sources than are available on mobile devices.

It is also important to mention that proper security and
trust mechanisms are needed to facilitate the adoption of
mClouds. We assume that mClouds are a trusted platform
running on trusted devices where any third-party computa-
tion is executed within well-defined and secure environments
[16]. Any phone-to-phone interaction should be regulated by
off-the-shelf authentication and authorization techniques.

Finally, local stationary devices – such as personal comput-
ers, set-top boxes, etc. – could also become members of
an mCloud. They could lend further computing power and
enrich the capabilities of the mCloud.

5. CONCLUSION
We have presented mClouds, our vision of mobile cloud

computing architectures, where mobile devices become core
computing nodes because of their rapidly growing capabili-
ties. We have discussed the advantages of the mClouds ap-
proach and provided initial design considerations. Although
these ideas are preliminary, we believe that mClouds will
play a key role in the future mobile computing landscape.

6. REFERENCES
[1] AT&T 2011 Annual Report. http://www.att.com/Common/about_

us/files/pdf/ar2011_annual_report.pdf.

[2] AT&T Watson. http://tinyurl.com/7qvd4l4.

[3] Personal Networks. http://nrlweb.cs.ucla.edu/project/show/3.

[4] Qualcomm’s Flashlinq. http://tinyurl.com/c3ba46s.

[5] Trends in Smartphone Data Use.
http://www.arieso.com/news-article.html?id=89.

[6] S. Basagni, et al. Mobile ad hoc Networking. Wiley-IEEE
Press, 2004.

[7] M. Conti and M. Kumar. Opportunities in Opportunistic
Computing. Computer, 43(1):42–50, 2010.

[8] E. Cuervo, et al. Maui: Making Smartphones Last Longer with
Code Offload. In Proc. of MobiSys’10.

[9] D. Huggins-Daines, et al. PocketSphinx: A Free, Real-Time
Continuous Speech Recognition System for Hand-Held Devices.
In Proc. of ICASSP 2006.

[10] C. Joe-Wong, et al. Time-Dependent Broadband Pricing:
Feasibility and Benefits. In Proc. of ICDCS’11.

[11] E. Koukoumidis, et al. Pocket Cloudlets. ACM SIGARCH
Computer Architecture News, 39(1):171–184, 2011.

[12] N. Lane, et al. A Survey of Mobile Phone Sensing.
Communications Magazine, IEEE, 48(9):140–150, 2010.

[13] H. Mendelson. Pricing Computer Services: Queuing Effects.
Communications of the ACM, 1985.

[14] E. Miluzzo, et al. Darwin Phones: the Evolution of Sensing and
Inference on Mobile Phones. In Proc. of MobiSys’10.

[15] M. Satyanarayanan, et al. The Case for VM-Based Cloudlets in
Mobile Computing. Pervasive Computing, IEEE, 8(4):14–23,
2009.

[16] L.P. Cox and P.M. Chen. Pocket Hypervisors: Opportunities
and Challenges. ACM HotMobile’07, 46–50, 2007.

[17] Uninor. Dynamic Pricing Plan with per Second Billing, Feb.
2010. http://bit.ly/oBl9kW.

