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Vision impairment is a major challenge faced by humanity on a large scale throughout the world. Affected people find inde-
pendently navigating and detecting obstacles extremely tedious. %us, a potential solution for accurately detecting obstacles
requires an integrated deployment of the Internet of%ings and predictive analytics.%is research introduces “Vision Navigator,”
a novel framework for assisting visually impaired users in obstacle analysis and tracking so that they can move independently. An
intelligent stick named “Smart-fold Cane” and sensor-equipped shoes called “Smart-alert Walker” are the main constituents of
our proposed model. For object detection and classification, the stick uses a single-shot detection (SSD) mechanism, which is
followed by frame generation using the recurrent neural network (RNN) model. Smart-alert Walker is a lightweight shoe that acts
as an emergency unit that notifies the user regarding the presence of any obstacle within a short distance range. %is intelligent
obstacle detectionmodel using the SSD-RNN approach was deployed in real time and its performance was validated in indoor and
outdoor environments. %e SSD-RNN model computed an optimum accuracy of 95.06% and 87.68% indoors and outdoors,
respectively. %e model was also evaluated in the context of users’ distance from obstacles. %e proposed SSD-RNNmodel had an
accuracy rate of 96.4% and 86.8% for close and distant obstacles, respectively, outperforming other models. Execution time for the
SSD-RNN model was 4.82 s with the highest mean accuracy rate of 95.54% considering all common obstacles.

1. Introduction

In an extensive survey conducted worldwide, approximately
940 million people were detected to have a certain level of
vision-related issues. Approximately 240 million among
them suffered from extremely low vision, while approxi-
mately 39 million lacked complete vision [1]. Vision im-
pairment, which restricts the ability to perceive, and is
seldom curable, is a major global concern in recent times.
Difficulties in normal movement, perceiving and detecting
surrounding objects, and proper indoor and outdoor nav-
igation are some of the basic complexities faced by affected
people. Specifically, perceiving and identifying obstacles,
and reacting to them in real time, is a challenge for them.
%ese vision issues prevail mainly in underdeveloped

nations because they are unable to afford the latest devices,
which are often expensive. %e problem is mainly dominant
in old age people of densely populated underdeveloped
countries [2]. Cataracts, refractive issues, glaucoma, retina
problems, or age-based eye disorders are some common
factors that lead to vision impairment [3, 4].

Navigation becomes a major concern for these people
in unfamiliar environments. In addition to medical help,
other services like awareness campaigns, regular rehabili-
tation programs, and social inclusion are used by these
specially abled individuals. Many people use a white cane,
where the cane’s length is dependent on the touch sen-
sation. However, its use is limited during traveling. Fur-
thermore, its lack of flexibility results in cracks over regular
use. In many scenarios, people use guide dogs to assist in
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walking. %ese dogs alert the user of any potential obstacles
in the way. However, these guide dogs may not always give
accurate directions in crowded and complicated sur-
roundings. GPS-enabled devices are also used by many
people as assistive tools. %ese devices act as a navigation
and orientation interface to locate the desired areas. Al-
though they are effective in locating specific regions, they
are not precise in avoiding and identifying obstacles. In
many cases, an echolocation technique is used by visually
disabled communities [5]. Here, sound echoes of mouth
clicks are applied for the detection of obstacles in front of
them. Short-distance range and leakage of data are the two
main limitations of this approach. Other obstacle detection
approaches, which are based on Quick Response codes and
bar codes, are used to recognize various types of obstacles
in crowded areas [6–8]. However, these approaches need a
technologically advanced infrastructure and the support of
a third person to accomplish tasks. Similarly, many devices
exist to help users with visually disabled, but many of them
are either used to detect obstacles through machine vision
or used sensory modules like GPS and distance sensors.
With recent advancements in science and technology, the
lives of people with vision impairments can be improved
and navigation can be made easier and more effective
[9, 10]. Effective integration of sensor methodologies with
computational vision and image processing can help in
developing a real-time robust, cost-effective, and reliable
model to assist users with vision impairments, thereby
making them aware of any potential danger. %e devel-
opment of innovative modern technologies, such as the
Internet of %ings (IoT) and predictive analytics, has
opened up possibilities for providing an interactive system
to assist a person with vision concerns to independently
navigate in all environments. %e system or devices should
be able to process data quickly, have a wide coverage area
with enhanced detection of static and dynamic obstacles,
and operate indoors and outdoors, depending on the needs
of the user.

%e major contributions of this article are as follows:

(1) %is research analysis addresses this obstacle iden-
tification issue for users with major visual concerns
and proposes a smart and intelligent obstacle rec-
ognition framework for them. In this research, a
novel obstacle detection model named “Vision
Navigator” is designed, which can assist users with
vision concerns users to detect and recognize dif-
ferent types of obstacles in navigating indoors and
outdoors.

(2) %e integrated framework comprises an intelligent
folded stick termed “Smart-fold Cane” and a pair of
lightweight sneakers with two built-in ultrasonic
sensors called “Smart-alert Walker.” With the help
of Smart-fold Cane, the distance between the user
and obstacles can be conveniently computed, and
water bodies on the way can be identified. In ad-
dition, the detected obstacle images can be cap-
tured and classified with notification to the user
quickly.

(3) %e second component, namely, Smart-alert Walker,
is a pair of lightweight sneakers equipped with two
ultrasonic sensors located at the front and left end of
the sneakers. %e sensors are emergency modules
that determine the presence of any potential obstacle
within a short range so that the user will be instantly
informed about the danger to avoid any mishap.

(4) Smart-fold Cane and Smart-alert Walker combine to
form the pillars of the proposed assistive obstacle
detection model.

(5) %emodel was deployed in real time and its outcome
was promising. %e combined hybrid SSD-RNN
model was successfully able to recognize, classify,
and notify users about the presence of obstacles with
excellent accuracy. Figure 1 depicts a skeleton model
and the real-time usage of the proposed model.

%is paper is organized as follows. Section 1 introduces
the domain and addresses the importance of a new, efficient
model for obstacle detection for people with vision concerns.
Section 2 discusses the crucial background studies and re-
lated work by different researchers in the domain. Section 3
highlights the proposed working model in detail with the
components and its functionalities discussed. Section 4
provides the results of deploying the model in a real-time
scenario and analyzes the outcomes. Section 5 concludes and
emphasizes the major inferences of the research.

2. Related Work

Detecting and carefully avoiding an obstacle at the right time
is critical for visually impaired individuals. With the rise of
modern technologies, a variety of working models have been
developed and presented in this domain [11]. Many inno-
vations have been proposed during the last two decades to
help visually affected people effectively move around their
surroundings. %erefore, numerous system models have
appeared on the market. Some of them are wireless tech-
nologies. Visually impaired people face many challenges in
their daily lives, but most of these challenges have been
addressed through technological advancements [12]. In this
section, extensive research is undertaken to describe the
relevant work in the domain. %e overall literature survey is
partitioned into two sub-categories which are discussed
below.

2.1. Sensors Based Existing Works. Some significant existing
works based on usage of smart sensors are presented. %e
usage of modern technologies for assisting users with vision
impairments has generated positive reviews like the use of
wearables [13], electronic traveling support [14], mobile
assisting tools [15], machine vision–enabled models [16],
haptics usage and design [17], substituting sensory equip-
ment [18], and electronic navigation help [19]. With model-
based state-feedback control, a smart cane and obstacle
detection device for visually impaired people with multiple
sensors has been developed. In Ref. [20], a white cane system
composed of IC tags is designed to help visually disabled
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people walk comfortably in indoor areas. %e authors of Ref.
[21] proposed a system for determining TDOA using various
signaling techniques. In Ref. [22], the authors introduced a
nonlinear cost function for determining an object’s indoor
position by reducing the number of squares of a nonlinear
cost function, such as least-squares algorithms. Other al-
gorithms for calculating an object’s indoor position include
residual weighting and closest neighbor, which assess the
location in comparison to reference points or base station
coordinates [23]. Santos [24] proposed a module that uses a
smartphone and an embedded device to communicate with
public transit through wireless channels. Mutriara et al. [25]
mentioned a tool that uses a GPS module to notify the
position of a building that visually impaired users want to
enter. Rehabilitative shoes and spectacles constituted an-
other new method introduced by Abu-Faraj et al. [26]. %e
obstacles in front of users are sensed using ultrasonic
transducers in this device. %is method was used to de-
termine the thickness of obstacles as well as the presence of
any potholes in front of users. In 2018, Hu et al. proposed a
method that relied on link models and assigned an equiv-
alent amount of work based on its characteristics [27]. %is
method eliminates repetition and ensures precision to
predetermined levels. It uses symbols instead of words be-
cause the objects are aligned in the 2D scale ratio. Al-Shehabi
et al. [28] created a wearable navigation aid to help visually
affected people reach their desired destination in a new
environment. %is module contains a Kinect chip, a tablet
PC, a micro-controller, IMU, sensors, and vibration actu-
ators for orienting the user in the next direction.

2.2. Computer Vision-Based Existing Works. In this sub-
section, some vital computer vision driven relevant works
are discussed. In 2005, Chen and Yuille [29] published a
cascaded model whose main purpose was to emphasize
time complexities and their accuracy considering the
various tests carried out by the greedy method; the model

uses an algorithm that detects text from a cascade of im-
ages. In 2015, Wei et al. published a work in which the best
output for image classification with a single label is
achieved using a convolutional neural network (CNN)
model [30]. In 2016, Zhang et al. presented a model that was
used to detect trends in urban areas such as public streets
and restaurants, as well as rainy environments [31]. %is
method categorized audio recordings, resulting in patterns.
In 2015, Mekhalfi et al. [32] published a compressive
sensing approach for vision-affected users. Here, objects
were detected by grouping people using a camera in various
indoor spaces. To determine the Euclidean distance and
Gaussian method, this study used a multi-labeling strategy.
It checks for the presence of a variety of artifacts related to
the data collection. In Ref. [33], the authors provided a
survey on electronic travel aids (ETA) for visually impaired
navigation assistance. Various ETAs were discussed and
compared in terms of their advantages and disadvantages.
For activity recognition, a deep novel architecture for vi-
sually disabled people using a late combination of two
parallel CNNs that outperform state-of-the-art methods
was discussed [34]. Another approach proposed in Ref. [35]
used CNN for object detection, followed by a recurrent
neural network (RNN) and softmax classifier with intensity
color thresholding for color recognition. In Ref. [36], re-
searchers presented a visually impaired outdoor navigation
assistant using a combination of machine vision and deep-
learning techniques. %e framework tracked objects
without prior knowledge using a regression-based mech-
anism. It was able to handle sudden camera movements
and uses you only look once (YOLO) for object recogni-
tion. In Ref. [37], a mobile app was designed to assist
visually disabled people. It has two modes: offline and
online based on the user’s network access. Faster RCNN
and YOLO are used in the online mode to produce pre-
dictions in stable conditions. In the offline mode, however,
a feature recognition module based on Haar features and
histogram of gradients serves this function. %e ImageNet
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Figure 1: Skeleton prototype (left) and real deployment (right) of the devised model.
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dataset [38] has been used to develop a CNN for pretrained
object recognition. Rajput et al. created a smart obstacle
detector device to assist blind people in doing their jobs
more conveniently and comfortably. A generic cane de-
tection system was ineffective and precluded movement in
blind people [39]. With the aid of a camera, the proposed
device detected objects using a video processing method.
%is device used video processing to detect objects effi-
ciently and quickly. Visual navigation aids were also de-
veloped by %omas et al. [40]. To provide visual cues, this
navigation aid was equipped with a wearable computer
system with a see-through monitor, digital compass, and
differential GPS.

2.3. Semantic Segmentation-Based Existing Works.
Pixel-by-pixel semantic segmentation is an effective method
for detecting and identifying many classes of objects at the
same time. %ere are various methods based on it used for
assisting a visually impaired person. Deep learning pipelines
have spurred the growth of semantic segmentation. FCNs
which were proposed to convert CNNs, which were originally
created for classification, to give pixel-wise classification
outputs by making them completely convolutional, are a
significant part of the literature. Another groundbreaking
deep CNN architecture with a topologically symmetrical
encoder-decoder design is SegNet. Instead of keeping all
feature maps, SegNet up-samples the corresponding feature
maps for the decoder using max-pooling indexes obtained
from the encoder, drastically reducing memory and com-
putational costs. ENet was offered as an efficient option for
real-time semantic segmentation implementation. ENet was
built with different bottleneck modules that may be utilized
for either down-sampling or up-sampling images, based on
ResNet views. ENet, unlike SegNet, has a larger encoder than
its decoder because it is thought that the initial network layers
should not immediately contribute to classification. ERFNet
was created with the goal of increasing the accuracy/efficiency
trade-off and making CNN-based segmentation appropriate
for existing embedded hardware platforms. SQNet used
parallel dilated convolutions and fused them as an element-
wise sum to merge low-level knowledge from lower layers of
the encoder, which helped with more precisely categorizing
object outlines. By linking the encoder and the accompanying
decoder, LinkNet attempted to obtain precise instance-level
prediction without sacrificing processing time. In terms of
pixel-exact categorization of tiny features, these architectures
have outperformed ENet. PSPNet advocated using a decoder
with max-pooling layers of various widths for large-scale
scene parsing jobs in order to acquire various amounts of
context in the last layers.

3. Materials and Methodology

At present, many people with vision-related concerns find
challenges in navigation inside or outside of their homes.
%us, a portable and reliable smart device with intelligence
functionality can assist them to independently navigate and
move freely.

3.1. System Requirements. Developing a smart and intelli-
gent model for users with vision concerns requires sys-
tematic integration of various constituents. Table 1
highlights the vital hardware and software components
used in configuration of the model.

Important constituents of the Vision Navigator include
Arduino board, audio module, camera modules, water
sensor, ultrasonic sensor, push button, and battery units.
%ey are illustrated in a sample circuit diagram as shown in
Figure 2.

3.2. Datasets Used. %e system will need some inputs to
generate a model for the proposed system. We are using the
following datasets.

3.2.1. MS COCO. Microsoft Common Objects in Context
(MS COCO) is an object detection dataset with 80 classes,
80,000 training images, and 40,000 validation images. %e
goal of this dataset is to determine the state of object rec-
ognition by placing different queries on object detection.
%is goal can be accomplished by gathering in a natural
context various complex everyday scenes consisting of
common objects from the environment. An object is labeled
by optimization per instance to help locate objects precisely.
%e Single Shot MultiBox Detector (SSD) model uses this
dataset for obstacle detection [41].

3.2.2. Flickr30k. %e Flickr30k dataset is a definitive source
for the representation of phrase-based images. %is work
introduces Flickr30k Entities, which increases the 158k
captions from which a single image is given different cap-
tions. %e RNNmodel uses this dataset for suitable sentence
framing from detected obstacle images [42].

3.3. SSD-RNN for Obstacle Recognition. In this research, an
SSD algorithm is used for detecting and classifying obstacles
from the camera-captured images in the way of a person
with vision concerns. Later, RNNs are used to generate an
appropriate sentence for the detected obstacle by SSD, which
is further communicated to users.

Using multibox [43], the SSD takes only one shot to
detect multiple objects present in an image. %e SSD has a
substantially faster object detection algorithm with high
accuracy. %e SSD’s high speed and precision when working
with low-resolution images can be attributed to the fol-
lowing factors.

(i) Proposals of bounding boxes are no longer
accepted.

(ii) For predicting object categories and offsets in
bounding box locations, a progressively decreasing
convolutional filter is used.

(iii) For object detection, multiple boxes or filters of
various sizes and aspect ratios are used.

We add additional convolutional layers for detection to
the base VGG network. %e scale of the convolutional layers
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at the end of the base network decreases gradually, aiding in
the detection of objects at a number of levels. Figure 3 shows
a simple SSD model for obstacle detection.

3.3.1. Training of SSD. An input image with ground-truth
bounding boxes for each object in the image is sent to the
SSD. %e function segmentation is based on the VGG-16

Table 1: Hardware and software components of vision navigator.

System
Requirements Description

Arduino board

Controls, processes, and generates all inputs and outputs. It receives the echo signals from the ultrasonic sensor that
trigger it to take further actions and checks if the obstacle is there. It generates an immediate alert using a buzzer. It
also generates a caption for the image captured by a camera and later converts that caption into speech that is played

through an audio device.

Ultrasonic sensor Determines the target obstacle distance by emission of ultrasonic sound waves, which maps the reflected sound into
an electrical signal.

IR sensor Detects infrared radiation that helps in sensing obstacles in surroundings.
Vibrator Used to notify the user about any obstacle present.
Bluetooth module Used to send and receive the signal through two devices in a wireless medium.
Push buttons Used to switch on the microcontroller board.
Water sensor Used to notify the user of any water body presence.

Audio module Conveys image captions to the user in the form of audio. It receives an audio signal from Arduino once the caption
for the image is converted into an audio format using a text-to-to-speech algorithm.

Camera modules Acts as eyes for visually impaired people. Each time an ultrasonic sensor detects an obstacle, the camera modules
capture the picture that is sent to the board for processing and caption generation.

Buzzers Used in this system for an immediate alert. When the ultrasonic sensor detects an obstacle, it is triggered.
Plastic stick bodies Acts as the outer texture body of the Smart-fold Cane.
Python Programming interface to implement the model.
TensorFlow Open-source machine learning platform.
Text-to-speech API Application to map the obstacle text into speech to notify users.

Battery

Push Button

Arduino Board

Ultrasonic Sensor

Water Sensor

Camera ModuleSpeaker / Audio Module

Figure 2: Sample circuit diagram with vital constituents.
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base network. Convolution layers test boxes that comprise
various aspect ratios that are present at each position in
several feature maps in the form of various scales. Several
default boxes of various sizes and aspect ratios are placed
around the entire picture, aiding in evaluating the default
box that most strongly matches the ground-truth bounding
box containing objects.

3.3.2. Matching Strategy. %e default boxes are matched to
the ground truth boxes during training in terms of aspect
ratio, position, and size. %e boxes that have the most
overlap with the ground truth bounding boxes are chosen.
%e expected box and ground truth should have an inter-
section union greater than 0.5. %e multibox chooses the
expected box that has the most ground reality overlap. Each
forecast is made up of the following parts:

(i) %e offsets from the default box’s middle section, as
well as the height and width of the box.

(ii) All object types or classes have confidence. Class 0 is
reserved for suggesting the object’s absence.

3.3.3. Data Augmentation. Shearing, zooming in and out,
rotating, cropping, and other data augmentation techniques
are used to manage a wide range of object sizes and shapes.
%rough data use, augmentation enhances the model’s
resilience to a wide range of input object sizes and shapes,
aiding in improving the model’s accuracy. %e original
opening input image is randomly sampled for each training
sample. %e operational step of an SSD model for obstacle
detection as discussed is shown in Figure 4.

RNNs are a form of neural network in which the output
from the previous step is used as input in the current step
[44–47]. RNNs have a “memory” that holds all details about
the calculation. %ey use the same parameters for each input
because they produce the same output by observing the
performance on all inputs or hidden layers. RNNs make
decisions based on historical data.

A network with one input layer, three hidden layers, and
one output layer, as shown in Figure 5, is considered. Each
layer, like other neural networks, has its own collection of
weights and biases, such as (w1, b1) for hidden layer 1, (w2,
b2) for the second hidden layer, and (w3, b3) for the third
hidden layer. By giving the same weights and biases to the

layers, RNN transforms independent activation into de-
pendent activation, minimizing the complexity of increasing
parameters and memorizing each previous output by
feeding each output into the next hidden layer. As a result,
these three layers can be combined into a single recurrent
layer with the same weights and bias as the hidden layers.

%e following is the formula for calculating the current
state:

ht � f ht − 1, Xt( , (1)

where ht: current state, Xt: input state, ht − 1: previous state.
%e formula for applying the activation function is as

follows:

ht � tanh Whhht − 1 + WxhXt( , (2)

where Whh: recurrent neuron weight, Wxh : input neuron
weight.

%e formula for calculating the output is as follows:

yt � Whyht, (3)

where, yt: output and why: weight at the output layer.

3.3.4. Training through RNN

(i) %e network receives a single time phase of the
input.

(ii) Using the current input and the previous state, the
current state is determined.

(iii) For the next time stage, the current ht becomes
ht − 1.

(iv) As per the problem, as many time steps can be
repeated as necessary and combine the data from all
previous states.

(v) %e final current state is used to measure the
performance after all time steps that have been
completed.

(vi) %e error is then calculated by comparing the
output with the real output, i.e., the target output.

(vii) %e error is then back-propagated to the network,
updating the weights and training the network
(RNN).
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Figure 3: Illustration of an SSD model for obstacle detection.
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3.4. Proposed Model Workflow. %e proposed Vision Nav-
igator consists of a combination of a Smart-fold Cane with a
Smart-alert Walker. %e Smart-fold Cane is a stick com-
prising water sensors, camera modules, and an audio
module. As opposed to a traditional stick, the Cane is a smart
blind stick that will help people with vision concerns to an
extent by allowing them to avoid obstacles while walking or
going out, which may cause accidents. %e stick is equipped
with sensors and cameras to find the objects and give
feedback alert messages to the user to avoid unnecessary
accidents. %e Smart-alert Walker has ultrasonic sensors
mounted over it to find the obstacles in the path of the
visually impaired person over a short-range distance.%us, it
acts as an emergency unit. %e overall prototype of the
device, which is laced with IoT sensors and enabled with
predictive capabilities on an obstacle in front of the user, is

shown in Figure 6. %e operation of the system is organized
in such a manner that the person finds no difficulty in
walking, reaching their destination.

%e system model is activated when a visually impaired
user uses it for navigation. An Arduino with an embedded
Raspberry Pi camera is used as a single-board computer with
Bluetooth facilities. It acts as the heart of the system because it
controls, processes, and generates all inputs and outputs. %e
Smart-fold Cane has an ultrasonic sensor, water sensor, camera
module, and audio module. %e camera feed is taken live from
the cameramodule.%e cameramodule captures frames in real
time and then the data are sent to the board where all frames
are verified as per themodel created to detect objects coming in
front of the person. %e SSD algorithm is used to detect po-
tential obstacles such as animals, cars, and doors after training
using the MS COCO dataset. %e image feed is then validated
against the trained deep learning model using the SSD model
for object detection. Validated obstacles are transferred to RNN
for sentence generation. %e generated sentences interact with
the Flickr30k dataset to frame appropriate sentences based on
the matching image of the obstacle provided. %e output of
RNN is then forwarded to a text-to-speech application interface
for vocal output.%e audiomodule conveys the image captions
to users in the form of audio alerts. It receives the audio signals
from Arduino once the caption for the image is successfully
converted into an audio format using a text-to-speech interface.
%is audio message reaches the user through an earpiece. An
emergency alert provision is available using the Smart-alert
Walker that is helpful in tracing any obstacle close to the user.
Two ultrasonic sensors in Smart-alert Walker alerts for the
presence of any obstacles that are too close, enhancing the
accuracy of this system. %ese ultrasonic sensors are placed in
such a way on the shoes that they can obtain data from ob-
stacles that have height. %e ultrasonic sensor feedback is then
validated for its distance within 1m and is sent to the Arduino
board to verify whether the user will be collided with. Fur-
thermore, water sensors are provided in the Smart-fold Cane.
Various situations may arise in which the user may get trapped
or face water bodies in their path if such bodies are not
identified.%e water sensor is able to sense any water body and

SSD
Training

Image
Augment

Default
Box

Matching

Figure 4: Functional steps of the SSD model.
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indicate its presence to the user. %e feed is then sent to the
Arduino board, which analyzes it and sends a command to the
vibration and buzzer. Figure 7 presents the overall functionality
of the model with different interlinked modules.

4. Results and Analysis

%e proposed obstacle detection model Vision Navigator
was designed as an assistive interface for users with vision
concerns or individuals with fluctuating vision for precise
navigation in indoor and outdoor surroundings. Apart from
providing a dedicated sensory unit, the predictive capability
of this model due to the integration of SSD and RNN is a
distinguishing feature. %e SSD technique was primarily
used for object detection and RNN helped in mapping the
detected obstacles with appropriate text generation. %e
effectiveness of the model in real-time scenarios was tested
in indoor and outdoor environments. %e combined SSD-
RNN model used in the work was compared with existing
models like Retina Net, Yolo Tiny, and Region-Based
Convolutional Neural Networks (R-CNN).

Figure 8 shows the available obstacles in outdoor real-
time roadside surroundings. %e SSD model was able to
successfully identify various moving and static obstacles in
front of users. %e developed detection model can observe
cars and motorcycles present in the frame.

Figure 9 shows the available objects with labels in an
indoor housing environment. %e model detected a table
fan, two different chairs, a suitcase, and a study table in front
of the person, with their respective accuracy rates labeled.

An overall performance analysis was carried out with
various common obstacles observed, as shown in Figure 10.
Classification accuracy was the metric considered for evalua-
tion. General obstacles were grouped into various distinct
types: human, animal, vehicles, plastics, furniture, house, and

others. Detection accuracy was done using the comparative
models as discussed earlier. R-CNN and Yolo Tiny models
generated an intermediate performance throughout the process
with 92.98% and 91.35%mean accuracy, respectively.%e SSD-
RNN model computed the highest mean accuracy rate of
95.54% considering all obstacles.

An accuracy comparison analysis was undertaken using the
SSD-RNN model with others in an indoor environment, as
shown in Table 2. Various entities, including pets, humans, and
furniture, were detected in the indoor scenario. RetinaNet used
6 frames to produce amean accuracy of 93.62%. Yolo Tiny gave
92.26% mean accuracy using 8 frames. R-CNN generated a
mean accuracy of 91.48% taking 12 frames.%e proposed SSD-
RNN model computed the best accuracy of 95.06%. Overall,
although Retina Net and Yolo Tiny models performed well on
static obstacles like furniture, the SSD-RNN model was more
efficient not only in detecting static obstacles but also in ac-
curately detecting human beings.

Obstacle detection outdoors is more challenging because
of the frequency of moving objects such as vehicles and
human beings. Table 3 shows the results applied to different
images in the outdoor environment. %e Yolo Tiny model
has a relatively low accuracy of 81.32% compared with other
models. A very good accuracy rate of 86.64% was generated
when implemented with the R-CNN model. Our SSD-RNN
method gave an optimum accuracy of 87.68%.

On the basis of measuring the distance of obstacles, the
proposed model is evaluated in terms of detection accuracy,
as shown in Figure 11. Obstacles were categorized into
“close” and “distant” types on the basis of the distance
computed between the user and the obstacle. Obstacles
within 1m diameter were tagged as “close” and those beyond
1m diameter were referred to as “distant.” %e analysis is
applied to both detecting indoor and outdoor obstacles. As
far as “close” obstacles are concerned, Retina Net and
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Figure 6: Prototyping of a user with Vision Navigator.
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Figure 8: Sample outdoor obstacle detection with the SSD model.
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R-CNN models gave good performance with accuracy rates
of 94.5% and 93.8%, respectively. In terms of “distant”
obstacle identification, a visible dip in the performance of all
models was observed. Still, among all methods, Retina Net
performed reasonably well with 83.9% accuracy. With an
accuracy rate of 96.4% and 86.8%, respectively, in “close”
and “distant” categories, the proposed SSD-RNN model
outperformed the other models.

Latency delay is an important parameter to determine
the efficiency of an obstacle detection model in real time. An
implementation analysis was performed in this context using
the discussed algorithmic models for comparison purposes,
as depicted in Figure 12. Retina Net and R-CNN exhibited a
consistent performance, but a slight delay in executing
obstacle detecting was observed with Yolo Tiny. %e SSD-
RNN model was comparatively faster in providing the de-
sired result. %e recorded latency time for Retina Net, Yolo

Tiny, R-CNN, and SSD-RNNmodels are 6.35, 8.54, 6.96, and
4.82 s, respectively.

A pilot study was conducted to test the effectiveness of
the model in a real-time environment. %e system was
formulated at the time when the world was going through
the COVID-19 outbreak. So, we met few people who agreed
to test the system.%e motto behind the development of this
device was to bring a smile on the faces of such specially
abled beings. %e system application was tested over a group
of specially abled people at School of Hope, which is a school
for such kind of specially abled people. Authors recorded the
testing process by validating it on 10 people and asked the
feedback and recorded the confidence quotient of users.
Table 4 highlights the metrics of evaluation and the gen-
erated outcome. As noted in Table 4, the confidence level of
the majority of users is “High,” which validates the effec-
tiveness of the model.

Figure 9: Sample indoor obstacle detection with the SSD model.
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Figure 10: Detection accuracy comparison of different obstacles using different deep learning models.
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Besides some classical models, the developed SSD-RNN
model was also compared with some state-of-the-art models
like FCOS, DETR, YOLO4, and EfficientDet. %e accuracy

and latency were computed and analyzed, as shown in
Figure 13. It was found that the SSD-RNNmodel used in the
research generated an optimum outcome with 95.5%

Table 2: Accuracy rate analysis of observed obstacles with varying obstacle detection models in indoor settings.

Environment Model Obstacle Accuracy (%) Mean Accuracy (%)

Indoor Retina Net

Cat 92.5

93.62
Human-1 93.2
Table-1 92.6
Door 94.6
Chair-1 95.2

Indoor Yolo Tiny

Dog 91.7

92.26
Human-2 90.4

Sofa 92.2
Door-2 94.1
Chair-2 92.9

Indoor R-CNN

Human-3 91.2

91.48
Bag 90.4

Dustbin 89.3
Board 93.7
Table-2 92.8

Indoor SSD-RNN

Chair-1 95.6

95.06
Sofa 95.9

Human-4 93.9
Clothes 95.1
Human-5 94.8

Table 3: Accuracy rate analysis of observed obstacles with varying obstacle detection models in outdoor settings.

Environment Model Obstacle Accuracy (%) Mean accuracy (%)

Outdoor Retina Net

Bus-1 82.1

84.76
Human-1 70.2
Car-1 91.6
Tree 90.5
Cow 89.4

Outdoor Yolo Tiny

Car-2 83.6

81.32
Human-2 81.1
Human-3 82.2
Truck 78.5
Dog 81.2

Outdoor R-CNN

Human-4 86.3

86.64
Cycle 90.2

Human-5 88.1
Bus-2 88.5

Human-6 80.1

Outdoor SSD-RNN

Human-7 85.6

87.68
Car-3 87.2

Human-8 88.9
Shop 90.1

Human-9 86.8
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Figure 11: Detection accuracy comparison of close and distant obstacles using different obstacle detection models.
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Figure 12: Execution latency delay comparison with different obstacle detection models.

Table 4: Confidence level analysis of Vision Navigator using pilot study.

User Visually challenged
degree

Intelligence level of Smart
Fold Cane

Efficiency level of Smart
Alert Walker

Accuracy level of SSD-RNN-
based Object Detection

Overall
Confidence level

P1 High High High High High
P2 High Low High High High
P3 Moderate — Low High High
P4 High High Moderate Moderate Moderate
P5 Moderate High Moderate High High
P6 Moderate High High Low High
P7 High Moderate High High High
P8 Low High High Moderate Moderate
P9 High High High High High
P10 High Low High Moderate Moderate
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accuracy and a mean latency of 4.82 seconds. %e perfor-
mance of other counterparts was equally good but slightly
less compared to the SSD-RNNmodel for obstacle detection.

5. Conclusion

Proper navigation is important for any individual with vi-
sion concerns for detecting and avoiding potential obstacles.
With advancements in technology, hybrid models can be
designed to serve the purpose. In this work, Vision Navi-
gator, a smart framework with intelligence capability using
obstacle detection, classification, and notification to the user
in real time has been presented to assist the visually impaired
community. Smart-fold Cane and Smart-alert Walker are
the sub-constituents of the model. Smart-fold Cane is a
lightweight stick that has in-built sensors and cameras that
are responsible for obstacle image capture and detection.%e
SSD algorithm is used for obstacle recognition, while the
RNN model maps the detected obstacle into the text form.
Water pits are also detected through water sensors em-
bedded into the stick. An alert notification is sent to the user
through the audio module. %e Smart-alert Walker, which is
a pair of sneakers, is equipped with ultrasonic sensors that
act as an emergency unit and alert the user if any obstacle is
present at a close distance from the user. %e SSD-RNN
obstacle recognition hybrid framework was evaluated in-
doors and outdoors with other relevant models, namely,
Retina Net, Yolo Tiny, and R-CNN. %e SSD-RNN model
gave an optimum performance, generating an accuracy of
95.06% and 87.68% indoors and outdoors, respectively. It
also recorded an accuracy of 96.4% and 86.8% when used for
close and distant obstacle detection, respectively. A mini-
mum latency delay of 4.82 s was computed using the SSD-
RNN model. An overall 95.54% accuracy with the model for
common obstacles was noted. %us, the designed model is
fairly easy to deploy and use, making it a more generic
framework compared with other models and well-equipped

with all vital features. %e proposed system can construc-
tively serve visually affected users for proper navigation.
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