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Vision Only Localization
Henning Lategahn and Christoph Stiller, Senior Member, IEEE

Abstract—Autonomous and intelligent vehicles will undoubt-
edly depend on an accurate ego localization solution. Global
navigation satellite systems (GNSS) suffer from multipath prop-
agation rendering this solution insufficient.
Herein we present a real time system for six degrees of free-
dom (DOF) ego localization that uses only a single monocular
camera. The camera image is harnessed to yield an ego pose
relative to a previously computed visual map. We describe a
process to automatically extract the ingredients of this map from
stereoscopic image sequences. These include a mapping trajectory
relative to the first pose, global scene signatures and local
landmark descriptors. The localization algorithm then consists of
a topological localization step that completely obviates the need
for any global positioning sensors like GNSS. A metric refinement
step that recovers an accurate metric pose is subsequently
applied. Metric localization recovers the ego pose in a factor
graph optimization process based on local landmarks.
We demonstrate a centimeter level accuracy by a set of exper-
iments in an urban environment. To this end, two localization
estimates are computed for two independent cameras mounted on
the same vehicle. These two independent trajectories are there-
after compared for consistency. Finally, we present qualitative
experiments of an augmented reality (AR) system that depends
on the aforementioned localization solution. Several screen shots
of the AR system are shown confirming centimeter level accuracy
and sub degree angular precision.

Index Terms—camera, localization, GPS, landmark, bundle
adjustment, nonlinear least squares, SLAM

I. INTRODUCTION

THE next generation of intelligent transportation systems

will heavily depend on an accurate self localization in

a multitude of situations. Future navigation systems may

show infrastructural information by an augmented reality (AR)

system. Furthermore, it is largely agreed that a high precision

self positioning system is a crucial prerequisite for fully and

semi-automatic driving. Finally, a plethora of comfort and

safety functions can be imagined once ego localization is

coupled with maps.

It has been shown that automated driving can be simplified

severely with static maps [17]. Their information may include

centerlines of each lane, admissible maneuvers at intersections

for each lane, position and validity of traffic lights, precedence

and traffic rules. Hence, rule-compliant behavior generation

may vastly be encoded in the map rather than inferred trough

complex scene understanding [2] or artificial intelligence

methods. The vehicle relative position of static obstacles

can be retrieved easily from the ego position at any time.

Thereby the on board environment perception can be moved

to an offline computation hence exonerating electronic control

units from computationally demanding tasks. Furthermore, the
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Fig. 1. The localization method allows to overlay infrastructural information
of the map onto the current camera image after localizing the camera. The
resulting augmented reality system demonstrates centimeter level accuracy of
the proposed vision only localization method. A pedestrian crossing is reliably
shown even when occluded by the truck. The “sensing distance” is unbound
and does not increase computational load.

“sensing range” of such static map objects is literally unbound.

All of the aforementioned methods share a common de-

pendency on a centimeter level accurate self localization.

Common approaches of applying global navigation satellite

systems (GNSS) [37] to this problem are infeasible. Integrated

navigation systems (INS) consisting of state of the art dual

frequency GPS receivers often coupled with high precision

inertial measurement units (IMUs) are prohibitively expensive.

Moreover, these INS reach the sought precision unreliably

and only under good geometric constellations in open-sky

environments. Multipath propagation and shadowing effects

common in inner city and street canyon like scenarios often

render this approach impossible. Low-cost single frequency

receivers found in mass production vehicles suffer from these

problems even more. Their accuracy is at least one order of

magnitude worse than those of INS [29]. Recent advances in

localization by spinning laser scanners seem algorithmically
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appealing [24], [28]. However, these scanners are expensive

and bulky hence hampering their wide spread use in series

transportation systems.

Herein we present a system for high precision ego localization

using only a single camera. The system does not depend on

any external hardware like GPS receivers, IMUs, odometers

or the like. The vehicle is localized relative to a previously

computed visual map. The map is computed fully automat-

ically from a mapping trajectory with recorded stereo. The

mapping process does not depend on external hardware and

is computed from stereopsis alone. This map can be manually

enhanced by additional infrastructural objects relevant to the

vehicle. Pedestrian crossings, lane markings, traffic lights and

signs are a few non exhaustive examples. At each time step

these additional objects in the immediate vicinity of the car

are made available to the driver or vehicle internal systems.

Examples of AR enhanced camera images are shown in the

experiments Section VI and in Figure 1.

The localization system operates in two stages. First the

vehicle is localized topologically in the graph of map poses

for initialization purposes. Thereafter a metric localization

is computed. The metric ego pose estimate has six degrees

of freedom (DOF) and reaches a linear accuracy of a few

centimeters and sub degree angular precision. This accuracy

is sufficient for the above mentioned functions and systems.

We present extensive experiments evaluations to asses the

presented method. The full system runs in real time (10Hz)

on a modest laptop computer.

Section II reviews related work. Thereafter the mapping

process is highlighted in Section IV before introducing the

mathematical notations in Section III. The localization is

elucidated in Section V. Experiments are presented in Section

VI and conclusions are drawn in Section VII.

II. RELATED WORK

The work we present herein is strongly related to si-

multaneous localization and mapping (SLAM) [5], [6], [9],

[10], [14], [19], [21], [26], [30], [35] from which we draw

many inspirations, localization in general and map relative

localization [7], [11], [22]–[25], [28], [31], [33] in particular.

Beyond that, it is related to place recognition [3], [4], [8], [20],

[27], [38] sometimes referred to as loop closure detection in

the SLAM literature.

SLAM is the long known problem of localizing a robot within

a map while computing that map at the same time. Localizing

is enabled by known maps while map generation depends on

a localization solution. Most often maps are represented by

a collection of landmarks which are sensed by some sensor.

Bayesian filters like extended Kalman filters (EKFs) aim at

estimating a state comprised of all landmarks and the current

ego position [5], [10]. Sensor readings can be fully predicted

from one such state vector and compared to the actual sensor

output to yield the filter innovation.

Despite its theoretical soundness the filter approaches as stated

above suffer from well known Draconian limitations in scala-

bility preventing large scale real time systems. Discovering a

special structure of the state covariance matrix which exhibits

strong correlations only between landmarks that have been

sensed jointly eventually led to submapping approaches. Only

a small fraction of the state vector and covariance is updated

at each time step and a global update is postponed as long as

possible (e.g. until a loop closure occurs). These methods have

constant complexity most of the time. We exemplary mention

the work of Pinies and co-workers [30]. Their solution is nu-

merically equivalent to the regular EKF formulation after every

global update and does not necessitate any approximations.

A long known solution from photogrammetry experienced a

resurgence of interest once computing power had increased:

bundle adjustment. All robot poses and all landmark positions

are stacked into one joint state vector which is estimated by

nonlinear least squares estimation. Levenberg-Marquardt and

Gauss-Newton methods are popular choices of solvers. The

measurement matrix of the linearized system of equations

which is iteratively solved exhibits an extremely sparse struc-

ture. The emergence of sparse matrix solvers using variable

reordering [1] finally led to the breakthrough. A relative rep-

resentation of the problem dubbed relative SLAM is presented

in [35].

Nowadays the landmark/pose notion of SLAM is replaced by

a simple pose-only surrogate. The state of the map consists

of all poses of the robot trajectory and the motion induced

pose graph is estimated. Once loop closures are introduced, the

system of pose to pose constraints becomes overdetermined. It

is finally solved by standard nonlinear least squares machinery.

The removal of landmark positions from the problem allows

to estimate very large trajectories (e.g. [9]). Another powerful

system is presented by Bosse et al. in [6] which applies

the Atlas framework to create large cyclic maps from laser

range finders. A fine introduction into the subject of pose

graph optimization is presented in [14]. A flexible open source

software library is presented in [19]. Most approaches of

solving pose graphs can be traced back to the influential work

of Lu and Milios [26].

The method we present herein also solves for landmarks and

ego poses from measurements. However, our map is kept fixed

after its creation. Thereby, we achieve massive computational

savings. Nevertheless, our approach shows some resemblance

to the aforementioned branch of algorithms.

Following a similar argumentation a 3D point cloud map

with localization capabilities has been computed in [28].

Scans of a spinning laser are registered by a iterative closest

points method with high accuracy. This point cloud map can

thereafter be used for localization purposes by using the same

laser again.

Clutter, moving objects and noise may cause some difficulties

for laser scanners of this type. Levinson and collaborators have

therefore proposed to use infrared remittance values of laser

beams of the road surface only [24], [25]. The road surface

can be found rather accurately in laser point clouds and are

likely to be persistent over time. SLAM approaches are used

to smooth the map and enforce consistency in areas of self-

overlap whereas particle filters are their choice of localization

estimator.

Laser scanners of the type used in both [28] and [24] are

prohibitively expensive on the one hand and cause severe
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packaging problems on the other. Hence, their use in series

production vehicles is inadmissible. The recent explosive

growth of imaging technologies offers a solution and cameras

are used by Pink in [31]. An aerial image of the area of

interest is preprocessed and searched for lane markings and

salient road surface features. Thereafter online camera images

are matched to this kind of feature map by point registration

algorithms. Finally, ego pose estimates are coupled with a

motion model for a refined ego pose estimate. Schreiber et

al. [33] exploit lane markings and cameras for map relative

localization. Fang and colleagues propose a pure vision based

localization for a slow moving passenger vehicle in [11]. A

mono camera is attached underneath the vehicle and supported

by additional illumination. Key points of the ground texture

are used in a mapping process. A large optimization yields the

spatial position of these points. During re-localization these

points are matched and the resulting estimated is fused in an

Unscented Kalman Filter (UKF). Their approach differs from

ours as they use controlled lighting conditions and a very slow

motion. The proposed sensor setup might be inappropriate

for regular urban driving speed (motion blur). Yet another

interesting approach is proposed by Courbon and collaborators

in [7]. A map dubbed visual memory is computed from an

initial survey trajectory using a fish eye camera. Subsequent

traversals can be performed autonomously by following the

initial path. The camera image is matched to the map hier-

archically. First a global search is performed and thereafter

refined locally using landmarks. Their hierarchical approach

shows some resemblance to ours despite some pronounced

differences. Our approach allows to estimate the 3D positions

of the landmarks with presumably higher accuracy due to the

use of stereo vision during mapping. Their method is evaluated

at low speeds over a track of 750 meters whereas we perform

experiments over much larger distances with regular driving

speeds.

Despite the appealing properties of this research direction the

required accuracy and availability of such aerial images is not

always guaranteed. An alternative is introduced in our earlier

works [22], [23]. The area to be mapped is traversed with

high precision GPS and stereo cameras and landmark maps

are computed. During online operation the map is queried and

landmarks are associated with salient points of the current

camera image. These landmark associations are used in the fi-

nal ego pose estimators. However, these two methods strongly

depend on both GPS and IMU for mapping or localization. The

approach presented in this article liberates the estimator from

this restrictive requirement and all dependencies on external

hardware are dropped completely yielding a truly vision only

system.

One issue needed to be resolved is place recognition to ini-

tialize the localizer. Place recognition is frequently addressed

when detection of loop closures is important. The work horse

of loop closure detection is the method of Cummins et al. [8]

dubbed FAB-MAP which applies an appearance only based

approach. A probabilistic model of places is learned from

salient image features. Large feature vocabularies need to be

trained beforehand. Their work is robust to perceptual aliasing

albeit being computationally rather expensive due to its feature

extraction process.

To mitigate the effects of visually describing a multitude of

image features in every image Sünderhauf and co-workers

[38] have resorted to a simplistic approach. The image is

down sampled and partitioned into small equally sized image

tiles each of which is holistically described by only one

single image descriptor. Concatenating single tile features

into one yields the descriptor representing the appearance

of the entire image. Place recognition is thereafter straight

forwardly achieved by nearest neighbor search in the space of

appearances.

Badino et al. [3], [4] have followed a similar idea of describing

the entire image by whole image SURF features. Their place

recognizer was designed with topological localization in mind.

Odometers, image and laser range finder features are fused in

a histogram filter to yield the nearest pose of a previously

recorded mapping trajectory during online operation. A good

robustness was shown even across seasonal changes.

The aforementioned methods only seem to be the tip of the

iceberg in the realm of holistically describing images for

place recognition. Milford [27] has pushed the idea further by

describing panorama images by only a few bits. Place matches

are computed for double round trip trajectories of lengths up

to 70km. The dynamic time warping of the pairwise image

difference matrix appears to be a crucial ingredient. In fact,

our method shows some resemblance to it.

A preliminary sketch of the dynamic programming procedure

of Section V-A is briefly introduced in the appendix of our

earlier work [20]. Herein, we borrow some ideas from it and

extend it to an online light weight topological localization

method which is used during initialization.

III. NOTATIONS AND SYMBOLS

Before delving into the details of the mapping tool chain

and localization algorithm we need to slide in a short section

on notations. Throughout the rest of the article we assume

poses to be parameterized by 4× 4 homogeneous matrices

p =

�

R t

01×3 1

�

∈ SE(3) (1)

with 3 × 3 rotation matrix R and 3 × 1 translation vector t.

Moreover, the chart φ(·) maps from this over parameterized

manifold SE(3) into R
6 the minimal parameterization of 3D

angle and 3D translation vector [16]. The motion operator ⊕

which applies a motion δ ∈ R
6 to pose p ∈ SE(3) is then

defined by

p2 = p1 ⊕ δ (2)

= p1 · φ
−1(δ) ∈ SE(3). (3)

Conversely, the subtraction of two poses yields a change by

δ = p2 � p1 (4)

= φ(p−1
1 · p2) ∈ R

6. (5)

A good introduction into this subject can be found in [16] and

[36].

Furthermore, both the mapping and localization algorithm uses

the notion of landmarks which are natural 3D points which
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Fig. 2. A simplified summary of the mapping process is shown. First the
poses p1, . . . , pN of the map are estimated using visual odometry estimates
δi. Thereafter the landmark positions lj are computed in map coordinates
denoted by stars. A holistic feature describing each pose is computed. These
features are denoted by brackets with dots in green. Finally, one map file is
created for every pose. It contains the pose, all landmarks visible from that
pose and the holistic vector. The solid star exemplary illustrates that it is
stored redundantly in two files. The landmark feature vector (blue brackets
with dots) for that landmark depends on the pose it is observed from.

are detected by the vision system. Landmarks are denoted by

lj ∈ R
3 and are always three dimensional.

Once a landmark is observed from any pose it induces a

measurement which we summarize in the variable z. It consists

of pixel positions of the observing camera. The function that

maps a (known) landmark l into the image plane of a (known)

pose p is denoted by π(l, p) and depends on camera parameters

such as focal length, principal point and the like. We assume a

pine hole camera model [15]. It follows that in the ideal case

(without any noise) z = π(l, p) would hold.

IV. MAPPING

Next we present the mapping pipeline required to compute

the visual map. We record stereo data for the area we wish

to map. In the sequel we will refer to this traversal as the

mapping trajectory.

We postpone all localization details until Section V despite

shortly sketching the requirements on the visual map from

the localization perspective first. During online localization

3D landmarks of the immediate vicinity of the ego vehicle are

retrieved from the map and associated with the current camera

image. These landmarks associations are harnessed to yield an

ego pose estimate. Hence the visual map needs to contain a

set of landmarks with associated visual descriptors for robust

association.

The nearest pose of the mapping trajectory needs to be found

during an initialization phase of the localization algorithm.

To this end, we compute a single holistic feature vector for

each image of the mapping trajectory. Throughout the rest we

will refer to these features as holistic features (as apposed to

landmark features). During localization the (spatially) nearest

pose can be found by computing the nearest pose in the space

of holistic feature vectors.

Furthermore, the map needs to store its data efficiently

since its amount easily eclipses available primary memory

capacities.

From the aforementioned preamble we derive the requirements

on the map which also serves as a road map for the next

paragraphs: the map needs to contain 3D landmarks with

associated landmark features, each pose of the mapping trajec-

tory needs to be augmented by one holistic feature vector for

initialization purposes and finally the data structure of the map

needs to be stored efficiently on secondary memory. Figure 2

shows an overview.

A pose of the map is now denoted by pi ∈ SE(3) with

i ∈ {1, . . . , N} and N being the number of poses/images

of the mapping trajectory. We spatially discretize poses to

be no closer to each other than 50 centimeters. Due to the

lack of any global positioning system we fix the first pose p1
to the origin and successively estimate the pose pi+1 from

pi by setting pi+1 = pi ⊕ δi where δi ∈ R
6 is a visual

odometry estimate [13]. All such estimated poses of the map

are kept fixed thereafter. Note, that the inevitable drift by

accumulating motion is irrelevant in our case since motion is

very accurate locally and the entire map requires no global

reference. For the sake of simplicity we assume loop free

trajectories. Loopy trajectories, however, could be handled

after loop closure detection [20] and pose graph optimization

[19] which is beyond the scope of this article.

Next, we associate salient image points across all images of

the mapping sequence. We refer to a set of pixel positions

belonging to a single point in 3D as a tracklet. Every landmark

that is finally stored in the map is computed from exactly

one tracklet. It remains to show how to compute the 3D

position of one landmark lj from its tracklet. Recall that for

mapping a stereo setup is used. Thus, the pixel position and

disparity of lj is available when observed from a set of poses

pk, . . . , pk+K . We summarize pixel positions and disparities

in the measurement vectors zk = (uk, vk, dk)
T , . . . , zk+K =

(uk+K , vk+K , dk+K)T for the landmark of interest. Finally,

the error function

Elm(lj) =

k+K
�

κ=k

||π(lj , pκ)− zκ||
2 (6)

provides a goodness of fit of lj with respect to the measured

pixel positions and the poses pk, . . . , pk+K that are fixed.

The function π(l, p) computes pixel position and disparity

for a landmark l observed from pose p [15]. Hence, the

deviation of the expected pixel position from the measured

pixel position is penalized. A good fit of the landmark lj
results in a low squared back projection error (6). In fact, we

seek the landmark position l̂j that yields the lowest possible

error given the poses and the pixel observations. The 3D

landmark position can be estimated by

l̂j = argmin
lj

{Elm(lj)} (7)

and is found by nonlinear least squares (NLS) estimate using

the Gauss-Newton method [32]. To this end, (6) is linearized

around an initial guess of lj and its derivative is equated with

zero and finally solved for lj . The process of re-linearization

and solving the resulting linear system is repeated until

convergence as there exist no closed form analytical solution
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Fig. 3. The factor graph of the NLS problem (6) is shown. Landmark lj is
is observed from the depicted poses. For each pose there exists one pixel and
disparity for that landmark. The NLS solver estimates the landmark position
to minimize the squared back projection error. Computing an error term
π(lj , pκ) − zκ for each edge and summing its squared norm corresponds
exactly to (6). Hence, the shown factor graph serves as an alternative (but
equivalent) representation of (6) and shall ease the understanding of the
involved NLS problem.

of (7). This estimation is repeated for every tracklet.

NLS estimation is used extensively during localization

and will play an important role in Section V. To ease the

understanding of the functions whose minimizing argument

is sought we represent NLS problems by factor graphs

[18]. Figure 3 shows a graph consisting of nodes and edges

connecting pairs of nodes. Every node of a factor graph

corresponds to one variable of the NLS problem (e.g. poses,

landmarks etc.). Edges connecting nodes correspond to

constraints between the connecting variables and oftentimes

coincide with measurements.

Figure 3 shows the poses pk, . . . , pk+K and the landmark lj .

Poses are solid which denote a fixed variables (ones that are

not optimized). The landmark is shown by a hollow symbol

indicating a variable which is optimized and is exactly the

argument of (6). The summation of (6) extends over all edges

of the graph each of which corresponds to a pixel position

and disparity. In this particular case a single edge of the graph

corresponds to one constrain π(lj , pκ)− zκ with zκ being the

respective pixel position and disparity. The connecting nodes

of an edge are the only variables of this term.

At this point we cannot resist mentioning the general

graph optimization software library g2o [19] which we use

extensively for solving equations like (6). Using (7) for every

tracklet/landmark yields the 3D position of every landmark.

Finally, we prune some landmarks from the map that seem

inappropriate for localization. Back projection errors and

lengths of the tracklets are heuristically thresholded for this

purpose. For robust and reliable landmark association during

online localization landmark feature vectors are computed. In

our case we use our illumination robust yet efficient novel

DIRD [20] descriptor. The DIRD descriptor computes Haar

features for four different scales for every pixel position of the

image. Each Haar vector of every pixel position is thereafter

normalized to unit L2 length. We have experimentally found

that this intermediate normalization step largely contributes

to the illumination robustness. Normalized Haar features are

thereafter pooled over a predefined sparse set of neighborhood

pixel positions by summation. Then, nine such pooled vectors

are concatenated and finally each vector element is quantized

to a byte value. Details can be found in [20]. For the example

landmark lj (see Figure 3) one descriptor is computed for

every pose pk, . . . , pk+K it is observed from.

Next, we address the open issue of computing holistic feature

vectors for every pose of the map. We largely follow our

previous work on loop closure detection [20]. The input

image is down sampled and partitioned into 4 × 4 equally

sized tiles each of which is 48× 48 pixels in size. Then, one

DIRD descriptor is computed for the center part of each tile.

All sixteen DIRD features of one image are concatenated to

form the holistic feature vector. The final holistic vectors are

of dimension 3456 where each element of the vector is single

byte (8 bits).

For quick online retrieval we store all landmarks visible

from a given pose pi and their feature vectors extracted from

that particular image i together in one file. Hence, every

landmark is represented by a multitude of landmark feature

vectors; one for each image the landmark was observed from.

This wastefully appearing over parameterization, however,

contributes much to a reliable association during online

operation. It frees us from any struggle related to scale and/or

rotation invariance. We simply match landmark features

of the nearest pose. Moreover, the search for potentially

matchable landmarks is easy. Only landmarks that are stored

for the currently nearest mapping pose are used. The map

data structure is depicted in Figure 2.

V. LOCALIZATION

Next we present the localization algorithm. A single

monocular camera is used and we show how to localize that

camera relative to the visual map as described in Section IV.

Firstly a rough overview is presented. At that point we spare

the details before elaborating the technicalities in Sections

V-A and V-B respectively. Figure 4 shows an overview of the

algorithm.

Our localization algorithm follows a two step approach. At

first the method identifies the pose of the map that is closest

to the current ego position. We use a visual description of

the image and query this “visual signature” against the map

database. The result is the nearest pose of the map. We refer

to this step as topological localization as it performs a search

in the graph of map poses. Details of how to achieve great

robustness in situations of visual ambiguity are elucidated

detailedly in Section V-A.

Knowledge about the nearest pose allows to subsequently

load 3D landmarks of the vicinity of the area the vehicle is

currently in. These 3D landmarks are associated with pixel

positions of the current camera image. Landmark to pixel

associations are finally harnessed to derive a high precision

metric ego pose estimate with six degrees of freedom. Details

of this step are presented out in Section V-B. An overview

sketch of the approach is illustrated in Figure 4.

A. Topological Localization

The goal of topological localization is to find the pose of

the map that is nearest to the current ego position. Thereto
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Fig. 4. An overview of the localization algorithm is shown. The map consists
of poses (orange circle), associated holistic features (green brackets with dots)
and landmarks (blue stars). The current camera image is depicted on the
bottom. A holistic feature is extracted from it and the most similar vector of the
map is found (arrow). All landmarks of the vicinity are then associated with
salient points of the image. The three solid landmarks (stars) are associated
successfully in the example and shown in the camera image. The landmark
associations are translated into a high precision metric ego pose estimate.

a holistic feature vector is extracted from the current camera

image akin to the approach presented in Section IV. We again

tile the image and describe each tile by one DIRD [20] feature.

Concatenating single tile features into one yields the holistic

vector. Let this feature vector be denoted by fi with i being the

current time index. Furthermore, let g1, . . . , gN be all holistic

features of the map. A column vector Di of L1 distances is

then computed by

Di = (||g1 − fi||1, . . . , ||gN − fi||1)
T
. (8)

Note that this operation can be performed quite efficiently on

modern CPUs using SIMD instructions since DIRD features

are byte vectors.

Simply taking the minimizing argument of (8) as the result

of the nearest neighbor search is error prone and susceptible

to visual aliasing and ambiguities. Hence we introduce a post

processing step next to refine the search. The idea is to expect

that some recently preceding holistic feature fi� matches gk�

if the current fi matches gk and mapping pose pk� is in close

proximity to pose pk. Therefore, we match subsequences of

Fig. 5. A similarity matrix S is shown on the left. For each entry j, i it shows
the similarity between pose j of the map and the current camera image at
time i. One can observe a pronounced streak which strongly hints at a well
matched subsequence of past poses. This is exploited and a noise removal
procedure yields the matrix T depicted on the right. See text for details.

features.

We formalize this requirement by first defining the similarity

vector

Si = (logit(||g1 − fi||1), . . . , logit(||gN − fi||1))
T

(9)

with logit(·) being a logistic function which translates all

distances of (8) into a similarity scores in the range (0, 1).
Next the similarity matrix

S = (S1, . . . , Si) (10)

with column vectors of (9) is defined. Thus, Sj,i ∈ S denotes

great similarity of the current image at time i to the map pose

j if its value approaches one. A such defined similarity matrix

is best shown visually and an example is depicted in Figure

5 (left). An off-diagonal streak of high similarities can clearly

be seen. We aim at finding such streaks which hint at well

matched subsequences.

For any pose j of the map that we consider as nearest pose

candidate we search for a streak as in Figure 5 that ends at

row j in column i which is the current camera index. Formally

let

Tj,i = max
j0,...,jL s.t.

(jk−1−jk)∈{0,1,2,3}
and jL=j

L
�

k=0

Sjk,i−k (11)

be the maximum sum of one such streak of length L + 1.

The matrix T with elements Tj,i can be computed efficiently

from S by dynamic programming and one example is shown

in Figure 5. Obviously, only the most current column Ti of T

needs to be computed at each time step. Moreover, we compute

Tj,i only for those j, i which seem promising. We choose the

M best scores of Si to compute Tj,i. The streak length in

our experiments is L = 30 and we choose the M = 10 best

candidates at each time step. If the maximum value of the

matrix column Ti exceeds a threshold τ we output its index

as the nearest pose of the map. In our experiments we set

τ = 0.3L. Updating the initial similarity matrix S takes time

linear in the number of mapping poses whereas the refinement

of computing T is constant for any map size.

Note that computing visual similarity for topological localiza-

tion as presented above is concise and globally optimal. We see
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Fig. 6. The factor graph of the NLS problem of (12) is shown. The current
pose (orange circle) is optimized for fixed landmark positions (solid blue stars)
such that it matches the measured pixel positions zm best.

some advantages over filter based alternatives like particle or

histogram filters. Unsolved problems like the correct number

of particles or issues related to particle depletion do not arise.

Moreover, the dynamic programming is very efficient and

takes only a few milliseconds on a single core for moderate

map size (a few ten thousand features).

B. Metric Localization

Our metric localization method follows a two step ap-

proach. First an initial (metric) estimate of the camera pose

is computed from landmark associations. Henceforth, we will

refer to this as a one shot estimate. Since these one shot

estimates can have varying accuracy and may even fail in some

very unfavorable situations a windowed history of one shot

estimates is stored. During the second step, these past one

shot estimates are re-optimized jointly and we refer to this

step as pose adjustment. To this end we fit a motion model to

the sliding window of past one shot estimates. Both steps are

elaborated in greater depth next.

During metric localization it is assumed that the pose of the

map that is closest to the current camera position is already

known. Either it is easily inferred from the immediately

preceding time step or the topological localization provides

a hint. This knowledge allows to load the associated map

pose file which contains all nearby landmark positions and

their visual descriptors from disk (see also Figure 2). Next,

these landmarks are associated with pixel positions of the

current camera image. Salient points are extracted, described

by DIRD and matched with those of the map. The search

space within the image plane can be restricted quite heavily

since a good ego pose estimate is known from the previous

time step already. Let the set of landmarks successfully

matched be l1, . . . , lM and their associated pixel positions be

z1 = (u1, v1)
T , . . . , zM = (uM , vM )T . The current ego pose

is denoted by qi ∈ SE(3).
The 3D landmark positions are kept fixed and a one shot

estimate q̄i is found by seeking the minimizing argument of

Eone(qi) =

M
�

m=1

||π(lm, qi)− zm||2 (12)

Fig. 7. The prediction of a pose from a previous velocity augmented pose is
shown. The pose contains a velocity vector v = (vx, vy , vz)T which can be
used to extrapolate with the known time lage ∆t.

where π(l, q) computes the pixel position of the 3D point l

projected into the camera at pose q [15]. This one shot estimate

is found by NLS estimates and denoted by

q̄i = argmin
qi

{Eone(qi)} . (13)

The factor graph associated with the NLS problem (12) is

visualized in Figure 6. Landmarks are denoted by stars and

since they are kept fixed (are not optimized for) are depicted

with solid colors. The pose qi is denoted by a hollow circle and

is the argument of (12). The summation of (12) extends over

the edges of the graph which are labeled with the measured

pixel positions zm.

Since (12) is a quadratic error function it is naturally very

susceptible to any outliers. Outliers can arise from miss-

associations which cannot be fully avoided in practice despite

a carefully designed feature matcher. Moreover, any incor-

rectly estimated landmark can cause such outliers as well.

Undetected outliers can cause catastrophic divergences of the

pose estimator. Therefore, we wrap the estimate of (13) in a

random sampling consensus [12] (RANSAC) algorithm. We

randomly draw minimum sets of three landmarks, estimate

q̄i and evaluate all landmark pixel positions for support of

the current hypothesis. After one hundred such iterations the

largest inlier set is optimized jointly in a NLS sense to yield

the final one shot estimate q̄i.

Measurement covariance matrices have been neglected so far

in favor of better readability. The norm of (12) is in fact

a squared Mahalanobis norm which considers measurement

uncertainty. Next, we introduce the pose adjustment step of the

localization algorithm which jointly re-optimizes a set of past

one shot estimates. This step, however, requires a certainty

measure of the estimate q̄i and we denote its covariance

matrix by Σi. We find a judicious choice of Σi by checking

the number of inlier landmark associations (according to

RANSAC). Uncertainty is increased for fewer inlier landmark

matches and vice versa.

A windowed history of past one shot estimates q̄i−K , . . . , q̄i
are now to be re-optimized jointly to yield the final ego

pose estimate. Due to the absence of any additional external

hardware like odometers or the like we resort to forcing the

motion induced by these past one shot estimates to follow

certain dynamics. At this point we exploit the knowledge that

the camera is mounted inside a vehicle which naturally follows

non-holonomic motion models.

Thus, we augment each pose of the window by velocities

in each dimension and set ri = (qi, vi) with velocity vector
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Fig. 8. The factor graph associated with (16) is shown. The one shot estimates
q̄i serve as a prior during pose adjustment. The priors are balanced with their
predictions from the velocity augmented poses.

vi = (vxi , v
y
i , v

z
i )

T . We refer to ri as velocity augmented pose.

Moreover, the time lag ∆ti between any two poses qi−1 and

qi is known. This allows to compute a prediction r̄i of the

velocity augmented pose ri by applying a small perturbation

∆ti ·vi−1 to pose qi−1. A prediction of the velocity augmented

pose ri is thereby obtained from the prediction function

r̄i = f(ri−1,∆ti)

=

�

qi−i ⊕

�

∆ti

�

vi−1

03×1

��

, vi−1

�

(14)

assuming constant velocity. The prediction function is shown

in Figure 7.

The pose adjustment then tries to balance the prediction

f(ri−1,∆ti) with its one shot estimate q̄i (which serves as

a prior) while penalizing velocity changes. To this end we

define the subtraction of the velocity augmented poses

r� � r = (q�, v�)� (q, v)

=
�

(q� � q)
T
, (v� − v)

T
�T

∈ R
9 (15)

and derive the error function

Eadj(ri−K , . . . , ri) =

K
�

k=0

||qi−k � q̄i−k||
2
Σi−k

+ (16)

K−1
�

k=0

||f(ri−k−1,∆ti−k)� ri−k||
2
Γ

with the weight matrix Γ that balances angel, position and

velocity differences accordingly. The minimizing argument of

(16)

r̂i−K , . . . , r̂i = argmin
ri−K ,...,ri

{Eadj(ri−K , . . . , ri)} (17)

is taken as the final metric pose estimate.

The factor graph of (16) is depicted in Figure 8. The velocity

augmented poses ri−K , . . . , ri which are subject to optimiza-

tion are shown. These are the arguments of the error function

(16). These are inter connected and each edge corresponds to

one constraint. Edges connecting consecutive poses are con-

straints stemming from the motion model (prediction function

(14)), are labeled with the time lag ∆t and correspond exactly

to the second summation of (16). Edges that connect to a one

shot estimate q̄i penalize any deviation of ri to q̄i and these

edges represent the first summation of (16).

A joint re-optimization of a set of previous one shot es-

timates increases the accuracy of the estimate. Additional

constraints (motion model) provide additional cues which

can only be exploited in joint optimization. Furthermore, the

squared Mahalanobis norm of the residual ||q̂i � q̂i||Σi
=

(q̂i � q̄i)
T
Σ

−1
i (q̂i � q̄i) is interpreted to disclose any one shot

estimate q̄i that is an outlier in the pose adjustment sense.

If, for any reason one such one shot estimate has yielded an

unreasonable value it is found hereby, pruned from (16) and

the final estimate (17) is re-computed. This one shot outlier

detection further contributes to the overall robustness of the

method.

Finally, we justify our choice of the constant velocity model

to constrain the camera motion. Many more elaborate motion

models like the curve linear models of [34] or dynamic single

track models may appear deceptively tempting. However, these

models require the knowledge of the mounting position of

the camera relative to the vehicle center. The aforementioned

models require a notion of the heading of the vehicle; not

the heading of the camera which can be arbitrary in our

case. Our goal was to allow this localizer to work without

any troublesome camera to vehicle calibration. Nothing keeps

one from using this approach with a sidewards facing camera

even though we admit to have tested it only with forward and

backward facing configurations.

Figure 9 shows a flow chart of the metric localization and com-

pares it to the traditional satellite based navigation approach.

The GNSS solution derives the ego position by reasoning

about pseudo range measurements and finally smoothing the

result by integrating IMU readings in a filter framework

whereas our method minimizes landmark observation errors

in a NLS framework and finally reoptimizes these one shot

estimates jointly to integrate a motion model.

VI. EXPERIMENTS

Next we present experiments on real world data to assess

and evaluate our method. First we describe the results of

our mapping tool chain. Thereafter, localization experiments

are shown. Finally, we present results of our AR system

where manually labeled objects of the mapping trajectory are

projected into the camera image during online localization.

We have equipped a standard station wagon with two stereo

camera setups. One stereo rig is facing forward whereas the

other is facing backwards. Imagery is recorded and analyzed

thereafter. Note that forward and backward facing cameras

are never used jointly but are always evaluated independently.

Hence we obtain one set of recordings for each stereo setup.

Stereoscopy is required and used only for the creation of

the map. A mere single monocular camera is used in all

localization experiments. No additional sensors like GPS are

used anywhere in the experiments. We note that the forward

facing camera setup has a slightly narrower field of view which

seems to impact some of the experiments (see Section VI-B).

We have picked a 7km route through mostly urban and

partially rural areas as representative testing ground. We have

traveled this route on three different days each two weeks

apart. The first traversal was used to create the visual map

and we will refer to this test set as MAP. The two remaining
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Fig. 9. A flow chart comparing the a loosely coupled GPS/IMU solution (left
side, (a)) to the proposed metric localization (right side, (b)). Both follow a
two step approach. The satellite approach fuses pseudo range measurements in
a Kalman filter framework and thereafter fuses IMU readings in another filter.
Our approach relies on NLS and computes a one shot estimate from landmark
observations. One shot estimates are finally reoptimized jointly integrating a
motion model.

recordings are used for the localization experiments we refer

to them as LOC1 and LOC2 respectively.

A. Mapping Experiments

A visual map was created for both backward and forward

facing cases of the mapping test set MAP. Map computation

is not time critical for real time operation and takes roughly

three hours for each set. Almost twenty million landmark

candidates are created (for each case) of which approximately

30% are rejected and pruned from the map. The storage size

for these map sizes is roughly 5 gigabytes each in a compact

binary format. It includes all poses, landmarks and their visual

descriptors.

B. Localization Experiments

In the following we will present several localization ex-

periments which are performed on each of the test sets. In

particular we use the mapping trajectory for the localization

experiments as well. The localization experiment for the

mapping case obviously yields excellent results and shall serve

as an upper (or lower) bound which cannot be exceeded by any

other test set. Thus, we obtain six results for each test which

are MAP, LOC1 and LOC2 for the forward and backward

facing camera configuration each.

At first we determine the traveled distance before a topological

5

0
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40

80

0

[m
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Fig. 10. Two sided violin plots (vertical, smoothed histograms) for the
required traveling distance until a topological localization is possible are
shown for three test sets. The first plot shows results for the mapping sequence
(shown again with more appropriate scale) whereas the others show findings
for the two localization test sequences. The left halve of each plot shows
results for the backward facing configuration. The right portion represents the
forward facing camera setup. The median is shown for each plot.

localization is possible, hence until the nearest pose of the map

is found. We have replayed each test set from 500 equidistantly

placed starting positions and determined the distance until a

topological localization is achieved.

We present results as two sided violin plots in Figure 10.

One plot represents one test set each. The plots show vertical

and smoothed histograms of the distance until topological

localization is possible. The left halves (blue) of each plot

represents the results for the backward facing case whereas the

right portion (orange) shows findings for the forward facing

setup. The median is marked as well.

Since topological localization works perfectly for the mapping

trajectory its plot is re-sketched with a more appropriate scale

in Figure 10. We have removed the upper 5% quantile from

the plots for better visibility. The median for topological

localization is 3.1 meters for the mapping test set (both

forward and backward), 8.0 meters for LOC1/backward, 9.1

meters for LOC1/forward, 7.8 meters for LOC2/backward and

9.6 meters for LOC2/forward. However, we note that some

areas (especially rural ones) are unfavorable for topological

localization and may easily require one hundred meters and

more of traveling before topological localization is possible.

Furthermore, our experiments indicate a high sensitivity to

lane differences between mapping and localization. This can

be seen from the spiking tops of the plots in Figure 10. All

topological localizations that the localizer has output are cor-

rected and are verified by the subsequent metric localization.

We follow the same testing procedure as before to asses

the number of inlier landmark associations for each time step

during metric localization. To this end, each test set is used

for metric localization and the number of inlier landmark

associations (according to RANSAC) are tracked. Results are

again shown by two sided violin plots for the six cases in

Figure 11. Point matching works perfectly for the mapping

trajectory since matching images are identical. Hence, the left

plot of Figure 11 corresponds to the histogram of number

of visible landmarks during mapping (every single landmark

is associated correctly). Matching images from a different

day (LOC1 and LOC2) is more realistic. The number of
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Fig. 11. Violin plots for the number of successfully associated landmarks per
camera image during localization are shown for the three test sets. See also
Figure 10.
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Fig. 12. Violin plots for the mean back projection error of all inlier landmark
associations (in pixels) are shown for the three test sets. See also Figure 10.

correctly found landmarks ranges from zero (underexposed

camera in underbridge) to almost two thousand in some case.

A significantly higher number of landmarks are associated for

the forward facing case. We attribute this to the narrower field

of view which makes camera calibration and feature matching

easier.

Next, we illustrate the mean back projection error of the inlier

landmark matches during one shot estimation (cf. (12)) in

pixels in Figure 12. Significant differences can be observed

between forward and backward facing setups. We again at-

tribute this to the narrower field of view. The median back

projection error is between 0.5 and 1.0 pixels; a range we

would have expected for good localization. The one shot

estimator can be well initialized using a prediction from the

preceding pose adjustment step since velocities are known.

The good state initialization and the low state dimensionality

allows the estimator to converge within a few ten iterations

and we can therefore afford a tight termination threshold.

So far only the left camera image of the stereo recordings

has been used. Since we have recorded both left and right

images of the stereo setup in all cases we are now able to

estimate the trajectory for both the left and right camera.

We compute the one shot estimates for every left and right

image independently and compare them for consistency. Since

the base length of the stereo rig is known the right camera

estimate can be compensated for it and subtracted from the

left camera estimate. The norm of the difference between the

two estimates are depicted in Figure 13. The left and right

0.04

0.08

0.12

0.00

[m
e

te
rs

]

MAP LOC1 LOC2

Fig. 13. Violin plots of the difference of two independent localization
estimates of two independent cameras mounted on the same vehicle are shown.
They indicate the magnitude of the localization error relative to the visual map.
Findings for the one shot estimate are shown.
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Fig. 14. Violin plots of the difference of two independent localization
estimates of two independent cameras mounted on the same vehicle are shown.
They indicate the magnitude of the localization error relative to the visual map.
Findings for the finale ego pose estimate (pose adjustment) are shown.

one shot estimates clearly agree to within centimeter level

accuracy. The experiment is repeated for the final localization

after pose adjustment and the results are visualized in Figure

14. We believe that the consistency measure presented here

is of the same magnitude as the localization accuracy is. We

note that the wider field of view of the backward facing camera

overrules any effects of poorer point feature associations and

yields a better localization accuracy nevertheless.

C. Augmented Reality Experiments

Quantitative experimental findings were highlighted in the

previous sections. Next, we present results of some qualitative

tests. To this end, we have labeled static objects of interest like

pedestrian crossings, road signs etc. in images of the mapping

sequence. Since we have stereo data recorded for all frames of

the mapping survey we are able to reconstruct these objects in

3D using stereo vision. The 3D reconstructions are then stored

in the map data structure. In the sequel we will refer to these

objects as map objects.

Once the vehicle approaches one such map object during

online localization, the 3D positions of these objects are loaded

from disk. As the 3D position of the ego vehicle is precisely

known relative to the map from the presented localization

method, the ego position is also known relative to the map

objects with high accuracy. This in turn allows to overlay the
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Fig. 15. Infrastructural objects (pedestrian crossing) are overlaid onto the
camera image after localization yielding an AR system. The same crossing
of Figure 1 is shown for another trajectory.

map objects onto the camera image yielding an AR system.

Any imprecise ego localization results in an overlay of the

map object that does not align with its image content. One

example is shown in Figure 1 of the introduction. The same

area is shown for the other localization test set in Figure 15.

The examples show a good fit of the project objects with

the camera image. A false localization would be seen as a

significant deviation of the objects projection from the actual

image position.

Lastly we have tested the performance of DIRD for illumina-

tion robust point matching. We have picked two stereo images

which are captured on different times of the day with harsh

cast shadows coming from different direction. The images are

shown on the top of Figure 16. Then we detected salient points

and matched them using DIRD to find correspondences. We

display only the point correspondences which comply with

the robustly estimated motion between the two frames. The

result is shown in Figure 16 third from top with 1391 points

matched correctly. We repeated the same experiment using

the (extended) upright SURF as the descriptor. We have used

the exact same detector as before so that the result is solely

dependent on the descriptor choice. The result is depicted

on the bottom of Figure 16 showing only 550 correctly

matched points. DIRD more than doubles the point matching

performance of USURF.

VII. CONCLUSION

We have presented a system for six DOF real time ego

localization using only a single monocular camera. The camera

is localized relative to a previously computed visual map

which is created automatically from stereoscopy. During on-

line localization a holistic feature vector is extracted from the

current camera image and compared to a all vectors of the

map. A dynamic programming procedure ensures to find the

pose of the map that is closest to the current ego position with

great robustness. A map relative metric localization starts from

there by matching image points to landmarks and deriving

the ego pose estimate. Finally, a motion model constraint is

Fig. 16. Two images showing the same place but captured under severely
varying lighting conditions are shown on the top. Salient points are detected
and described by DIRD [20]. Finally point correspondences are found and
those that comply with the motion between the two frames are counted and
shown (third from top). The point matching experiment is repeated with
the exact same detector but points are described by USURF. The resulting
point correspondences are shown on the bottom. DIRD more than doubles
the performance of USURF.

applied to a windowed history of one shot ego pose estimates

to further stabilize the process. Jointly reestimating previous

one shot estimates allows to exploit the nonholonomic motion

inherent to car like vehicles.

In extensive experiments a centimeter level accuracy was

demonstrated. The achieved precision enables an AR system

which displays relevant infrastructural objects like pedestrian

crossings and the like. These infrastructural objects have been

manually labeled and stored in the map data structure.

Computing the aforementioned objects fully automatically

seems an exiting and obvious next step which we plan to

pursue. Computing such objects during mapping has three ad-

vantages over the alternative of computing them online. First,

the need for hard real time constraints on weak automotive

hardware is completely obviated. Second, a far sensing range

is irrelevant in this case. Such objects can be detected once

they are very close to the camera yielding a much greater ro-

bustness. Finally, the detection result can be manually verified

if necessary.

While the topological localization has proved robust for a fixed

camera mounting, future work will include an investigation

of bag of feature approaches to allow for variable camera

orientation. This is especially tempting, since point features

of the camera image need to be computed for metric local-

ization already and are hence obtained without any additional

computational expenses.
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[17] S. Kammel, J. Ziegler, B. Pitzer, M. Werling, T. Gindele, D. Jagzent,
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[19] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard.
g2o: A general framework for graph optimization. In IEEE International

Conference on Robotics and Automation (ICRA), pages 3607–3613,
2011.

[20] H. Lategahn, J. Beck, B. Kitt, and C. Stiller. How to learn an illumination
robust image feature for place recognition. In IEEE Intelligent Vehicles

Symposium (IV), Gold Coast, Australia, 2013.

[21] H. Lategahn, A. Geiger, and B. Kitt. Visual slam for autonomous ground
vehicles. In IEEE International Conference on Robotics and Automation

(ICRA), pages 1732–1737, 2011.

[22] H. Lategahn, H. Schreiber, J. Ziegler, and C. Stiller. Urban localization
with camera and inertial measurement unit. In IEEE Intelligent Vehicles

Symposium (IV), Gold Coast, Australia, 2013.

[23] H. Lategahn and C. Stiller. City gps using stereo vision. In IEEE

Conference on Vehicular Electronics and Safety, Turkey, July 2012.

[24] J. Levinson, M. Montemerlo, and S. Thrun. Map-based precision vehicle
localization in urban environments. In Robotics: Science and Systems

Conference (RSS), 2007.

[25] J. Levinson and S. Thrun. Robust vehicle localization in urban environ-
ments using probabilistic maps. In IEEE International Conference on

Robotics and Automation (ICRA), pages 4372–4378, 2010.

[26] F. Lu and E. Milios. Globally consistent range scan alignment for
environment mapping. Autonomous robots, 4(4):333–349, 1997.

[27] M. Milford. Visual route recognition with a handful of bits. In Robotics:

Science and Systems Conference (RSS), 2012.
[28] F. Moosmann and C. Stiller. Velodyne SLAM. In IEEE Intelligent

Vehicles Symposium (IV), pages 393–398, June 2011.
[29] M. Obst, C. Adam, G. Wanielik, and R. Schubert. Probabilistic multipath

mitigation for gnss-based vehicle localization in urban areas. In ION

GNSS Conference, 2012.
[30] P. Piniés and J.D. Tardós. Large-scale slam building conditionally inde-

pendent local maps: Application to monocular vision. IEEE Transactions

on Robotics, 24(5):1094–1106, 2008.
[31] O. Pink. Visual map matching and localization using a global feature

map. In Computer Vision and Pattern Recognition Workshops, IEEE

Conference on, 2008.
[32] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numer-

ical recipes 3rd edition: The art of scientific computing. 2007.
[33] M. Schreiber, C. Knoeppel, and U. Franke. Laneloc: Lane marking based

localization using highly accurate maps. In IEEE Intelligent Vehicles

Symposium (IV), Gold Coast, Australia, 2013.
[34] R. Schubert, E. Richter, and G. Wanielik. Comparison and evaluation

of advanced motion models for vehicle tracking. In IEEE International

Conference on Information Fusion, pages 1–6, 2008.
[35] G. Sibley, C. Mei, I. Reid, and P. Newman. Vast-scale Outdoor Navi-

gation Using Adaptive Relative Bundle Adjustment. The International

Journal of Robotics Research, 2010.
[36] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial

relationships in robotics. Autonomous robot vehicles, 1:167–193, 1990.
[37] N. Sunderhauf, M. Obst, G. Wanielik, and P. Protzel. Multipath

mitigation in gnss-based localization using robust optimization. In IEEE

Intelligent Vehicles Symposium (IV), 2012.
[38] N. Sunderhauf and P. Protzel. Brief-gist-closing the loop by simple

means. In IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 1234–1241, 2011.

Henning Lategahn studied Computer Science at
RWTH Aachen University, Germany and at the
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