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Abstract 

 

This work focuses on two objectives: 1) develop new and practical state estimation 

methodologies based on Kalman filter for systems with multi-rate and delayed 

measurements; 2) apply the multi-rate Kalman filter to vision-based control systems for 

electrical vehicles (EVs). 

Vehicle electrification has become a world-widely recognized solution to the oil shortage 

and emission problems brought by engines-driven vehicles. Besides trying to build EVs that 

can be comparable with conventional vehicles, it should also be critical to have a deep 

understanding of the advantages and challenges brought by EVs. It is widely known that 

motors can response hundreds of times faster than engines and hydraulic systems. In fact, the 

inherent merits of EVs provide opportunities to realize advanced active safety control 

systems as have been already studied thoroughly during the last decade. However, motion 

control-related issues brought by EVs should also be emphasized for performance 

enhancement. 

For motion control systems, real-time feedback of vehicle information is indispensible. 

While many vehicle states can be measured directly from cheap sensors, some of them are 

not readily available and therefore need to be estimated using information from the other 

sensors. However, different sensors may have different sampling rates and some of them are 

delayed. Therefore, direct fusion of different sensors may be problematic. Lots of 

conventional research simply down-sample the fast rate sensors to adapt slow-rate ones. On 

the other hand, from the viewpoint of EV control, fast feedback is preferable because the 

control periods of electric motors are short. Thus, unlike traditional vehicles with slower 

control input, multi-rate measurements can be a specific problem for EVs. Moreover, sensor 

measurement delays (constant or random) should also be considered in the estimator design. 

Regarding the multi-rate problem, two solutions can be employed: 1) down-sample 

fast-rate sensors to adapt slow-rate device; 2) design multi-rate estimation algorithm without 

changing sensor sampling times. Although method 1 is simple and straightforward, it has to 

reduce the sampling rate of the whole system. In contrast, method 2 allows better estimation 

accuracy by full utilization of sensor information and provides faster updating rate that can 

match with the control periods of electric motors. The system’s open-loop stability margin 



   

can thus be increased. Meanwhile, inter-sample residuals should be considered into the 

estimator design to guarantee the inter-sampling convergence. For constant or uneven delays, 

they can be included into the estimator using augmentation method or the proposed residual 

estimation method. The proposed approaches can be applied to a variety of multi-rate and 

delay-related applications such as chemical process estimation and control, vision-based 

estimation and control, GPS-based estimation and control, etc. 

Considering the multi-rate and delay issues, two vision-based estimation and control 

systems for EVs are studied with the proposed estimation algorithm: 1) body slip angle 

estimation and control, 2) vehicle position estimation for integrated vehicle lateral control. 

Vehicle body slip angle is considered as one of the key enablers for vehicle safety control. 

However, due to the high cost of direct measurement, estimation approach needs to be 

investigated. In this dissertation, a combined vehicle-vision model is proposed for body slip 

angle estimation using multi-rate Kalman filter, and the estimation result is more robust 

against vehicle parameter uncertainties compared with the traditional bicycle model-based 

method. With the multi-rate estimator, a two-degree-of-freedom controller is designed for 

body slip angle control. In the second application, using the same vehicle-vision model, 

vehicle lateral position to the lane marker is estimated using the proposed observer, and it is 

then utilized together with yaw rate for integrated vehicle lateral control. Moreover, the two 

applications are implemented in simulation and experiments to verify the effectiveness of the 

proposed approaches. 

This dissertation is mainly organized into three parts: backgrounds are given from Chapter 

1 to Chapter 3; the multi-rate Kalman filter theories are explained in Chapter 4; in Chapter 5 

and Chapter 6, vision-based vehicle state estimation and control applications are discussed. In 

the Appendices, the experimental vehicle and image processing techniques for lane detection 

are introduced. 
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1 

Chapter 1 

 

Introduction 

This dissertation aims at developing new state estimation methodologies that are practical for 

systems with multi-rate and delayed (constant or random) measurements, as well as exploring 

new applications of onboard vision system for electric vehicles (EVs).  

In this chapter, research backgrounds of related theories and applications are first 

introduced thoroughly. Then, Motivations of this research are explained. Finally, outline of 

this dissertation is provided. 

 

1.1 Research Background 

In many engineering applications, online information of system states is a prerequisite for 

system health monitoring, fault diagnostics, dynamics control, etc. However, some of the 

states are not measurable or are too costly to be measured. Cost effective estimation 

approaches are therefore desired. A widely employed technique is model-based estimation 

method using available sensor information as measurements. Yet, in some cases, sampling 

rates of different sensors do not match and some of the sensor data are delayed due to 

processing or/and transmission, which render the state estimation not straightforward. Multi-

rate and delay issues, although can be independent, exist together in many systems. 

On the other hand, onboard vision devices are utilized more and more for vehicle state 

estimation and control systems. Meanwhile, EVs are gaining an increasing concern from both 

industry and research fields nowadays. Nevertheless, the sampling rate of a normal camera is 

much slower compared to that of the other onboard sensors and electric motors, and image 

processing brings delay into the visual measurements. The multi-rate and delay problems 

need to be addressed in the estimation and control algorithms for vision-based EV system. 

This chapter will introduce the backgrounds of multi-rate and delay issues, motion control 

systems for EV and vision-based applications for vehicles. 
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1.1.1 Multi-rate and Delay Issues in State Estimation and 

Control Systems 

A general digital control system with feedback from a state estimator is shown in Fig. 1.1, 

where P(s) is a continuous time plant with n output signals measured by different sensors, 

C(z) is a digital controller designed for reference tracking, and O(z) is an observer for 

immeasurable state estimation. As plants are usually affected by disturbances and sensor 

measurements are contaminated by noises, d(t) and wi(t) (i=1,2,…) are introduced to model 

input disturbance and measurement noises, respectively. As a discrete control system, three 

time periods exit: Tr, Tu and Ty, where Tr is the reference holder, Tu is the control input holder 

generally decided by the speed of the actuators, the D/A converters, or the CPU loads, and Ty 

is the measurement holder determined by the speed of the sensors or the A/D converters [1]. 

In this dissertation, only Tu and Ty are considered due to the reason that Tr usually does not 

have restrictions. As can be seen in Fig. 1.1, in case of n measurements, more than one Ty 

exist, and some of them are different from Tu; this is known as the multi-rate problem [1].  
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Fig.1. 1 A general digital control system with state estimator considering multi-rate and  

measurement delay issues. 
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Assume that Ty1< Ty2<… <Tyn, then Ty1 can be selected as a base and the multi-rate ratios 

Ni can be defined as 

1/ (i yi yN T T= 1.1)
 

where 1<i ≤ n. Moreover, some sensor data are delayed due to the time present on 

communication or/and data processing. Generally, the time-delays are also different from 

sensor to sensor (some of them are small and hence can be neglected). In practical, the time-

varying delays are assumed to be in a given finite set as 

{ }max0,1,2,... (1.2)id d∈
 

where di=0 means no delay. 

Multi-rate issue:  

Multi-rate estimation and control are significant research areas motivated by engineering 

applications, and they have been studied for decades [2-11]. In [2], the history of the multi-

rate control theory and applications were reviewed. One of the typical multi-rate examples is 

hard disk, where the sampling frequency of position error signal is limited. To achieve 

smoother control input and higher control bandwidth, Tomizuka et al. developed a serial of 

methods by redesigning the state estimator [3-7]. Under the framework of Kalman filter, they 

redesigned the steady state Kalman gain Fs at time step j·r as 

( ) 1

(1.3)
c c c

T T

s s T T s TF M C C M C V
−

= ⋅ ⋅ ⋅ ⋅ +
 

where CTc is the measurement matrix discretized by sampling time Tc , V is the measurement 

noise covariance, and Ms is the positive definite solution of the algebraic Riccati equation 1.4. 

Detailed explanations of the parameters in equation 1.4 can be found in [4]. 

( ) ( )

( ) ( )
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0

1

(1.4)

c c c c c c

c c c c c c

Tr
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r r i T T

s T s T T wT wT T
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T
r T T r

T s T T s T T s T

M A M A A B W B A
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−

=

−

= ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅

− ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅

∑

 

In [8], Tomizuka summarized the advantages of multi-rate estimation and control for 

motion control systems. Meanwhile, Fujimoto and Hori et al. proposed Perfect Tracking 

Control (PTC) approach which focuses on the multi-rate reformulation of feed-forward 
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controller [9-11]. More recently, multi-rate theory-based hard disk control was further 

developed by Al-Mamun et al [12], Fujimoto et al [13] and Sato et al [14]. In some practical 

applications, the information of position and acceleration are both needed for observer design, 

and the position signal is usually slower compared with the acceleration one. In [15], a multi-

rate-based sensor fusion algorithm is developed for motor states estimation. Interestingly, an 

application to civil health monitoring is studied with slow position sensor and fast 

acceleration sensor [16]. In addition, some chemical processes are in the scope of multi-rate 

estimation and control. For example, Ravindra et al designed an adaptive multi-rate estimator 

for both state and parameter estimation with application to a bioreactor [18]. Vision-based 

industrial robot control is another application of multi-rate theory, and it was intensively 

studied in [19-21]. Nowadays, GPS is becoming more and more popular in vehicles, and the 

sampling rate of GPS is very slow. Some research studied multi-rate-based navigation and 

vehicle dynamics controller [22-23]. Recently, the multi-rate theory was also expanded and 

applied to precise stage positioning and piezo scanner control [24-25]. 

Measurement delay issue:  

Due to hardware restrictions, measurement delay is an inevitable problem for both estimator 

and controller design, and a number of methods have been proposed in the literatures [26-11]. 

Based on the length, delay can be categorized into constant delay and uneven delay; based on 

the ways for delay handling, solutions can be divided into state-augmentation type and non-

augmentation type. State-augmentation methods rely on augmenting the current state with 

appropriate past information required for fusing the lagged measurements. One of the well-

documented state-augmentation methods is fix-lag approach that stores all the past states 

information is for augmentation [26]. This method, although simple and straightforward, is 

quite computation intensive and only convenient for constant and small time delays [27]. 

Another state-augmented method is measurement augmentation. Instead of augmenting all 

the previous states, only the delayed measurements are utilized to augment with the current 

state for the previous time steps [28]. This method is also computational consuming if the 

delayed steps are large. In addition to the state-augmentation approach, some techniques 

latency compensation at the measurements arriving time were proposed [29-31]. The simplest 

way is to ignore the fact that the sensor measurements are lagged, and a normal estimator can 

be designed with the delayed information [29]. Obviously, this method has poor performance. 

Initially designed by Alexander [30] and further developed by Larsen et al. [31], the 

estimation accuracy can be improved by designing suitable filter covariance. This method 

requires the measurement sensitivity matrix and the observation noise covariance matrix to 
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be available. Assume that the measurement is taken at step l and is only available at step s, 

the filter covariance is then updated at time l as if the measurement is already available. This 

leads the measurements in the delay period to be fused as if the measurement had been fused 

at step l. At step s, when the measurement really becomes available, incorporating the 

measurement correctly is then simplified by modifying the Kalman gain as M given in 

equation 1.5. 

( )
1

1

0

(1.5)
N

'

k i k i k i

i

M I K C A
−

− − − −
=

= − ⋅ ⋅∏
 

where N is the delayed steps and K’ represents the Kalman gain calculated with the 

covariance of the delayed measurement at step l. This implies that the covariance estimates of 

the filter will be wrong before the delayed measurement arrives, causing normal non-delayed 

measurements during this period to be fused sub-optimally. However, after the addition of 

correction with the modified Kalman gain given in equation 1.5, the filter state and 

covariance will once again be optimal. Such algorithm requires minimal computational effort 

and can also be used for time varying delays; an equivalent technique can be found in [32], 

which was designed for GPS delay compensation. Some other research compensated the 

delay using disturbance observer by considering the time-varying communication delays as 

disturbances [33]. 

Interestingly, another type of estimation method named predicting observer can solve the 

delay issue inherently [109], and it was utilized for motor control using information from a 

camera [17]. Unlike current type observer that uses the current measurement for current 

estimation correction, the predictive type observer uses measurement sampled one step 

before to correct the estimation. Therefore, measurement delay does not have effect on this 

kind of observer as only previous sampled data are used. However, it should be noted that the 

estimation is likely to be less accurate than correction by the current type observer [109]. It 

should be noticed that, Kalman filter belongs to the current type observer. 

Combined multi-rate and delay issue:  

Although not as many as research on multi-rate and time-delay separately, some studies 

addressed the multi-rate and delay issues together [34]-[35]. In fact, vision-based applications 

involve both multi-rate and delay issues. In [34], a vision-based satellite state estimation 

using multi-rate Kalman filter was developed, but the inter-sampling performance was not 

addressed; the image processing delay, although discussed in somehow, was not included. 
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Fig.1. 2 The sattelite Rømer and its onboard vision system. 

 

The satellite and its onboard vision system are shown in Fig. 1.2, the sampling time of the 

star-track camera is 332 ms and the image processing unit takes 170 ms to process one frame 

[34]. Gopalakrishnan et al summarized literatures on state estimation considering multi-rate 

or/and delay, and applied some of them to chemical process estimation [35]. One latest paper 

was published by Bavdekar et al, a moving window Ensemble Kalman Filter (EnKF) was 

developed by considering appropriate matrix covariance [36]. The moving window EnKF 

does not need state augmentation and therefore reduces the computation burden. To ensure 

that the estimate updates do not exceed the physical limits, a constrained moving horizon 

EnKF was also proposed. The use of a moving window of measurements guarantees that the 

delayed measurements can be appropriately placed in the window and hence be used along 

with the fast rate measurements for state estimation. However, this method is complex for 

implementation. 

Generally speaking, the combined multi-rate and delay issue can be solved in two ways: 

1) augment the system state with delayed information and then apply multi-rate estimation 

algorithm; 2) treat multi-rate and delay as a whole and design the estimator in a one step 

manner. The two methods will be further explained in the following chapters. 

1.1.2 Vision-based State Estimation and Control for EVs 

Estimation and control technologies have been intensively studied for vehicle applications 

during the last few decades due to the desire for performance, comfort and economy. 
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Considering the uniqueness of EVs such as fast control period, vision-based estimation and 

control for body slip angle and vehicle lateral motion are studied in this dissertation. Two 

basic concepts relate to the applications that are studied in this dissertation: 1) motion 

control; 2) sensing and estimation. 

Motion control technologies for EVs: 

Nowadays, actuators such as active steering system (AFS), four wheel steering (4WS), four 

wheel driving (4WD) and differential braking are available in more and more vehicles. Using 

these actuators, a variety of functions for vehicle stabilization can be achieved: anti-lock 

brake system (ABS), electronic stability control (ESC), traction control system (TCS), lane 

keeping control (LKC) and so on. 

In case of EVs with in-wheel-motors (IWMs), many safety control systems can be realized 

more effectively and conveniently. From the viewpoint of motion control, EVs’ advantages 

have been summarized as four points [38]-[40]: 1) motor torque response is tens to hundreds 

times faster than that of an internal combustion engine and hydraulic actuators. This feature 

enables high performance tire adhesion controls such as anti-slip control and traction force 

control; 2) motor torque can be measured easily by observing motor current, and it can be 

used for road condition and driving force estimation; 3) since an electric motor is compact 

and inexpensive, it can be equipped in each wheel, which realizes high performance lateral 

motion control systems including roll stability control, yaw stability control and integrated 

control system; 4) there is no difference between acceleration and deceleration control, which 

means the wheels can be controlled freely to generate desired motion. Fig. 1.3 shows some of 

the EVs in Hori-Fujimoto laboratory and an image of an in-wheel-motor. 

 

   

Fig.1. 3 Electric vehilces in Hori-Fujimoto laboratory and an in-wheel-motor. 
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Utilizing the aforementioned advantages of IWMs, control algorithms have been 

developed in areas such as safety, drivability and economy. For example, in [41], a controller 

is designed to operate the vehicle at a desired yaw rate, and it was verified by field test. More 

recently, range extension system (RECS) that controls the IWMs at some specific operation 

ranges is developed in practice [42]-[43]. In some other research, considering the multiple 

actuators, control allocation approaches [46]-[50] and fault detection and tolerance control 

systems [44]-[45] are gaining an increasing interest lately. 

Sensing and estimation: 

To realize motion control system, on-line information of vehicle states and parameters is 

indispensable. Therefore, along with the development of semiconductor industry, onboard 

sensors such as gyro sensor, acceleration sensor, encoders can be found in more and more 

vehicles. Fig. 1.4 shows some typical sensors available for vehicles. 

While many vehicle states can be readily obtained from inexpensive sensors, some of the 

states are too expensive to be measured directly, and body slip angle is one of them. Body 

slip angle is defined as the difference between the direction that the car is heading and 

direction that it is travelling, and it is useful in many vehicle stability control systems [51]-

[60]. Unfortunately, the costs of commercial sensors to measure body slip angle such as  

 

 

 

Fig.1. 4 Typical onboard sensors. 
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Fig.1. 5 Commercial sensors for body slip angle measurement. 

 

 

Fig.1. 6 Onboard vision system. 

 

optical sensor and DGPS-based device (as shown in Fig. 1.5) are very high. Therefore, a 

variety of methods have been developed using the information from cheap sensors for body 

slip angle estimation. Basically, estimation involves three aspects: sensor configuration, 

estimation model, and estimation method. Sensor configuration means the combination of 

different kinds of available sensors to estimate the unknown information. In fact, to estimate 

one piece of information, several kinds of sensor combination can be employed. Estimation 

model can be kinematic, dynamic or the combination of them. It is a concept related to sensor 

configuration, i.e., if system model is selected, the sensor configuration is fixed in somehow. 

Estimation method is the algorithm to implement estimator, for example, it can be Lunberger 

observer, Kalman filter, particle filter, and so on. 

In addition to know the status of the vehicle itself, surrounding information also plays key 

role for vehicle safety and stability. Onboard vision system is one of the effective ways to 
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obtain information around the vehicle, and most of them are developed for lane departure 

warning, automatic driving, collision avoidance, and so on [61]-[64]. Nowadays, cameras can 

be easily found in many vehicles of all levels. Fig. 1.6 shows some of the onboard vision 

system. For example, Subaru employed stereo vision systems to assist the driver for safe 

driving such as automatic obstacle avoidance. 

Vision-based estimation and control for EVs: 

As introduced above, estimation and control of traditional vehicles using onboard camera 

have been intensively studied. Unfortunately, vision-based estimation and control 

considering multi-rate and delay issues can hardly be found in the exiting literatures. 

Meanwhile, just like traditional vehicles, onboard vision systems are important for EV 

motion control applications. The sampling time comparisons between traditional vehicle and 

EV are given in Table 1.1, where Tu is the control input period, Ty_normal is the sampling time 

of normal onboard sensors such as gyroscope and encoder, and Ty_caemera is the sampling time 

of onboard camera.  In case of traditional vehicle, as the control period is relatively long, the 

feedback signals just need to be adapted to it [63].  On the other hand, the control period of 

EV is short and the sampling discrepancy among camera, normal onboard sensors and motors 

have to be considered for estimator and controller implementation. 

As look-ahead cameras have increasingly become popular in vehicles, investigating other 

applications other than lane keeping or collision avoidance using the onboard vision system 

is desirable. This dissertation investigates a vision-based body slip angle estimation method, 

and the visual model is independent of the uncertain parameters of the vehicle, such as 

cornering stiffness. Moreover, vehicle position measurement from the vision system is very 

accurate [61]. Therefore, incorporating visual information can increase the estimator’s design 

freedom without introducing uncertainties into it. In addition, traditional lane keeping or yaw 

motion control only cannot satisfy the demand for driving safety, and an integrated vehicle 

lateral motion stabilizing system is desired. Both of the above two applications have to 

consider the multi-rate and delay (constant or random) issues. 

 

Table 1. 1 Sampling period comparisons between traditional vehicle and EV 

 Tu Ty_normal Ty_camera

Traditional Vehicle Long Short Long 

EV Short Short Long 
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1.2 Motivation 

As aforementioned, multi-rate and delay issues are very common in various engineering 

applications. However, many of the existing solutions are only designed for multi-rate or 

delay problem independently. Some of the methods that deal with both issues are very 

complicated or have high computation costs. One of the objectives of this dissertation is to 

construct a new and computational efficient algorithm for practical implementations. 

Look-ahead cameras have increasingly become popular in vehicles, and most of the 

studies focus on lane keeping or collision avoidance. Investigating other applications using 

onboard vision system is desirable. Meanwhile, as stated in 1.1.2, real time vehicle state 

information such as body slip angle is of particular importance for vehicle control system. 

However, traditional vehicle dynamic model-based observers are not robust against model 

uncertainties. The first application investigated in this dissertation is vision-based body slip 

angle estimation method. The vision model is independent of the uncertain parameters of the 

vehicle, such as cornering stiffness. Moreover, vehicle position measurement from the vision 

system is very accurate [61]. Therefore, incorporating visual information can increase the 

estimator’s design freedom without introducing uncertainties into it. To compensate the 

multi-rate and delayed visual measurements, inter-sample residual estimation methodology is 

applied. 

In addition, as traditional lane keeping or yaw motion control only cannot satisfy the 

demand for driving safety (explained in Chapter 6), an integrated vehicle lateral stabilizing 

system is desired. The second application considered in this dissertation is a vision-based 

integrated vehicle lateral control system that considers position and motion together. As the 

position and motion feedback are of different rates, just as the previous application, multi-

rate and delay issues are also addressed in the estimation and control design. 

 

1.3 Dissertation Outline 

The outline of this dissertation is illustrated in Fig. 1.7. It covers multi-rate estimation and 

control theory, as well as vision-based estimation and control applications for EVs. The 

details of this dissertation are summarized as follows: 
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1)  Research background:  

In Chapter 1, background of the research on both multi-rate and delay theories, as 

well as vision-based state estimation and control for EVs were described, and 

relevant literatures are categorized and reviewed. Dissertation motivation and 

structure are also explained. 

In Chapter 2, a kinematic model is first introduced, and then, a combined vehicle and 

vision model is developed and analyzed. The kinematic exhibits good performance 

at low speed, and the combined model works better at high speed. 

In Chapter 3, control approaches such as two-degree-of-freedom control, disturbance 

observer are introduced, and then, vehicle motions with different actuators are 

analyzed. Then, Kalman filter is introduced as an effective method for vehicle state 

estimation. Finally, constrains of observer-based control and performance 

requirements for EV motion control systems are explained. 

2)  Estimation theories considering multi-rate and delayed measurements:  

In Chapter 4, a residual estimation technique is developed for state estimation with 

multi-rate and delay issues. First, the system discretization method is introduced. 

Then, multi-rate Kalman filter based on state augmentation is designed for 

estimation with multi-rate and constant delayed measurements, and the convergence 

performance is analyzed. And then, the multi-rate Kalman filter considering uneven 

delay is studied using measurement reconstruction method and inter-sample residual 

estimation algorithm and, the convergence performance is also analyzed. This 

chapter provides a general solution to the state estimation with multi-rate and delay 

problems. 

3) Vision-based estimation and control applications for EVs:  

In Chapter 5, a new sensor configuration for body slip angle estimation is 

investigated. As the visual model is accurate and increases observer's design freedom, 

the combined model-based estimator proposed in Chapter 2 can provide more 

accurate estimation result compared with the traditional bicycle model-based one. 

However, two issues are raised by the combined vehicle and vision models: 1) image 

processing introduces delay into the visual measurements and 2) the sampling time 

of a normal camera is much longer than that of other onboard sensors. For electric 

vehicles, the control period of motors is much shorter than the sampling time of a 
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normal camera. Considering the above-mentioned delay and multi-rate problems, a 

multi-rate Kalman filter with inter-sample compensation is designed. Then, a 2DOF 

controller is designed using the estimated body slip angle as feedback for reference 

tracking. With the proposed multi-rate estimator, the controller achieves better 

tracking performance than the single-rate method.  

In Chapter 6, considering the importance of vehicle lateral control, an integrated 

control system that addressing both vehicle motion and position is proposed. 

However, the feedback signals of vehicle position and motion have different rates. 

How to unify the sampling rates of the two feedback loops becomes a problem. 

Employing the multi-rate Kalman filter developed in Chapter 4, an estimator that can 

update vehicle position more frequently is designed, and the updating rate can match 

with the rate of control input. Finally, the estimated vehicle lateral offset and yaw 

rate are controlled using an integrated motion and position controller.. 

 

4) Conclusions and appendices:  

In Chapter 7, dissertation summary and future works are stated. Additionally, the 

experimental setups are introduced in Appendix A, and image processing techniques 

for lane detection are elaborated in Appendix B. 
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Fig.1. 7 Dissertation structure. 
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Chapter 2 

 

Vehicle Lateral Dynamics and Vision System 

Modeling 

 

This chapter covers modeling of vehicle lateral dynamics and vision system for estimator and 

controller design. After introduction of current available models for vehicle system, a 

nonlinear vehicle kinematic model including visual information is introduced. Then, a more 

suitable linear model for high speed application is described. The second model is a 

combination of vehicle dynamics and vision kinematics. Finally, this chapter is summarized 

briefly. 

 

2.1 Introduction 

Vehicle lateral model mainly address the vehicle motion and onboard vision system model 

describes the relationship between vehicle and the road (vehicle position with reference to the 

road). Both of them have their own characteristics. However, as they work as a system, for 

the benefits of state estimation and control, a combined model is required. Modeling of 

vehicle and vision system is quite mature, and a variety of models have been developed based 

on different assumptions for different kinds of applications. 

Generally, the available vehicle models can be categorized into two groups based on the 

purpose. The first kind of models tries to include all the relevant characteristics of vehicle 

lateral dynamics, and they are developed to approximate the vehicle plant for 

estimator/controller performances evaluation. However, although this kind of models 

describes true plant very well, they are usually too complex to be implemented in real time. 

Instead, another kind of models simplifies complex models and only captures the essential 

features of the vehicle lateral dynamics, and therefore can be applied for on-line 

estimation/control. 

On the other hand, a four wheels vehicle can be modeled that the two front and two rear 
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wheels are considered as one single front and one single rear wheel. This type of models is 

known as a single track model or bicycle model [65]-[66]. Based on this concept, it is 

possible to further design both kinematic and dynamic vehicle models. This chapter will 

explain the two types of models, and both of them cover dynamics/kinematics for vehicle and 

vision system. That is, the models not only deal with the vehicle itself, but also address the 

interaction between the vehicle and the road. These models can therefore broaden the concept 

of vehicle motion control in comparison with the traditional bicycle ones. 

 

2.2 Vehicle Kinematic Model Considering Visual 

Information 

Kinematic model describes vehicle motion on a planar geometrically without considering the 

affection of forces. When vehicle run at small velocities, the lateral forces generated by the 

tires are very small; it is then reasonable to neglect tire forces by assuming zero tire slip 

angles. Consider a front steering vehicle in Cartesian coordinates (X, Y) with camera mounted  
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Fig.2. 1  Vehicle lateral kinematics model. 
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in the vehicle’s center of gravity (CoG) as shown in Fig. 2.1, three coordinates are required to 

describe the motion of the vehicle: X, Y and Ψ, where (X, Y) are inertial coordinates of the 

CoG and Ψ represents the heading angle of the vehicle. The velocity at the CoG of the 

vehicle and the longitudinal velocity are denoted as V and Vx, respectively, and the body slip 

angle β is defined as the angle between the two vectors. The front steering angle is denoted 

by δf, and it is the angle between the wheel pointing and the longitudinal axis of the vehicle 

of the front wheel. The point O is the instantaneous rotation center of the vehicle, and it is 

defined by the intersection of the lines AO and BO, which are perpendicular to the 

orientations of the front and rear wheels. R is defined as the vehicle's traveling radius which 

equals to the length of the line OC, and V is perpendicular to the line OC as can be observed 

in the figure. 

With the simplified kinematic model, governing equations can be derived as below. First, 

based on geometry, the vehicle’s longitudinal motion and lateral motion in the Cartesian 

coordinates can be described as Equations 2.1 and 2.2. 

cos( ) (2.1)

sin( ) (2.2)

X V

Y V

β ψ

β ψ

= ⋅ +

= ⋅ +

&

&
 

Then, according to the triangle sine theorem, equation 2.3 can be obtained for the triangle 

OCA. 

( )
( )

( ) ( ) ( ) ( )
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( ) ( ) ( )
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sin cos cos sin

cos
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Similarly, equation 2.4 can be derived for the triangle OCA. 

( )sin (2.4)rl

R
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Adding equations 2.3 and 2.4 yields equation 2.5. 

( ) ( )tan cos (2.5)
f r

f

l l l

R R
δ β

+
= = ⋅

 

Assume that the R changes slowly due to the low vehicle speed, then the yaw rate of the 

vehicle is equal to the angular velocity of the vehicle, which is given as 

(2.6)
V

R
ψ =&

 

As equation 2.6 contains R which is usually not measurable, considering the body slip 

angle β is small, equation 2.7 can be got from equations 2.5 and 2.6 as below 

( )tan (2.7)f

V

l
ψ δ=&

 

Combining equations 2.1, 2.2 and 2.7 yields a nonlinear continuous state space equation 

given in equation 2.8. As can be observed, this model is very simple and the tire forces are 

not included in the formulation. 

( )
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l
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&

 

The vehicle kinematic model can be discretized for extended Kalman filter design. In this 

model, the vehicle position information is included, and therefore can be directly utilized for 

combined motion and position estimation and control applications. An example is elaborated 

in [67] for robot navigation.  

A velocity encoder can be mounted on the vehicle drive shaft for measurement of wheel 

speed (not vehicle speed). The two values are unequal if the wheels are spinning or skidding. 

To compensate for some of these effects a wheel radius state can be added to the state vector 

as studied by [105]. 
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2.3 Combined Vehicle Dynamics and Vision 

Kinematics-based Model 

At high speed region, the lateral forces at each wheel can no longer be neglected. Moreover, 

as stated before, in case of EVs with IWMs, the differential forces generated by left and right 

wheels can be utilized for EV motion control. However, it is not straightforward to include 

differential torques the in the kinematic model described in section 2.2 (transformation from 

yaw moment to vehicle heading angle or steering angle is needed). In this case, instead of a 

kinematic model, a dynamics-based model to better describe vehicle lateral motion should be 

considered. In fact, the model given here is combined of vehicle lateral dynamics and visual 

kinematics. 

 

2.3.1 Two-degree-of-freedom Bicycle Model 

Again, the bicycle model mentioned before is utilized for derivation of the vehicle dynamics-

based model. For lateral dynamics representation, two freedoms are considered: vehicle 

lateral motion and yaw motion. The two-degree-of-freedom model is shown in Fig. 2.2, 

where γ is the yaw rate at CoG, Vy is the lateral velocity at CoG, Fyf and Fyr represent the 

lateral forces on the front and rear wheels, respectively, αf and αr denote the tire slip angles of 

the front and rear wheels, respectively. The other parameters are the same as the ones in the 

previous section. 
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Fig.2. 2 Single track vehicle model. 
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The governing equations of lateral and yaw motions are given as 

(2.9)

(2.10)

y yf yr

z f yf r yr

m a F F

I l F l Fγ

⋅ = +

⋅ = ⋅ − ⋅&
 

Where ay is the lateral acceleration at CoG, and Iz is the yaw inertial of the vehicle. The 

lateral acceleration ay can be given as equation 2.11. 

( ) (2.11)ya V β γ= ⋅ +&
 

Then, the lateral forces at each axis need to be obtained for further derivation. Some 

assumptions need to be made before moving on: 1) tire side slip angles are small and the 

lateral tire forces are therefore proportional to the side slip angles; 2) vehicle velocity is 

approximately constant and the body side slip angle at the CoG is small; 3) lateral load 

transfer due to lateral acceleration is neglected. 

Based on the above assumptions, the lateral forces are modeled as 
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Fig.2. 3 Bicycle model considering differential torque. 
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where Cf and Cr are the cornering stiffness of the front and rear tires, respectively. The front 

tire side slip angle αf and rear tire side slip angle αr are given as equations 2.14 and 2.15. 

(2.14)

(2.15)

f y f

f f f

r
r

l V l

V V

l

V

γ γ
α δ β δ

γα β

⋅ + ⋅
= − = + −

⋅
= −

 

Combining equations from 2.9 to 2.15, the bicycle model on a planar can be obtained: 

( ) 2 2 (2.16)
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&
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However, it should be noticed that, in case of EVs with IWMs as illustrated in Fig. 2.3, the 

differential torque should also be included. Equation 2.17 then becomes 

2 2
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l l
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where Nz is the differential torque generated by left and right wheels, and it works as control 

input for vehicle stabilization. 

Equations 2.16 and 2.18 can be formulated in the state space form in equation 2.19. This 

model is usually employed to construct observers for body slip angle estimation [56]-[59]. 
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For the observation model, as yaw rate information can be obtained from gyroscope which 

is very cheap, a generally utilized observation model is as equation 2.20. 
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[ ]0 1 (2.20)
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Another measurement model not only use yaw rate, but also employ the lateral 

acceleration information, i.e., two measurements are available in the observation model. This 

model is shown in equation 2.21. This model can increase design of freedom of the observer 

due to the adding of one additional measurement. Moreover, unobservability issue can be 

avoided by using this model which will be discussed in Chapter 5. However, as can be seen, 

model uncertainties such as cornering stiffness are also included which may influence the 

final estimation results. 
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2.3.2 Visual Model Based on Geometry 

The vehicle dynamic model is independent of road reference, whereas the vision model is 

obtained from the geometric relationship between the vehicle and the road. The vision model 

is schematically illustrated in Fig. 2.4, where the camera is located at the vehicle’s CoG, lpre 

is the fixed preview distance of the vision system that needs to be calibrated beforehand, yl is 

the lateral offset at that preview point, ψ denotes the heading angle, ycg is the lateral offset at 

the vehicle’s CoG, and the gray borders are the lane makers. In this model, assumptions that 

the vehicle travels along a straight road and that the onboard vision system detects the lane 

and provides relative position information were made. 

Compared with bicycle model, several new parameters are added. Among them, an 

important one is the preview distance lpre, and it works as a damping factor for control 

systems such as lane keeping [68]. The information detected by the onboard vision system 

are yl (lateral distance at the preview point) and ψ (vehicle heading angle). In case of zero 

preview distance, yl equals the lateral distance to lane at the vehicle’s CoG (ycg). The effects 

of preview distance on vehicle control performances were studied by [106]-[107]. 
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Fig.2. 4 Combined vehicle and vision models. 

 

To derive the vision model, ψ and β are assumed to be small. Based on Fig. 2.4, yl is 

approximated as 

sin

(2.22)

l cg pre

cg pre

y y l

y l
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= + ⋅

≈ + ⋅
 

Then, ycg is derived as equation 2.23 based on geometry. 
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The final equation that describes the body slip angle, yaw rate, and heading angle is 

obtained by taking the derivative of equation 2.22 and substituting equation 2.23 into it. 

(2.24)l x pre xy V l Vβ γ ψ= ⋅ + ⋅ + ⋅&
 

From equation 2.24, it can be known that, the derivative of offset at the preview point, i.e., 

lateral velocity at that point, comprises three parts: the lateral velocity of CoG, the 

components of yaw rate, and the component of longitudinal speed (resulted from vehicle 

heading angle). 
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Heading angle ψ can be simply modeled as the integration of the yaw rate as equation 2.25. 

(2.25)ψ γ=&
  

Here, it should be noticed that the course angle c and heading angle are different concepts, 

and the course angle is defined as equation 2.26 [69]-[70]. 

(2.26)c ψ β= +
 

Although curved roads are not considered here, the system can still be modeled in the 

same manner by taking the curvature into account [68]. That is, this research can be 

expanded to all roads with lane markers. 

 

2.3.3 Combined Vehicle Dynamics and Vision Kinematics 

Model 

Equations 2.16, 2.18, 2.24 and 2.25 yield a new system that is represented in a continuous 

state space form as equation 2.27. The first two states are modeled by the vehicle model, 

and the latter two are modeled by the vision model. Clearly, the vision model contains 

much fewer uncertainties compared with the bicycle model. In the combined vehicle and 

vision models, the measurable outputs are yaw rate, vehicle heading angle, and lateral 

offset at the preview point. The body slip angle is still observable using only visual 

information, which provides estimation redundancy. 

(2.27)
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In case of curved roads, the road curvature can be included into the system as an 

additional term.  For state estimation and controller design, it can be considered as a 

disturbance. Related research can be referred in [63], [68]. 

 

2.4 Chapter Summary 

This chapter introduced two models addressing vehicle lateral motion and visual information: 

 Pure vehicle kinematic model; 

 Combined vehicle dynamics and vision kinematics model. 

The first model considers vehicle lateral motion on a planar and provides three equations 

of motion purely based on geometric relationships. In terms of state estimation, since there 

are only three states, the calculation burden is not high. Yet, it is only useful for very low 

speed applications. The second model discussed in this chapter is based on vehicle dynamics 

and vision kinematics, and it can better describe the vehicle behavior at high speed region. 

The two models can be employed for vision-based vehicle state estimation and control 

systems such as lateral speed estimator, vehicle lateral position and heading angle estimation, 

lane keeping control, etc. Moreover, the combined model can be applied to vehicle lateral 

dynamics control. 
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Chapter 3 

 

State Estimation and Motion Control for 

Electric Vehicles 

This chapter first explains the general structure of EV control system which includes upper 

layer control, lower layer control and signals feedback. Then, two effective control 

approaches are introduced.  And then, vehicle motion controls in terms of actuators are 

analyzed followed with introduction to state estimation. Constrains of observer-based 

feedback and vehicle performance requirements are then explained. Finally, this chapter is 

summarized briefly. 

 

3.1 Introduction 

As a dynamic system subject to all kinds of disturbances, vehicle behaviors change from time 

to time and it is very difficult for drivers to handle all the situations. Therefore,  

  

 

Fig.3. 1 General control structure for EVs. 
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control systems for driver assistance are commonly recognized to be indispensible. A general 

control structure for EV applications is shown in Fig. 3.1. Three parts exist in the control 

structure for EVs in general: 1) upper layer controller which defines reference behavior, 

control law (includes individual actuator behavior, actuators coordination, control efforts, 

etc.); 2) lower layer controllers which comprise the local controllers for each actuator; 3) 

feedback loop which includes sensor measurements or/and estimations from observers. 

 

3.2 Control Approaches 

The control structure in Fig. 3.1 can be employed by various applications such as anti-lock 

control and yaw motion control. No matter what kind of control targets to be realized, the 

basic performance criteria are in common: fast response, moderate overshoot and minimal 

steady-state error. In this section, two simple and effective control approaches are briefly 

introduced. 

 

3.2.1 Two-degree-of-freedom (2DOF) Control 

The degree of freedom of a control system is defined as the number of closed-loop transfer 

functions that can be adjusted independently [71]. First, consider a conventional feedback 

control system that is subjected to input disturbance d(s) and measurement noise n(s) as 

shown in Fig. 3.2.  

 

( )C s ( )P s

( )n s

( )r s ( )y s

( )d s

 

Fig.3. 2 One degree of freedom (1DOF) controller. 
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As is well known, three closed-loop transfer functions can be obtained as 

( ) ( )
( )

( ) ( )
( ) ( )

( ) ( )
( )

( )
( ) ( )

( ) ( )
( )

( ) ( )
( ) ( )

1

1

1

(3.1)
1

(3.2)
1

(3.3)
1

yr

yd

yn

y s P s C s
G s

r s P s C s

y s P s
G s

d s P s C s

y s P s C s
G s

n s P s C s

⋅
= =

+ ⋅

= =
+ ⋅

− ⋅
= =

+ ⋅
 

where the subscript 1 represents one degree of freedom (1DOF) which will be explained 

below. 

Obviously, equations 3.1 and 3.3 can be determined by each other. Multiply P(s) to 

equation 3.1 and then add it to equation 3.2, equation 3.4 can be derived. 

 
( ) ( ) ( ) ( )1 1 (3.4)yr ydG s P s G s P s⋅ + =

 

This equation shows explicitly that for a given plant, Gyr1(s) is uniquely determined if 

Gyd1(s) is fixed, and vice versa. Therefore, such control structure is called one degree of 

freedom [71]. This approach, although simple, has to make compromise between disturbance 

response and reference response. 

In addition to the feedback path, it is possible to move portions of these control actions to 

the feed-forward path. In fact, several representations are available for this concept  

 

( )C s ( )P s

( )n s

( )r s ( )y s

( )d s

( )FFC s

 

Fig.3. 3 Two degree of freedom controller (Feed-forward representation). 
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such as feed-forward expression, feedback expression, etc. Here, let’s consider a feed-

forward type which is given in Fig. 3.3, the below closed-loop transfer functions can be 

derived 

( ) ( )
( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( )

( )
( ) ( )

( ) ( )
( )

( ) ( )
( ) ( )

2

2

2

(3.5)
1 1

(3.6)
1

(3.7)
1

FF

yr

yd

yn

y s P s C s P s C s
G s

r s P s C s P s C s

y s P s
G s

d s P s C s

y s P s C s
G s

n s P s C s

⋅ ⋅
= = +

+ ⋅ + ⋅

= =
+ ⋅

− ⋅
= =

+ ⋅
 

Compared to the 1DOF case, it can be found that the disturbance responses and output to 

noise relationship of the two approaches are the same; the reference tracking equation of the 

2DOF system has an additional term. Therefore, 2DOF controller can be designed to have 

better reference tracking performance without deteriorate the disturbance rejection loop. 

Moreover, the feedback and feed-forward loops can be adjusted independently. Usually, the 

feed-forward controller can be selected to be the inverse of the plant [72]-[73]. 

 

3.2.2 Disturbance Observer (DOB) 

The above 2DOF controller is designed based on the modeled plant. However, the plant 

cannot be modeled exactly. An actual system can be expressed as  

( ) ( ) ( )( )P 1 (3.nP s s s= ⋅ + Δ 8)
 

where P(s) is the actual plant, Pn(s) is the nominal model, and Δ(s) is the multiplicative 

modeling error. In this case, it is desirable to implement an inner loop that can reject model 

uncertainties as well as disturbances in addition to the 2DOF controller mentioned above. 

DOB is an effective method to achieve robustness against model error and disturbances 

[74]-[75]. A basic DOB block diagram is shown in Fig. 3.4. Basically, it consists two blocks: 

inverse plant block and Q filter block. 
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( )u s ( )y s

+

+

+

+

( )d s

1( )nP s−

( )nP s

Disturbance 
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+ -

( )P s ( )sΔ

+
+

ˆ( )d s
( )Q s

 

Fig.3. 4 Disturbance observer structure. 

 

The inverse plant module is designed based on the nominal plant. After recalculation of 

the “control input” with the measured output, disturbance can be obtained by subtracting the 

recalculated control input from the desired one. The inverse of nominal plant may not be 

proper in many cases, and the key factor of DOB design is relied on Q filter selection. In 

control systems, disturbances often dominate at low frequencies while high frequencies are 

dominated by sensor noises, hence, Q filter is designed to be a low pass filter with unity DC 

gain [75]. In addition to the structure in Fig. 3.3, DOB can be transformed into the other 

representations such as the one shown in Fig. 3.5, which has an equivalent block diagram to 

2DOF control [76]. 

 

( )n s

( )u s ( )y s

( )d s

( )nP s

( )P s ( )sΔ

1( ) ( )nQ s P s−⋅

1

1 ( )Q s−

 

Fig.3. 5 Equivalence representation of DOB. 
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Then, the closed loop transfer functions can be derived as 

( ) ( )
( )

( ) ( )
( ) ( ) ( )( ) ( )

( ) ( )
( )

( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

( ) ( )
( )

( ) ( )
( ) ( ) ( )( ) ( )
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1
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(3.11)
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s n
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yn

s n

y s P s P s
G s

r s Q s P s P s P s

P s P s Q sy s
G s

d s Q s P s P s P s

y s P s Q s
G s

n s Q s P s P s P s

⋅
= =

⋅ − +

⋅ ⋅ −
= =

⋅ − +

⋅
= =

⋅ − +
 

At low frequency when disturbance dominate, Q(s) ≈ 1, and equations 3.9 – 3.11 become 

( ) ( ) ( )
( ) ( ) ( ) ( ), 0, 1. (3

n

yr n yd yn

P s P s
G s P s G s G s

P s

⋅
≈ = ≈ ≈ .12)

 

The disturbance rejection principle can then be explained using equation 3.12. It should be 

noticed that DOB is only used for disturbance rejection, and an outer control loop such as 

2DOF controller is still necessary for desired performance realization. 

 

3.3 Vehicle Motion with Active Lateral Control 

To intervene the vehicle motion through active control, actuator effects need to be 

investigated. The most widely used actuators in EVs are active front steer and IWMs [77]. In 

essence, they take effect on vehicle motion by means of changing the tire forces of the 

vehicle. For the applications studied in this dissertation, the representative states of vehicle 

motion are yaw rate, body slip angle and vehicle lateral position; this section will discuss the 

effects of different actuators on them. 

 

3.3.1 Active Front Steering Control 

Vehicle lateral motion is very sensitive to steering system, because the steer wheels change 

the lateral forces of the vehicle directly. Moreover, vehicle speed influences vehicle motion 

characteristics heavily. 
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Fig.3. 6 Frequency response of γ at different vehicle speeds (steering input). 
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Fig.3. 7 Frequency response of β at different vehicle speeds (steering input). 
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Fig.3. 8 Frequency response of yl at different vehicle speeds (steering input). 

 

From the model described in 2.27, the transfer functions from yaw rate (γ), body slip angle 

(β) and lateral offset at a preview point (yl) to front steering angle can be obtain as below: 
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Base on the vehicle parameters listed in the Appendix A, the bode plot of these three 

transfer functions with change to vehicle speed are shown from Fig. 3.6 to Fig. 3.8. It can be 

seen that vehicle motion becomes more sensitive with the increasing of speed. 
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Fig.3. 9 Frequency response of β at different vehicle speeds (differential torque input). 
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Fig.3. 10 Frequency response of γ at different vehicle speeds (differential torque input). 
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Fig.3. 11 Frequency response of yl at different vehicle speeds (differential torque input). 
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3.3.2 Differential Torque Control 

Traditionally realized by differential braking, direct yaw moment control (DYC) can be 

implemented more effectively using differential torque generated by the left and right IWMs 

[78]. This section analysis vehicle motion under different speed with yaw moment as control 

input. 

Again, from the model described in 2.27, the transfer functions from yaw rate (γ), body 

slip angle (β) and lateral offset at a preview point (yl) to differential torque can be obtain as 

below: 
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Base on the vehicle parameters listed in the Appendix B, the bode plot of these three 

transfer functions with change to vehicle speed are shown from Fig. 3.8 to Fig. 3.10. Similar 

to the steering input, the vehicle motion becomes more sensitive to the yaw moment input 

with the increasing of speed. Also, as can be observed, except yaw rate, the other two states 
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are not so sensitive to the yaw moment control. However, as an additional control input to 

steering, it is important to investigate the control applications using differential torque. 

 

3.4 Vehicle State Estimation Based on Kalman Filter 

As mentioned in chapter 1, although many vehicle states can be easily obtained from onboard 

sensors, some of them cost too high to be measured directly. Therefore, state estimators 

become an essential part for the vehicle control system using only a limited number of 

sensors. For vehicle state estimation, two factors are crucial: models and estimation 

methodology. As the model was developed in the previous chapter, this section introduces 

estimation methods briefly. 

The observer theory was first initiated by Luenberger for the state reconstruction of linear 

dynamical systems [79]. In 1960, Kalman introduced a state space approach in the time 

domain for multivariable linear causal systems. Unlike Luenberger observer which is based 

on deterministic environments, Kalman filter is based on the probability theory and 

applicable to processes that are linear stochastic [80]. 

Consider a linear time-invariant system in discrete form as given in equation 3.26, where 

w  and v  represent the process noise and measurement noise at step k, respectively. The 

two noises are assumed to be white, independent with each other, and with normal 

probability distributions [81]. 

k k

1 ,
(3.26)

,

k k k k

k k k

x A x B u w

y C x v

+ = ⋅ + ⋅ +

= ⋅ +

The Kalman algorithm has two basic parts as given in equations 3.27 and 3.28, and its 

principle is illustrated in Fig. 3.11. 

1) Time update 

1 1

1

ˆ ˆ
(3.27)

,

k k k

T

k k

x A x B u

P A P A Q

−
− −

−
−

= ⋅ + ⋅

= ⋅ ⋅ +
 

2) Measurement update 
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( )
( )

( )

1

ˆ ˆ ˆ (3.28)

T T

k k k

k k k k k

k k k

K P C C P C R

x x K y C x

P I K C P

−− −

− −

−

= ⋅ ⋅ ⋅ ⋅ +

= + ⋅ − ⋅

= − ⋅ ⋅
 

where the process noise covariance Q and measurement noise covariance R are given as 

[ ], [ ] (3.29)T T

k k k kQ E w w R E v v= =
 

 

3.5 Stability of Kalman Filter-based Control System  

The stability of a control system is extremely important and must be addressed in the control 

system design. To check system stability, a number of criteria are available, for example, the 

controller can be designed into a transfer function, and the closed-loop poles can be checked 

by using methods such as root-locus and Bode plot. In case of observer-based control system, 

the influence of observer dynamics on the closed-loop system should also be considered. 

That is, observer and controller should be designed together to guarantee system stability. 
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Fig. 3.11. Operating principle of the Kalman filter. 



40 

An intuitive design method is through the use of Kalman filter coupled with an LQR 

(Linear Quadratic Regulator) full state feedback gain. Such combination is often known as 

LQG (Linear Quadratic Gaussian) control [105]. To compensate steady state error, an 

integrator is often employed to function as another loop, which is known as LQI (Linear 

Quadratic Integral) control. That is, LQI control is the combination of LQG and integral 

control. An illustration of LQI is shown in Fig. 3.12. 

 

LQR Pu

z

r

ŷ

∫

K

x̂

iC

 

Fig. 3.12. Operating principle of the Kalman filter. 

 

To facilitate discussion, the stability analysis below are conducted with continuous 

formulations. A continuous Kalman filter has the following dynamics 

( )ˆ ˆ ˆ (3.29)x A x B u K y C x= ⋅ + ⋅ + ⋅ − ⋅&
 

The eigenvalues of the feedback system in Fig. 3.12 are the union of the eigenvalues of 

the matrices 

( ) (3.30)
0

iA B K B C
A K C

C

− ⋅ − ⋅⎡ ⎤
− ⋅⎢ ⎥

⎢ ⎥⎣ ⎦
U

 

Stability of the closed-loop system can be guaranteed if all the eigenvalues have strictly 

negative real parts. Notably, it enjoys a separation property, i.e., designs of state feedback 

and observer can be done independently, and so is the LQG control. 
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Another control method is PID control using the estimated variable as feedback signal, as 

shown in Fig. 3.13, where Fb is the PID controller, Λ is a indicator matrix which indicates 

which of the estimated states should be feedback to the Fb controller. 

 

bF P
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ŷ
u

z x̂

 

Fig. 3.13. Operating principle of the Kalman filter. 

 

The state of the plant can be formulated as 

( ) 1
(3.31)

x A x Bu

x s I A B u
−

= ⋅ +

⇒ = ⋅ − ⋅ ⋅

&

 

And considering the Kalman filter equation 3.29, the below equation can be derived 

( )

ˆ ˆ ˆ

ˆ (3.32)
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Then, taking the equation 3.31 into 3.12 yields 
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ˆ
(3.33)
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⎡ ⎤+ ⋅ ⋅ − ⋅⎣ ⎦⇒ = =
⋅ − + ⋅  

The closed-loop transfer function from feedback signal to reference can be formulated as 

equation 3.34. 
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Finally, we have the closed-loop transfer function as equation 3.35 by taking equation 

3.33 into equation 3.24. 

( )

( )

1

1

ˆ
(3.35)

1

b

b

I K C s I A B
F

s I A K C
y

r I K C s I A B
F

s I A K C

−

−

⎛ ⎞⎡ ⎤+ ⋅ ⋅ − ⋅⎣ ⎦⎜ ⎟⋅ Λ ⋅
⎜ ⎟⋅ − + ⋅
⎝ ⎠=
⎛ ⎞⎡ ⎤+ ⋅ ⋅ − ⋅⎣ ⎦⎜ ⎟+ ⋅ Λ ⋅
⎜ ⎟⋅ − + ⋅
⎝ ⎠  

If the eigenvalues of the characteristic equation in equation 3.35 all have strictly negative 

real parts, that is, all lie in the open left-half complex plane, the system is stable. 

 

3.6 Constrains of Observer-based Motion Control for 

Electric Vehicles 

The aforementioned control and estimation methodologies are based on two assumptions: 1) 

all the sampling times of sensors are the same and therefore can be fused directly; 2) the  

Holder Holder

Delay

*r

r̂
y

u

 

Fig. 3.12. Constrains of the observer-based method and solution. 
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sampling rate of input is the same with the feedback frequency. For vision-based EV control 

system as discussed in this dissertation, however, constraints exist in the visual measurements, 

i.e., the vision information is updated slower than the other onboard sensors, and is also 

slower than the system control input. The latter constrain is also known as N-delay input 

problem [1]. Moreover, the visual data are delayed due to image processing. The constrains 

are shown in Fig. 3.12. 

In a multi-rate and delayed system, if normal estimator is employed for feedback, the 

signals in the feedback loop then become out-of-sequence and impulsive. Meanwhile, the 

control input determined by the estimations is therefore incorrect and non-smooth. In fact, the 

stability margin of the control system is deteriorated with such constrains [82]. For a control 

system, the optimal sampling frequency can be determined by its closed-loop bandwidth and 

system design requirements [111].  Suppose the system has a closed-loop bandwidth of fc 

(Hz), and a general rule of thumb can be given to determine the range of the sampling period 

T as 

1 1
(3.36)

30 5c c

T
f f
< <

 

In case of body slip angle control studied in this dissertation, the closed-loop bandwidth is 

about 9 Hz, and the sampling period range can then be determined by equation 3.3.6 as: 3 ms 

< T <21 ms. Furthermore, the closed-loop bandwidth of other applications such as yaw rate 

(γ) control is often higher than 30 Hz, and it often requires a sampling period of 1 ms. 

Therefore, it is desirable to boost the body slip angle control loop to 1 kHz for integrated 

control applications such as combined γ and β control. 

One previous study focused on the multi-rate issue, and proposed a multi-rate observer for 

the calculation of input signal during two consecutive output sampling instances [83]. 

Unfortunately, it is open loop and cannot be applied to vehicle systems with high uncertainty 

and disturbances. This dissertation will design a multi-rate Kalman filter that can solve the 

multi-rate sensor fusion and the N-delay input problems. 

 

3.7 Considerations on Performance Requirements 

Vehicle control systems are investigated from many perspectives such as drivability, stability 

and economy. Among these directions, stability and drivability were given particular 
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attentions due to their importance to the drivers. Usually, stability is represented by body slip 

angle and drivability is indicated by yaw rate. In some cases, drivability alone cannot 

guarantee safety, and an integrated controller is therefore necessary to achieve both safety 

and drivability. In terms of control, two points need to be considered for a control system: 

robustness and reference following performance. Different applications have different 

evaluation criteria. 

Considering the above performance requirements, in this dissertation, two applications on 

vision-based EV motion control are studied: 

1) vision-based body slip angle control; 

2) vision-based integrated lateral motion control.  

The applications, performance representations and necessary control approaches are 

shown in Table 3.1. 

Table 3. 1  Applications and Control Approaches 

Application 
Performance 

Representation 

Necessary Control 

Approach 

Body slip angle control 

(β) Stability Feedback 

Integrated lateral motion 

control (γ, yl) 
Drivability 

Feed-forward + 

Feedback 

 

In addition to the controller, estimator is designed to provide information for the feedback 

loop. To increase control performance, a residual estimation-based multi-rate Kalman filter 

that can provide smooth estimate is desired. 

 

3.8 Chapter Summary 

This chapter first introduced two effective control approaches: 2DOF control and DOB 

methods. They will be applied to the applications studied in this dissertation. Since the most 

common actuators in EVs are AFS and IWMs, their effects on body slip angle, yaw rate and 

lateral offset at a previous point were then discussed. And then, Kalman filter was briefly 

introduced as a state estimation technique for vehicle applications. Then, the constrains of the 

observer-based control approach were explained. Finally, considering the performance 

requirements, two applications on vehicle stability and drivability were briefly introduced.  
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Chapter 4 

 

Multi-rate Kalman Filter Design Considering 

Time Delay 

This chapter focuses on developing estimation algorithms to solve the multi-rate and delay 

issues (the delay can be constant or random). First, a method for discretization of continuous 

model is introduced. Considering that measurements from different sources may have 

different sampling times and some of them are delayed, the two issues are then explained in 

details. And then, to deal with the constant or random measurement delay, two multi-rate 

Kalman filters with different approaches are designed. Moreover, their convergences of the 

proposed Kalman filters are analyzed. 

  

4.1 Introduction 

In many industrial applications such as vision-based EV control system, the sampling times 

of different sensors and actuators are not consistent, and some of the measured signals are 

delayed (constant or random) due to the processing time or/and transmission time. Therefore, 

Kalman filter design method considering multi-rate and delay issues are proposed in this 

chapter. Notably, constant delay is a special case of random delay, and the methods to solve 

random delay issue can be applied to state estimation with constant delay. On the other hand, 

solutions for constant delay such as state augmentation, although can be applicable to the 

random delay case, can be too complex to be implemented [30]. The state estimation methods 

discussed in this dissertation are under the framework of Kalman filter, and there are several 

points to consider: 

1) System discretization. Models that are available in the form of continuous form 

need to be discretized for real implantation.  In case of multi-rate system, more than 

one sampling time exist and the selection of discretization time should be considered. 

2) Time update (prediction). After discretization, time update can be implemented 

based on the system model in the normal way. There is no difference among system 

components with different sampling rates. 
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3) Measurement update (correction). The predicted system states are kind of open-

loop and need to be corrected using measurements. The system components with 

different sampling rates should be treated separately due to the inconsistent updates. 

 

4.2 Discretizaion of Continuous Model 

Most physical models are originally provided in the form of continuous-time differential 

equations or Laplace transfer functions, but computer implementations should be conducted 

in discrete-time manner [84]. In addition, many of the systems are time-varying, i.e., some 

parameters in the system model change from time to time. The two points need to be 

addressed in the system model for Kalman filter design. 

Consider a continuous time-varying plant given by 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

(4.1)

(4.2)

x t A t x t B t u t

y t C t x t

= ⋅ + ⋅

= ⋅

&

 

And assume the corresponding discrete system is given as 

1 (4.3)

(4.4)

k k k k k

k k k

x G x H u

y C x

+ = ⋅ + ⋅

= ⋅
 

where the samples of state vector, measurement vector, system matrices are defined as 

( ) ( )

( ) ( )

,
(4.5)

,

k k

k k

x x k T y y k T

A A k T B B k T

= ⋅ = ⋅

= ⋅ = ⋅
 

and T is the sampling period. 
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To relate discrete-time formulations with continuous ones, it is desirable to define a 

discrete index k (also known as time step) that satisfying t = k·T. The state, control input and 

output are then to be switched at each time k·T, where k =0, 1, 2,…. 

By including a ZOH, the control part of the system (includes both control matrix B and 

control input u) can be held constant before entering the plant between control switchings. 

That is 

( ) ( ) ( ), 1k kB t u t H u k T t k T⋅ = ⋅ ⋅ ≤ < + ⋅ (4.6)
 

The exact solution of equation 4.1 can be obtained as equation 4.7. 

0 0 0

0

A( ) ( ) A( ) ( )

0x( ) x( ) B( )u( )d (4.7)
t

t t t t t τ

t
t e t e τ τ τ⋅ − ⋅ −= + ∫

 

Consider t0 and t as two neighboring sampling times which are defined as 

( )0 , 1 (t k T t k T= ⋅ = + ⋅ 4.8)
 

Equation 4.7 can be recalculated as 

( )( ) [ ]( )1
A( ) ( 1)A( )x 1 x( ) B( )u( )d (4.

k T
k T k Tk T T

k T
k T e k T e τ τ ττ+ ⋅ ⋅ ⋅ + ⋅ −⋅ ⋅

⋅
+ ⋅ = ⋅ + ∫ 9)

 

Then, taking σ = τ - k·T into equation 4.9 and combining it with equation 4.5, equation 

4.10 can be obtained. 

[ ]AA

1
0

x x B( ) u( )d (4.10)kk
T

TT

k ke e τ τσ σ⋅ −⋅
+ = + ⋅∫

 

From time 0 to T, remember that B(t)·u(t) has a constant value of BBk·uk due to the ZOH, 

they can be extracted from the integrand as 

[ ]AA

1
0

x x d B u (4.11)kk
T

TT

k k k ke e
σ σ⋅ −⋅

+ = + ⋅ ⋅∫
 

Changing τ= T - σ into equation 4.11 yields 

A A

1
0

x x d B u (4.12)k k
T

T

k k k ke e
τ τ⋅ ⋅

+ = + ⋅ ⋅∫
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Comparing equations 4.3 and 4.12, the disretized system matrices are given as equation 

4.13. 

A A

0
, d B (4.13)k k

T
T

k k kG e H e
τ τ⋅ ⋅= = ⋅∫

 

Furthermore, equation 4.13 can be expanded as below 

2 2 3 3

2 2 3

1 1
...

2! 3!
(4.14)

1 1
...

2! 3!

k k k k

k k k k k k

G I A T A T A T

H B T A B T A B T

= + ⋅ + ⋅ ⋅ + ⋅ ⋅ +

= ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ +
 

In case of small sampling period, Gk and Hk can be approximated by retaining only the 

first two terms and the first term, respectively. That is  

(4.15)
k k

k k

G I A T

H B T

≈ + ⋅

≈ ⋅
 

In addition, since the system measurement equation 4.2 is non-dynamical, matrix C(t) can 

be assumed to be unchanged on discretization during the sampling period. That is 

( ) ( ) (4.16), 1kC C t k T t k T= ⋅ ≤ < + ⋅
 

 

4.3 Problems Statement 

With the discretization method above, a general discrete state space equation can be 

formulated as equation 4.17 by considering that the system model contains uncertainties and 

the sensor measurements are contaminated by noises. 

1

(4.17)
k k k k k k

k k k k

x G x H u w

y C x v

+ = ⋅ + ⋅ +

= ⋅ +
 

where wk and vk represent process noise and measurement noise, respectively. 
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Two issues are considered here: multi-rate and delayed measurements. Furthermore, the 

delay can be constant or random depending on the delay periods. 

4.3.1 Multi-rate Sampling 

As mentioned in the introduction chapter, many industrial applications have to handle multi-

rate and delayed measurements. For example, in the chemical process, there exist two 

sampling frequencies: the infrequently sampled measurements are known as primary 

measurement, and the frequently available variables are referred as secondary measurements 

[85]. The measurement equation can be described by equation 4.18. 

(4.18)

1st 1st 1st-2nd 1st

2nd 2nd -1st 2nd 2nd 2nd

k k k k k

k k k k k

y C C x v

y C C x v

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⋅ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1st

 

where the superscripts 1st and 2nd represent primary and secondary terms, respectively; the 

non-diagonal matrices are zeros if the primary and secondary measurements are not 

correlated, and it is the case that studied in this dissertation. Similarly, the measurement 

samplings in the field of mechatronics, although can be several different rates, are two in 

many cases [86], [87]. In fact, the system with more than two sampling frequencies can be 

handled by considering it as a combination of several dual-rates systems. Therefore, a system 

with two sampling rates is considered here. 

Assume that the two different measurement times in the dual rate system are: the sampling 

period of secondary measurement (defined as Ts) which is shorter and the updating time of 

primary measurement (defined as Tl) which is much longer. Therefore, the selection of Ts and 

Tl for system discretization needs to be considered. If the system sampling time is set to Tl, 

data from the high-speed sensors have to be dropped during inter-sampling of the slow-speed 

device. This is a straightforward solution for the multi-rate issue but obviously deteriorates 

the estimation performance. An alternative method is to set the system sampling time to Ts. 

Then, all the information from the fast-rate sensors can be utilized. However, the inter-

sample residuals of the slow-speed device must be addressed for Kalman filter 

implementation. The system measurements are given as 
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⎨
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where N=Tl/Ts, which is known as multi-rate ratio or multiplicity. 

4.3.2 Time-delay 

Not only sampled infrequently, the primary measurements are also delayed in many 

situations [85]. Depending on the delayed periods, it can be categorized into random delay 

and constant delay cases. 

Random time-delay: 

The sampling sequence of a random delayed system is shown in Fig. 4.1. Unlike normal 

measurements, the information from the primary measurement is captured at step k-nd_i, but 

is only available at step k due to reasons like process delay, where nd_i=Td_i/Ts and Td_i is the 

time delay of the primary measurement at time stamp i. nd_i denotes the number of intervals 

between two successive primary measurements. For uneven delay, Td_i varies from step to 

step. In this dissertation, it is assumed that the time delays are within one primary sampling 

period. Therefore, Td_i can only be one value from the set {1, 2, …, N} at an arbitrary i.  

The primary measurements equation can be formulated as equation 4.20. 

_ _ _
(4.20)

1st 1st 1st 1st

d i d i d ik k n k n k ny C x v− − −= ⋅ +
 

The time interval between every two neighboring primary samples (i and i+1) is given as 

equation 4.21. 

_ 1 _ _ 1 (4.21)i i l d i d iT T T T+ += − +
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_1dT _ 2dT

_1 _ 2l d dT T T− +

lT lT lT lT

_ 2 _ 3l d dT T T− + _ 3 _ 4l d dT T T− +

sT

_ 3dT
_ 4dT

_1dk n−

k

 

Fig.4. 1 System sampling sequence (primary measurement with random delay). 

Constant time-delay: 

Unlike the afore-discussed random delay, the measurement delay in this case does not change. 

For example, in the application of vision system, image processing time can be implemented 

to be nearly constant by modifying the image processing program (such as adding a delay). 

In case of constant delay, the aforementioned Td_i is constant for all the step i. That is 

_1 _ 2 _ (4.22)...d d d i dT T T T constant= = = = =
 

and the time interval between every two neighboring primary samples is therefore Tl. The 

primary measurements equation can be formulated as equation 4.23. 

(4.23)
1st 1st 1st 1st

d d dk k n k n k ny C x v− − −= ⋅ +
 

The sampling sequence of primary measurement with constant delay is shown in Fig. 4.2. 

Here, it is assumed that the time delay is within one sampling period of the camera. In fact, 

constant delay is a special case of random delay. 

It should be noted that, although the above two situations assume the visual measurement 

delays are less than one sampling length of the camera, the multi-rate Kalman filter 

methodologies elaborated later in this chapter can also be applied for the cases if image 

processing takes more than one visual sampling period. 
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Fig.4. 2 System sampling sequence (primary measurement with constant delay). 

4.4 Multi-rate Kalman filter Design Considering 

Constant Measurement Delay 

The multi-rate and constant delay issues are solved one by one in this section: the constant 

delay problem is solved using state augmentation approach and, the multi-rate Kalman filter 

is then developed based on the augmented system. 

 

4.4.1 Augmentation of Constant Measurement Delay 

An intuitive solution to the problem of state estimation with constant measurement delay is 

the so-called state augmentation method [88]-[89]. Because the state-space formulation is 

retained, although has excessive computation load, this approach has been favored in both 

academic and industrial fields, which can be extended to solve the other problems such as the 

multi-rate issue discussed in this dissertation. Several state augmentation methods are 

available based on the required information to be augmented. 

All delayed states augmentation (fixed-lag smoother): 

A classical state augmentation algorithm is the fixed-lag smoothing approach which 

augments the current state with all the delayed states between measurement sampling time  
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and arriving time [90].  

Remember that the delayed primary variables are measured at the instance k-nd and arrive 

with a constant delay of nd steps. The new system after fixed-lag augmentation is given as 

equation 4.24. 

Due to the availability of secondary measurement at every short sampling instances, this 

method smoothes the past nd states and, when the delayed primary measurement arrives, both 

primary and secondary measurements are used to smooth estimates. Obviously, this method 

is computational intensive for large time delay due to the large state expansion. 

Measurement augmentation: 

In many applications such as the one studied in this dissertation, the number of primary 

variables is less than the state dimension. Considering that not all the states are required to be 

estimated within the delay period, it is enough to augment the current state with only the 

primary measurements for the previous delayed nd steps. The augmented system in this 

method is given as 
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(4.25)

 

Being able to maintain the same amount of information, measurement augmentation 

method has smaller order than the state augmentation approach. However, its computational 

load is still heavy for large values of nd which is the case in this dissertation. 

Sample-state augmentation: 

Compared with the aforementioned two augmentation approaches, another augmentation 

algorithm, proposed in [91] and named sample-state augmentation method in [35], is 

favorable in terms of calculation burden. The lagged measurement at step k represents the 

state nd steps before, thus, only the information of the state at k-nd need to be stored until the 

measurement arrival time. Instead of augmenting the state with all the previous states or all 

the previous primary measurements during delay period, it is sufficient to augment the state 

with the information at step k-nd, when the primary measurement is sampled, i.e., the 

augmented state vector is 

(4.26)
d

T
a T T

k k k nx x x −⎡ ⎤= ⎣ ⎦  

The measurement vector is exactly the same with the previous two methods and, system 

matrices in this method are given as 
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This state arrangement, at step k-nd, has the state vector as expressed in equation 4.28. 

  
(4.28)

d d

T
a T T

k k n k nx x x− −⎡ ⎤= ⎣ ⎦

During the latency period of the primary measurement, the augmented states are only 

updated with the non-delayed measurement by using an indicator matrix which indicates 

which of the states must be updated and which should be neglected. That is, the indicator 

matrix is block diagonal with 1s in the diagonals for states which should be updated and 0s 

for states which are not to be updated [91]. After nd steps, the primary measurement is 

optimally fused at step k. 

This method, although has much less state order than the previous two augmentation 

approaches, has to double the original states. In this dissertation, the measurement vector is a 

subset of the state vector (except the non-measurable state), therefore, it is possible to 

modified the sample-state augmentation method that only primary measurement-related 

states are augmented for computation load reduction. It will be further explained in Chapter 5. 

 

4.4.2 Multi-rate Kalman Filter Design Based on Inter-sample 

Residual Estimation 

With the augmented state space equation, Kalman filter can be readily constructed. However, 

due to the sampling discrepancy among different sensors, the sampling time of the system 

need to be considered. A straightforward solution is to adapt the sampling rate of high-speed 

sensors to the slowest device with the sacrifice of estimator updating rate and loss of inter-

sample information from high speed devices, i.e., transform the multi-rate system to a single-

rate one. Another approach is the so-called multi-rate Kalman filter as studied in [22]-[24]. 



56 

The multi-rate Kalman filter is aimed at utilizing more information from high-speed sensors 

and increasing the updating rate of the estimator for high-performance control. Furthermore, 

considering or neglecting the inter-sampling performances, two kinds of multi-rate Kalman 

filter can be designed as elaborated below. 

Multi-rate Kalman filter without inter-sample residual estimation: 

First, the system is discretized with the sampling time of the fastest device, i.e., secondary 

measurement time is set as the system discretization time. Then, the time update can be 

implemented in the normal way based on the system model as explained in the previous 

chapter. To distinguish different measurement sources, primary measurement-related 

prediction and secondary measurement-related prediction are separated as expressed in 

equation 4.29. As can be observed, they share the same form of time update. 

1 1 1 1

1 1 1 1

(4.29)
ˆ ˆ

ˆ ˆ

1st 1st 1st 1st

2nd 2nd 2nd 2nd

k k k k k

k k k k k

x A x B u

x A x B u

−

−

− − − −

− − − −

= ⋅ + ⋅

= ⋅ + ⋅
 

During the time intervals of i·Tl, no primary information is available while the secondary 

signals can be obtained at every Ts time. 

Therefore, the correction for secondary measurement can be updated normally as 

( ) (4.30)ˆ ˆ ˆ2nd 2nd 2nd 2nd 2nd

k k k k k kx x K y C x− −= + ⋅ − ⋅
 

Meanwhile, during inter-samples, pseudo-corrections have to be implemented for the 

operation of the primary measurement update. An intuitive solution is to assume that the 

primary measurement is exactly the same as model-based prediction, and the primary 

measurement update therefore has the form of equation 4.31, which is equivalent to assume 

that, the primary measurement is the same with prediction, i.e., the inter-measurement 

residuals are set to zero. Using this method, corrections can still be made with information 

from high-speed sensors during the inter-sampling of the slow-rate device. 

( )
,

.

(4.31)

ˆ ,
ˆ
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x K y C x
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− −

= ⋅

= ⋅

⎧⎪= ⎨
+ ⋅ − ⋅⎪⎩  
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By assuming that the measurements of the slow-rate sensors are the same as the model-

based predictions during the inter-sampling periods, the above method realizes higher 

estimation accuracy and faster updating frequency than the single-rate one. The relevant 

applications can be found in satellite control [34] and construction monitoring system [16]. 

However, the assumption on measurements is not true in practice because of the presence of 

modeling errors. That is, inter-sampling residuals are not zero. In addition, the convergence 

of such method is questionable during inter-sampling periods, which will be discussed later 

in this chapter. Therefore, the inter-sample residuals must be computed for better estimation 

accuracy and convergence. 

Multi-rate Kalman filter with inter-sample residual estimation: 

As aforementioned, the above multi-rate Kalman filter cannot guarantee inter-sample 

performances of the estimate during measurement intervals. Therefore, a new method with 

inter-sampling residual estimation is proposed in this section as explained below. 

The same as the multi-rate Kalman filter without inter-sample compensation, first, the 

sampling time of the secondary measurement is used to discretize the system and, the time 

update is expressed as given in equation 4.29. For correction of secondary prediction, 

equation 4.29 is also applicable. 

During the time intervals of the primary measurement, in case of multi-rate Kalman filter 

with inter-sample residual estimation, the measurements are predicted even if they are not 

available and, the states estimation should have the form of equation 4.32.  

( ) (4.32)ˆ ˆ ˆ
k k k k k kx x K y C x− −= + ⋅ − ⋅%

 

where 

( ) ( )

( ) ( )

, ,

, .

,

,

T T
2nd 1st

T T
2nd 1st

T

k
T

y y
k k

y y
k k

if k i N

if k i N

y

⎡ ⎤
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥⎣ ⎦

= ⋅

≠ ⋅

⎧
⎪= ⎨
⎪
⎩ %

%

 

In the above formulation, primary measurements during inter-samples need to be 

estimated. For Kalman filter design, measurements are utilized for residuals calculation, 

therefore, residuals will be considered instead of measurements in the following equation 

derivations. The basic idea of the inter-sample residual estimation is to utilize the residual of 
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the initial step that is available and propagate it to the following inter-measurement steps. 

After N steps, the residual is recalculated when new measurements come in.  

The general definition of residual ε and estimation error e are shown in equations 4.33 and 

4.34, respectively. The two equations play important roles in the inter-sample residual 

calculation. 

(4.33)

(4.34)

ˆ

ˆ

Cy x

e x x

ε −= − ⋅

= −
 

To derive the pseudo-residual algorithm, process noise wk and measurement noise vk are 

assumed to be small and are hence ignored. This assumption is based on two considerations. 

First, the inter-sample residual compensation in this application is designed for visual 

information. As aforementioned, the vision model and the visual measurements are assumed 

to be accurate. Second, obtaining wk and vk in real time for algorithm implementation is 

difficult. 

Based on the discrete system in equation 4.16, the algorithm for the inter-sample residual 

calculation can be generalized in four steps as follows: 

1) When sensor measurements are available, the initial residual at step k is obtained as 

equation 4.35. The initial residual is available at each i·Tl step. 

(4.35)ˆ
k k k ky C xε −= − ⋅

 

2) Using equation 4.34 and considering that matrix Ck might not be invertible, the initial 

estimation error can be estimated by εk as 

( ) 1

(4.36)
T T

k k k k k kC C C Ke ε
−⎡ ⎤= ⋅ ⋅ − ⋅⎢ ⎥⎣ ⎦  

3) From the definition of the estimation error in equation 4.34, the estimation dynamics 

at step k+j can be propagated using equation 4.37, where j ϵ [1, Tl / Ts). 
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1 1 (4.37)

ˆ

ˆ ˆ( )

ˆ ˆ( ) ( )

( )

k j k j k j

k j k j k j k j k j k j

k j k j k j k j k j k j k j

k j k j k j k j

K

K

K

e x x

x x y C x

x x C x C x

I C G e

+ + +

− −
+ + + + + +

− −
+ + + + + + +

+ + + − + −

= −

= − − ⋅ − ⋅

= − − ⋅ ⋅ − ⋅

= − ⋅ ⋅ ⋅
 

4) Finally, the pseudo-residual during the inter-sampling period is given by equation 

4.38 and, it is updated using equation 4.37. 

1 1 1 (4.38)

ˆ

ˆ

k j k j k j k j

k j k j k j

k j k j k j

y C x

C x C x

C G e

ε −
+ + + +

−
+ + +

+ − + − + −

= − ⋅

= ⋅ − ⋅

= ⋅ ⋅

%

 

The above four steps are shown in Fig. 4.3. The first two steps are the initialization, and 

the estimation error is then self-propagated using equation 4.37. Finally, the inter-sample 

residuals are obtained using the estimated error dynamics. The estimation errors must be 

noted to be unknown in reality because some states are not available from the sensors. In  
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ˆ
k k k ky C xε −= − ⋅

( ) 1
T T

k k k k k ke C C C K ε
−⎡ ⎤= ⋅ ⋅ −⎢ ⎥⎣ ⎦

1 1( )k j k j k j k j k je I K C G e+ + + + − + −= − ⋅ ⋅ ⋅

1 1 1k j k j k j k jC G eε + + − + − + −= ⋅%

 

Fig.4. 3 Operating principle of the inter-sample residual estimation. 

 

addition, the key factor for estimation correction is the residual. In this algorithm, the 

estimation errors function as intermediate quantities for the calculation of pseudo-residuals. 

Equations 4.35-4.38 further yield a self-propagation equation for inter-sample residuals 

using the initial residual at step k+j as 

1

(4.39)

j

k j k m k

m

Qε ε+ +
=

= ⋅∏%
  

where 

( ) ( ) 1
T T

k m k m k m k m k m k m k m k mQ C G I K C C C C
−

+ + + + + + + += ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅
 

 Notice that the above processes calculate the inter-sample residuals for all the states, and 

the secondary measurement-related states are not needed since they have true correction. The 
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below calculation is performed to extract the primary measurement-related states for 

measurement update. 

 
(4.40)

1st 1st

k j k j k jCε ε+ + += ⋅% %
 

Finally, the primary measurement at any step k during sampling intervals can be given as 

the below equation for the operation of equation 4.32. 

(4.41)ˆ1st 1st 1st

k k k kC xy ε−= ⋅ + %%
 

 

4.4.3 Convergence Analysis 

In this section, the aforementioned two multi-rate Kalman filters are analyzed in terms of 

convergence performance in comparison with the idea case.  The ideal case means that all the 

measurements are available at every short sampling time, i.e., the primary measurements are 

sampled at the frequency of secondary measurements. 

1) Ideal case. Considering the discrete Kalman filter given in equations 4.3 and 4.4 , in the 

ideal case, measurements are available at every step, and the observation error at step k+n is 

given as 

( )

( ) ( )

[

1 1 1 1 1

1 1 1

1
1

1

1 1
1

ˆ

( )

( ) (

k n k n k n

k n k n k n k n k n k n

k n k n k n k n

k n k n k n k n k n k n k n k n k n

n

k i k n k i k
i

n

k i k i k i
i p

e x x

G x H u w x

K y C x

I K C G e K w I K C w

I K C G e

I K C G I

+ + +

+ − + − + − + − + − +

+ + + +

+ + + − + − + + + + + −

+ + + −
=

−

+ + + + +
= +

= −

= ⋅ + ⋅ + −

− ⋅ − ⋅

= − ⋅ ⋅ ⋅ − ⋅ + − ⋅ ⋅

⎡ ⎤= − ⋅ ⋅ ⋅ +∏ ⎣ ⎦

⎤− ⋅ ⋅ ⋅⎦∏

[ ]

1

1 1

0

1
11

(4.42)

)

( )

n

k p k p k p

p

n n

k i k i k i k p k p
i pp

K C w

I K C G K v

−

+ + + + +
=

+ + + − + +
= +=

⎧ ⎫− ⋅ ⋅⎨ ⎬
⎩ ⎭

⎧ ⎫− − ⋅ ⋅ ⋅ ⋅⎨ ⎬
⎩ ⎭
∏

∑

∑
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Obviously, well-designed Kalman gains perform n times to minimize the estimation error 

even if the system itself is unstable, and the subtraction of the measurement noise term vk+p 

can further reduce the estimation error. That is, the estimation result can converge to true 

value gradually. 

2) Multi-rate Kalman filter without inter-sample residual compensation. In the case where 

measurements during inter-samples are absent, the residuals are zero, and the observation 

error is derived as follows:  

( ) ( )

1 1 1 1 1

1 1 1

1 1 1

0 0 1

(4.43)

ˆ
k n k n k n

k n k n k n k n k n k n

k n k n k n

n n n

k i k k i k p

i p i p

e x x

G x H u w x

G e w

G e G w

+ + +

+ − + − + − + − + − +

+ − + − + −

− − −

+ + +
= = = +

= −

= ⋅ + ⋅ + −

= ⋅ +

⎡ ⎤
= ⋅ + ⋅⎢ ⎥

⎣ ⎦
∏ ∑ ∏

 

The error dynamic at step k+n was found to be dependent only on the system matrix. That 

is, ek+n is open loop. If the system is not stable, the estimation error cannot converge to the 

true value. 

3) Multi-rate Kalman filter with inter-sample residual compensation. To improve the 

convergence performance, the observation error was derived using the algorithm given in 

Section IV as follows: 

( ) ( )

( )

1 1 1 1 1

1 1 1

1 1 1

0 0 1

1

1

(4.44)

ˆ
k n k n k n

k n k n k n k n k n k n k n k n
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n n n
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G K

ε

ε

ε

+ + +
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+ − + − + − + +

− − −

+ + +
= = = +

−

+ + +
= =

= −

= ⋅ + ⋅ + − − ⋅

= ⋅ + − ⋅

⎡ ⎤
= ⋅ + ⋅ −⎢ ⎥

⎣ ⎦

⎡ ⎤
⋅ ⋅⎢ ⎥

⎣ ⎦

∏ ∑ ∏

∑ ∏

%

%
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 Compared with the multi-rate Kalman filter without residual compensation in 2), the 

estimation error at step k+n was subtracted by the estimated residual, which can reduce 

estimation error. That is, this method showed better convergence performance than the multi-

rate Kalman filter without residual compensation. 

Meanwhile, the estimation error in this case can also be derived as 

( )

[

1 1 1

1 1 1 1 1 1

1 1 1

1
1

1

1 1
1

ˆ

( )

( ) (

k n k n k n

k n k n k n k n k n

k n k n k n k n k n k n k n

k n k n k n k n k n

n

k i k i k i k
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k i k i k i k
i p

e x x

G e w K

G e w K C G e

I K C G e w

I K C G e

I K C G I K

ε

+ + +

+ − + − + − + +

+ − + − + − + + − + − + −

+ + + − + − + −

+ + + −
=

−

+ + + + +
= +

= −

= ⋅ + − ⋅

= ⋅ + − ⋅ ⋅ ⋅

= − ⋅ ⋅ ⋅ +

⎡ ⎤= − ⋅ ⋅ ⋅ +∏ ⎣ ⎦

⎤− ⋅ ⋅ ⋅ −⎦∏

%

1

1 1

0

(4.45))
n

p k p k p

p

C w
−

+ + + + +
=

⎧ ⎫⋅ ⋅⎨ ⎬
⎩ ⎭

∑

 

Compared with the ideal case in 1), the first two terms are the same. However, the 

measurement noise term is absent, which renders it worse than the ideal case. 

In general, the multi-rate Kalman filter with residual compensation performs better than 

the one without compensation but behaves worse than the ideal case when measurements are 

available at every short sampling time. 

 

4.5 Multi-rate Kalman filter Design Considering 

Uneven Measurement Delay 

Unlike the constant delay, state augmentation method can be complex for state estimation 

with uneven delay [30]. Therefore, a measurement reconstruction method is developed to 

solve the random delay issue and, the inter-sample residual estimation is then performed 

based on the reconstructed measurement. 
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4.5.1 Measurement Reconstruction 

As can be seen in Fig. 4.4, the out-of-sequence primary information is not straightforward for 

fusion with the secondary signals, and it is therefore desired to reconstruct it. 

Consider that the primary data are sampled at ( )1 li T− ⋅ , but are not available until  time 

, it is reasonable to assume that the samplings are taken at ( )  

instead of ( . Thus, the delay is removed from the reconstructed sampling sequence. As 

the measurements at ( )  represent the information at

( ) _1 l di T T− ⋅ + i i

T

i

_1 l di T T− ⋅ +

)1 li − ⋅

_1 l di T T− ⋅ + ( )1 li T− ⋅ , and corresponding 

modification of residual is necessary. 

 

_1dT _ 2dT

lT lT lT lT

_ 3dT
_ 4dT

sT

_ 2 _ 3l d dT T T− + _ 3 _ 4l d dT T T− +

sT

_1 _ 2l d dT T T− +

_1dT

_ 2l dT T+

_ 32 l dT T⋅ +

_ 43 l dT T⋅ +

 

Fig.4. 4 Measurement reconstruction 
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After the above re-arrangement, the delays are removed from the primary measurements. 

However, the updates are still uneven and the sampling time is much longer than that of the 

secondary one. The problem is then transformed into designing a multi-rate Kalman filter for 

a discrete system with random multi-ratio. Two points need to be considered in this case: 1) 

residual modification at every ( ) _1 l di T T− ⋅ + i
 time; 2) residuals estimation between every 

neighboring primary samples. 

 

4.5.2 Inter-sample Residual Estimation 

The solution for multi-rate measurement with random delay is also based on residual 

estimation technique. The overall algorithm can be summarized as: first consider the idea 

case when measurements are available at every Ts without delay, and derive the residual 

propagation equations. Then apply them to the multi-rate and delayed case. 

Then, apply the residual calculation equation to the reconstructed measurements. The 

algorithm can be generalized in three situations as follows: 

1) Initial nd_1 steps: 

At step k in [0, nd_1), the residual εk is 0 due to the delay of measurement, i.e., the 

measurements are not available for initial residuals calculation. 

2) Reconstructed residual at each (i-1)·n + nd_i step: 

The measurement at each (i-1)·n + nd_i step represents information at step (i-1)·n, 

and the correct residual at that step is given as 

 ( ) ( ) ( )1 1 1
(4.46)

i n i n i n
Cy xε − ⋅ − ⋅ − ⋅= − ⋅

 

Based on the propagation equation in equation 4.39, the residual at step (i-1)·n + 

nd_i  can be calculated as 

( ) ( ) ( )

_

_
1 1 1

1

(4.47)
d i

d i
i n n i n m i n

n

m

Qε ε− ⋅ + − ⋅ + − ⋅
=

= ⋅∏
 

This can be interpreted as: prepare the correct residual propagation matrix, and 

then calculate the final residual when measurements are available. 

3) Inter-sample residual: 
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The basic idea of the inter-sample residual estimation is to utilize the residual of the 

step 2 that is available and propagate it to the following inter-measurement steps. 

After steps (the delayed steps), the residual is recalculated when 

“new measurement” come in. However, it should be noticed that the so-called “new 

measurement” is not new because it is the delayed information. 

( )( __ 1 d id i
n n n−− + )

i ≥

Between every two neighboring sampling times of the camera, the residual εk can 

be expressed as 

( )

( )

( )

( ) ( )( )

_

_ _

_ _ 1

1

1 1
1

,1

(4.48)
d i

d i d i

d i d i

k i n n
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k i n n m i n n
m

where k i n n i n n

Qε ε

+

− − ⋅ −

− ⋅ + + − ⋅ +
=

⋅ +∈ − ⋅ +
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Be noted that the residual in 4.48 includes the part for secondary residual, and the 

primary residual should be extracted from it using equation 4.40. 

 

4.5.3 Convergence Analysis 

The convergence of the proposed multi-rate Kalman filter with compensation for random 

delay is analyzed in this section. Considering that different periods have different 

convergence characteristics, three cases are considered as below 

)
( )
( ) ( )( )

_1

_1 _ 2

_ _ 1
1

1 . 0, ;

2 . , ,

3 . , , 2.

st

d
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d d
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d i d i

N

i N i N

k n

k n n

k n n +− ⋅ ⋅

⎡∈ ⎣
∈ +

∈ + +
 

1) In the first case, as the first sample is delayed, there is no signal feedback during this 

period; estimation error is therefore purely based on the model and initial error. 

( ) ( )
1 1 1

0

0 0 1

ˆ

(4.49)
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⎣ ⎦
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It can be observed that the estimation error dynamics is open loop, i.e., the convergence 

during [0, nd_1) cannot be guaranteed. 

2) The residual at step nd_1 when the first measurement is available is calculated based on 

the below equation 

_1

_1 0

1

(4.50)
d

d

n

n i

i

Qε ε
=

= ⋅∏%
 

where ε0 is the initial residual.  

Then, at any step during (nd_1, N+nd_2), the estimation error can be calculated as 

( ) ( )
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_1 _1 _1 _1

_1 _1 _1

11 1
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ˆ
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where 

( ) ( )
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ˆ
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It can be seen from equation 4.51 that in addition to the open loop dynamics, a term 

containing Kalman gain and estimated residual is added. The estimation error can then 

be minimized with suitable Kalman gains asymptotically. 

Another interpretation of the error dynamics can be formulated as 

_1 _1 _1

_1 _1 _11
1

ˆ

( )

d d d

d d d

n k n k n k

k

n i n i n
i

e x x
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_1 _1 _1 _1
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From the equation 4.52, it can be observed that the estimation error can be reduced 

along with the increasing of k, which can also prove the convergence of the proposed 

Kalman filter with residual estimation. 

3) Then, the error dynamics hereafter at any step during ((i-1)·N+nd_i, i·N+nd_(i+1)), i≥2 

share similar formulations. For simplicity, this section only considers the case when 

i=2. That is, at any step during (N+nd_2, 2·N+nd_3).  

The residual at step nd_1 is calculated based on the below equation 

_ 2

_ 2 1
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Then, the estimation error can be calculated as 
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It can be seen from equation 4.54 that in addition to the open loop dynamics, a term 

containing Kalman gain and estimated residual is added. The estimation error can then 

be minimized with suitable Kalman gains asymptotically. 

Or we can interpret the error dynamics as 

_ 2 _ 2 _ 2

_ 2 _ 2 _ 2

_ 2 _ 2

_1 _ 2

1
1

1

1 1
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ˆ
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It can also be observed that the estimation error can be reduced along with the 

increasing of k. 

 

4.6 Chapter Summary 

This chapter mainly dealt with the theories related to multi-rate and delay issues. First, the 

discretization method for observer design was introduced. Then, considering the discrepancy 

between primary and secondary measurements, the multi-rate and delay (constant or random) 

issues were stated in detail. And then, multi-rate Kalman filter based on state augmentation 

was designed, and the convergence performance was analyzed. Finally, the multi-rate 

Kalman filter considering uneven delay was studied using measurement reconstruction 

method and inter-sample residual estimation algorithm and, the convergence performance 

was also analyzed and compared with the other methods. This chapter provides a general 

solution to state estimation with multi-rate and delay issues. 
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Chapter 5 

 

Vision-based Multi-rate Estimation for 

Vehicle Body Slip Angle Control 

In this chapter, a new method for vehicle body slip angle estimation is studied using the 

nontraditional sensor configuration and system model proposed in Chapter 2, which enables 

robust estimation against vehicle parameter uncertainties. Due to the sampling characteristics 

of the vision system, a multi-rate estimation method is employed. The proposed body slip 

angle estimation method is verified with simulations and experiments. And then, a 2DOF 

controller is designed with the estimated body slip angle as feedback. It is demonstrated that, 

the open loop stability margin of the system with the multi-rate feedback can be improved 

compared with the with single-rate feedback case. 

 

5.1 Introduction 

Body slip angle, also known as sideslip angle, is considered as one of the key enablers for 

vehicle motion control systems [54]. However, off-the-shelf products for body slip angle 

measurement such as noncontact optical sensor and GPS-based apparatus are very expensive 

for practical applications [39]. Therefore, cost-effective methods for vehicle body slip angle 

estimation have been studied extensively during the last few decades [52]-[54]. Based on the 

models used, past research can be generally divided into two categories: kinematic model-

based and dynamic model-based methods. In [54], the body slip angle was calculated based 

on its kinematic relationship with the yaw rate, longitudinal acceleration, and so on; however, 

this method involves integration of sensor signals and, therefore, requires high-precision 

sensors. Given that the kinematic model does not include time-varying parameters such as 

tire cornering stiffness, the driving condition change has little influence on the estimation 

accuracy. However, this method is heavily affected by sensor noise and drift [39]. The 

second method is based on vehicle dynamics with either linear or nonlinear bicycle model. In 

[52], linear bicycle model-based observers were constructed and verified with experimental 

data. To provide more design freedom and avoid unobservable situations, lateral acceleration 
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was utilized as an additional measurement in [55], but uncertainties (cornering stiffness) are 

also brought into the system observation equation. Although the linear observer is easy to use, 

the parameters of the linear models are fixed; thus, not all driving conditions can be 

addressed. Considering the nonlinear characteristics of tires, nonlinear model-based 

methodologies provide better estimation accuracy under different driving conditions 

compared with the linear one. For example, in [58], a nonlinear vehicle model was 

considered as a bounded Jacobian system for more accurate results under different running 

situations. However, such nonlinear estimators are very complex and theoretically immature 

[39], [39]. 

Meanwhile, look-ahead cameras have increasingly become popular in vehicles. Most 

related studies and products are designed for lane departure warning, lane keeping, or 

collision avoidance [61]. Nevertheless, investigating other applications using the onboard 

vision system is desirable. Based on the simple linear model that combines the vehicle and 

vision models proposed in Chapter 2, a body slip angle estimation method is investigated, 

and the visual model is independent of the uncertain parameters of the vehicle, such as 

cornering stiffness. Moreover, as stated before, vehicle position measurement from the vision 

system is very accurate. Therefore, incorporating visual information can increase the 

estimator’s design freedom without introducing uncertainties into it. However, two issues 

arise with this method. The first one is visual measurement delay caused by image processing 

(in this chapter, it is assumed that the delay is constant), and it is generally too long to be 

neglected. Furthermore, as the sampling time of the normal camera is much longer than that 

of the other onboard sensors, fusing these signals presents a multi-rate issue. 

 

5.2 Sensor Configurations for Body Slip Angle 

Estimation 

As aforementioned, body slip angle needs to be estimated due to the high cost of direct 

measurement. Actually, more than one sensor configuration can be utilized for such 

application. In this section, before explaining the proposed multi-rate Kalman filter for body 

slip angle estimation, some typical sensor configurations are reviewed in terms of 

observability and model uncertainty. 
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To facilitate the discussion, all the models that to be presented are given in the state space 

form as below 

(5.1)

(5.2)

x A x B u

y C x D u

= ⋅ + ⋅

= ⋅ + ⋅

&

 

 

5.2.1 Traditional Sensor Configuration 1: Gyro Sensor 

The most widely used method, although has different kinds of transformations, is based on 

the dynamic model given below, and yaw rate is the only signal required for observer 

construction. 
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Although this method is very simple, it is unobservable in case of neutral steering (Cf·lf – 

Cr·lr= 0) which can be seen from the observability matrix below, i.e., observability matrix 

rank is less than the system order. Moreover, the performance of this method is deteriorated 

by model uncertainties such as Cf and Cr which are time-varying in different driving 

conditions. 
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5.2.2 Traditional Sensor Configuration 2: Gyro and Lateral 

Acceleration Sensors 

Aimed at building an always observable model and increasing the design freedom of the 

estimator, some studies include lateral acceleration ay as a additional measurement. The 

measurement matrices in equation 5.2 then become 

( ) ( ) (5.5)

0 1 0 0

, .2 2 2
0

f r f f r r f
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As can be seen in equation 5.6, the rank of the observability matrix in case of Cf·lf = Cr·lr 

is equal to two by only the first two rows, i.e., this model is observable even when the vehicle 

is in neutral steering. 
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Unfortunately, this method brings uncertainties (Cf and Cr) into the measurement matrices 

C and D in addition to the original uncertainties contained in the matrix A, which may 

decreases estimation accuracy in different driving conditions. 

 

5.2.3 Proposed Sensor Configuration: Gyro Sensor and Vision 

System 

The proposed model in Chapter 2 combines traditional vehicle bicycle model and a vision 

model, and the system matrices are given in equation 2.27. Again, the observability matrix is 

formulated in equation 5.7.  
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Only by checking the first six rows, even if the vehicle is in neutral steering condition, the 

rank of the observability matrix is equal to four, which means that this model is observable. 

In addition, as can be seen from matrices A and C, no uncertainties are introduced by this 

method. For example, parameters such as lpre can be calibrated beforehand, and the vehicle 

velocity can be calculated from wheel speed [93]-[94]. Therefore, it enables robust estimation 

against changes in vehicle parameters. The merits of this model can be summarized as: 1) 

observable even in neutral steering situation; 2) no new uncertainties included; 3) increased 

design freedom for the observer.  

On the other hand, the issues brought by this model such as multi-rate and measurement 

delay have to be solved for estimator implantation. For time delay, image processing time is 

considered as constant in this chapter, and the random delay theory will be applied to 

integrated vehicle lateral control system in the next chapter. For the multi-rate problem, a 

straightforward solution is to down-sample fast-rate sensors to adapt slower device and then 

construct a normal single-rate Kalman filter. In this application, gyroscope and encoders can 

be sampled every 33 ms to fit the sampling period of the camera. However, if the single-rate 

estimator is employed, the sampling rates between the state feedback and the control input of 

the IWMs cannot match, which brings limitation to the controller design. Thus, the multi-rate 

Kalman filter based on state augmentation that proposed in Chapter 4 is employed to solve 

the multi-rate and constant delay issues. 
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5.3 Multi-rate Kalman Filter Design with Constant 

Delay Compensation for Vehicle Body Slip Angle 

Estimation 

To conduct estimation in real time, system discretization is indispensability. Based on the 

equation 4.14, the continuous system given in equation 2.27 can be approximately discretized 

using the sampling time Ts as below, where Ts is set to 1 ms as it is the fastest sampling time 

in the system. It should be noted that if Tl is selected as the dicretization time, the estimator 

then becomes a single-rate one. The single-rate estimator will be compared with the multi-

rate one later in the simulation and experimental verification section. 
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Remember that the estimation approach proposed in Chapter 4 involves two steps for 

multi-rate and constant delay issues: state augmentation and inter-sample residuals estimation. 

Based on the system in equation 5.8, using the two steps, a Kalman filter is designed for body 

slip angle estimation. 
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Fig.5. 1 System sampling sequence (multi-rate and constant delay) 

 

5.3.1 Augmentation of Delayed Visual Measurements 

Several augmentation methods to handle delayed measurements are introduced in the 

previous chapter. In consideration of calculation burden, it is desirable to augment the current 

state with the sampled measurements nd steps before. That is 

(5.9)
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or in a compact form as given in equation 5.10. 
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The system matrices are then become 
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Unfortunately, the above system is not observable as can be easily checked from its 

observability matrix. Then, a trick is performed to assume that the visual information 

between step k and k-nd are the same. The system matrices are then changed to 

4 2
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, ,

0 1 0 0 0 0

0 0 0 0 1 0 . (5.12)

0 0 0 0 0 1

k T
a a T

k k k

a

k

G O
G H H O

O I O

C C

×

×

× × ×

⎡ ⎤
⎡ ⎤= =⎢ ⎥ ⎣ ⎦

⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥

= = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

and the system becomes observable. Given the time delay is constant, the errors introduced 

by this assumption are approximately non-changeable and, can therefore be compensated by 

tuning of process noise covariance Q. 

During the latency period of the visual measurement, the augmented states are only 

updated with the yaw rate signal (the inter-sample updates will be considered in the residual 

estimation part), and the visual states are optimally fused at step k after nd steps. 

 

5.3.2 Design of Multi-rate Kalman Filter 

The multi-rate Kalman filter is designed based on the proposed inter-sample residual 

technique given in Chapter 4. It is aimed at utilizing the yaw rate signal every 1 ms and 

increasing the updating rate of the estimator to 1 kHz which match with the frequency of the 

control input for enhanced control performance. Just like normal Kalman filters, the design of 

multi-rate one consists of three parts: time update (prediction), measurement updates 

(correction) and Kalman gain design. 

1) Time update 

The time update of the multi-rate Kalman filter can be implemented in the same 

way as the single-rate one. That is, the vehicle model-related states and vision 

model-related states can be updated together using the system model as shown in 

equation 5.13. 
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2) Measurement update 

The camera’s sampling period is Tl. During the time intervals of i·Tl, no 

information from the vision system is available. Therefore, pseudo-corrections 

have to be implemented for the operation of the measurement update. 

Conventional multi-rate Kalman filter assumes that the measurements from the 

vision system are exactly the same as those of the model-based predictions, i.e., 

the inter-measurement residuals from the vision system are zero. However, as 

shown mathematically in the previous chapter, the convergence of this method 

cannot be guaranteed. The multi-rate Kalman filter with inter-sample estimation is 

thus employed. The estimation equation is given as 
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and the inter-sample  visual pseudo-measurements can be calculated using 

equations 4.38 and 4.39. 

3) Kalman gain design 

The performance of Kalman filters relies on the adjustment of the Kalman gain, 

which is determined by Q and R. In this application, both Q and R are composed of 

vehicle model-related and vision model-related parts. As shown in equation 5.15, 

they are designed in diagonal forms to release the calculation burden. That is, the 

individual noise elements are assumed to be noncross related [93]. 
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The Kalman gain is calculated based on the degree by which the model and the 

measurements are weighted. Q represents the confidence placed on the observer 

model. If Q is set to be large, the Kalman gain becomes large accordingly, and the 

estimates therefore rely more on the measurements. R determines how much 

information from the measurements can be trusted, and the Kalman filter will 

follow the measurements more if R is smaller. Given that the system in this 

research is based on the combined model, the Q and R elements related to the 

different models need to be considered independently. For example, given that the 

vehicle model contains more uncertainties than the vision model, the elements of 

Qveh are set to be relatively larger than those of Qvis. The elements of R can be 

determined by offline analysis of the sensor signals [92]-[93]. 

 

5.4 Body Slip Angle Controller Design with Multi-rate 

Feedback 

The experimental vehicle employed in this study is small and light, but its body slip angle 

response is in the same level as the high-speed region of normal vehicles [94]. Therefore, 

implementing a control system that can manipulate the body slip angle to the desired value 

for handling and stability improvement is necessary. For traditional vehicles, active steering 

or differential braking is often employed as an actuator for lateral motion manipulation [95]-

[97]. In the case of EVs with IWMs, the differential torque can be generated quickly and 

precisely by the left and right wheels, which can be effectively utilized for vehicle motion 

control. In this section, to achieve the goal of reference following, a 2DOF controller is 

designed with body slip angle feedback from a single-rate or multi-rate Kalman filter. 

The controller structure is shown in Fig. 5.1. Notably, sampling restrictions exist for both 

control inputs and outputs. That is, the control inputs are restricted by zero-order holders 

based on the update rate of the Kalman filter. Specifically, if single-rate Kalman filter is 

employed, the sampling frequency of the control input has to be down-sampled accordingly 

to match with the updating rate of the feedback. 
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Fig.5. 2 Controller structure with body slip angle estimator. 

 

5.4.1 Desired Body Slip Angle 

Desired body slip angle can be defined in several ways in consideration of different purposes. 

Based on the vehicle dynamic equation 2.19, some studies calculate the reference body slip 

angle by assuming that a steady state response is desired [97], The desired body slip angle 

then becomes a function of the vehicle speed and the driver’s steering input. Meanwhile, a 

desirable limit can be found on the body slip angle, and it changes under different road 

conditions [97]. Considering that drivers find it hard to recognize road conditions accurately, 

many vehicle stability control systems address the body slip angle control issue by preventing 

it from becoming too large [95]. Moreover, many traffic accidents occur because of excessive 

body slip angle [97]. For simplicity, this study assumes the desired slip angle to be zero. 

 

5.4.2 Design of 2DOF Controller 

As an effective method, the 2DOF controller is employed for reference tracking. This method 

consists of two parts: feed-forward and feedback controllers. The feed-forward controller is 

aimed at regulating the body slip angle to track the desired value. In this study, the feed-

forward controller is designed to compensate for the steering-generated β, which can be 

calculated as equation 5.16 using the DC gains of the transfer functions from the body slip 

angle to the steering angle and yaw moment. 
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To compensate for the modeling error and the error during transient operation, the 

feedback controller is indispensible. For information feedback, the body slip angle is 

estimated with either the single-rate or multi-rate Kalman filter. The estimated β is utilized as 

a feedback signal, and a proportional–integral controller is then designed based on the pole 

placement. Together, the feed-forward and feedback controllers generate the yaw moment for 

reference tracking. 

On the one hand, the control period can be every 1 ms. On the other hand, the single-rate 

Kalman filter generates output every 33 ms, and the multi-rate Kalman filter is updated every 

1 ms. Based on the parameters of the experimental vehicle given in the Appendix A and the 

open-loop stability analysis, the gain margins of the single-rate and multi-rate systems are 

given in Table 5.1. As shown in Table 5.1, the gain margin is increased by the multi-rate 

feedback. Therefore, the multi-rate controller can provide smoother control input than the 

single-rate one. 

 

Table 5. 1 Stability Margin Comparison 

 Single-rate Multi-rate 

Closed-loop pole (Hz) -2 -2 

Gain Margin (dB) 5.92 22.8 

Crossover Freq.(Hz) 15.15 477.46 

 

5.4.3 Torque Distribution Law (TDL) 

After obtaining the desired yaw moment Nz, TDL must be considered. As aforementioned, 

the rear two wheels are utilized as actuators, and they can generate positive/negative torques 

easily. Therefore, a simple TDL can be defined as 
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where ax is the vehicle’s longitudinal acceleration rate and Nz is the yaw moment to be 

distributed. It means that, on one hand, the IWMs generate forward torques for vehicle 

driving; on the other hand, the left and right wheels generate torques in different direction for 

body slip angle control. It should be noted here that, if integrated with other controllers, the 

TDL may need to be modified as wheel torques are the main source to manipulate vehicle 

motion. 

 

5.5 Simulations and Experiments 

In this section, simulations and experiments are performed to verify the proposed body 

slip angle estimator and controller. 

 

5.5.1 Body Slip Angle Estimation 

Simulations: 

The performance of the proposed multi-rate Kalman filter was compared with the other 

methods based on the vehicle specifications given in the Appendix A. The vehicle was 

assumed to run at a speed of 25 km/h, and a sinusoidal steering input was given. For 

comparison, traditional bicycle model-based Kalman filter, combined model-based single-

rate Kalman filter, combined model-based multi-rate Kalman filter without inter-sample 

residual estimation and combined model-based multi-rate Kalman filter withinter-sample 

residual estimation are studied in the simulations. First of all, a simulation is conducted by 

assuming that the vehicle model and Kalman filter model are the same. As can be observed 

from Fig. 5.3, all of the methods match with true value very well. However, this assumption 

is not true due to the change of tire cornering stiffness. 
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Fig.5. 3 Simulation comparison of the body slip angle estimation based on different 

estimation methods (without model discrepancy). 
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Fig.5. 4 Simulation comparison of the body slip angle estimation based on 

different estimation methods  (with model discrepancy). 
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To demonstrate clearly the effectiveness of the proposed method, the vehicle model and 

the Kalman filter model were made different from each other: the real Cf and Cr were set as 

1.2 times larger than the estimator ones. A performance comparison among the bicycle 

model-based Kalman filter, combined model-based single-rate Kalman filter, combined 

model-based multi-rate Kalman filter without inter-sample residual estimation, and the 

proposed method is shown in Fig. 5.4. The bicycle model-based method cannot track the true 

value because of model discrepancy. The combined model-based single-rate estimator 

performed better because of the addition of visual information but was affected by slow 

update rate. The combined model-based multi-rate estimator without inter-sample 

compensation exhibited better performance than the previous two methods; however, 

theoretically speaking, it cannot converge to the true value as discussed in section 4. 

Meanwhile, the proposed multi-rate Kalman filter with inter-sample compensation provided 

the best estimation result compared with the other methods. It should be noted that, for fair 

comparison, the corresponding elements of Q and R were set to be the same for all the 

methods.  

Experiments: 

Field tests were conducted with our experimental vehicle for realistic verification of the 

proposed estimator. A sinusoidal steering input was provided by the driver, and the vehicle 

speed varied from 0 km/h to 30 km/h during the operation. Similar to the simulation settings, 

the Cf and Cr of the Kalman filter were made different from those of the real vehicle. In fact, 

the Kalman filter model was fixed in the experiment and could not be exactly the same with 

the vehicle.  

The proposed multi-rate observer was compared with the other methods (Fig. 9). The 

bicycle model-based estimation result cannot track the true value very well because of model 

discrepancy. The combined model-based single-rate estimator was only updated at a rate of 

30 Hz and was not able to utilize all the information from the fast-rate sensors. Hence, the 

estimation result was not satisfactory. In Fig. 9, the multi-rate Kalman filter without inter-

sample compensation tracks the sensor measurement very well except for some vibrations at 

transient conditions. The proposed multi-rate estimator, which was compensated by inter-

sample residuals, performed smoother and more accurately than the other methods. 
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Fig.5. 5 Estimation method comparisons based on experimental data. 

 

5.5.2 Body Slip Angle Control 

Simulations: 

Based on the aforementioned analysis, only the single-rate Kalman filter and the multi-rate 

Kalman filter with inter-sample residual compensation can converge, and both are more 

robust against vehicle parameter uncertainties than the bicycle model-based method. The two 

methods were compared in the simulation with regard to the effect on control performance 

based on the proposed 2DOF controller. In the simulation, the vehicle was tested with a 

single-lane change maneuver at a speed of 25 km/h.  For fair comparison, the gain margins of 

the two control system were set to be the same. 

As shown in Fig. 5.6 (a), the performance of the single-rate Kalman filter-based controller 

is worse than that of the multi-rate Kalman filter-based controller. In fact, the feedback gain 

in the case of the single-rate Kalman filter cannot be set large enough for reference tracking 

because of its low open-loop stability margin. In addition, the feedback gain in the case of the 

multi-rate estimator can be designed to track the reference. That is, the system stability 

margin is increased using the multi-rate Kalman filter as feedback. Fig. 5.6 (b) shows the 

control input comparison of the two methods. 
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(b) 

Fig.5. 6 Simulation comparison of the controller performance based on single-rate 

and multi-rate Kalman filters. (a) Body slip angle control comparison among the 

setup without control, single-rate estimator-based control, and proposed multi-rate 

control. (b) Yaw moment control input comparison between single-rate and multi-

rate controllers. 
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Experiments: 

Subsequently, the body slip angle controllers using either the single-rate or the proposed 

multi-rate Kalman filter were implemented and compared in the experiments. For fair 

comparison, front-steering motor was employed to generate a single-lane change steering 

input with the same pattern. That is, the steering inputs were the same across all the 

experiments. The steering input is shown in Fig. 5.7 (a).  

IWMs were used to generate differential torque to minimize the body slip angle. Based on the 

system sampling rate, both single-rate and multi-rate controllers were studied. As shown in 

Fig. 5.7 (b), the amplitude of the body slip angle without control can reach almost 0.03 rad. 

With the single-rate controller, the body slip angle can be minimized, as illustrated by the 

blue dotted line. However, the feedback performance of such method deteriorated because of 

the low stability margin. Meanwhile, the body slip angle can be suppressed even further 

using the proposed multi-rate controller, as represented by the red line in Fig. 5.7 (b). The 

control input of the two cases, which is the yaw moments generated by the differential torque 

of the left and right wheels, are shown in Fig. 5.7 (c). 
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(c) 

Fig.5. 7 Experimental comparison of the controller performance. (a) Steering input 

by EPS. (b) Body slip angle control comparison among the setup without control, 

single-rate estimator-based control, and the proposed multi-rate control. (c) Yaw 

moment control input comparison between the single-rate and multi-rate 

controllers. 
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5.6 Chapter Summary 

In this chapter, a linear vehicle bicycle model was augmented with a simple visual model. As 

the visual model contains few uncertain parameters and increases observer's design freedom, 

the combined model-based estimator provided more accurate estimation result compared with 

the traditional bicycle model-based one. However, two issues are raised by the combined 

vehicle and vision models: 1) image processing introduces delay into the visual 

measurements and 2) the sampling time of a normal camera is much longer than that of other 

onboard sensors. For electric vehicles, the control period of motors is much shorter than the 

sampling time of a normal camera. Considering the above-mentioned delay and multi-rate 

problems, a multi-rate Kalman filter with inter-sample compensation was designed. Then, a 

2DOF controller was designed using the estimated body slip angle as feedback for reference 

tracking. With the proposed multi-rate estimator, the controller achieved better tracking 

performance than the single-rate method. The effectiveness of the proposed estimator and 

controller was demonstrated by both simulations and experiments. 
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Chapter 6 

 

Vision-based Multi-rate Estimation for 

Integrated Vehicle Lateral Control 

In this chapter, an integrated vehicle lateral control method is studied to improve vehicle 

lateral safety and stability. The system model employed is the same the one used in Chapter 5 

which is described in Chapter 2. This control system utilizes front steering to control vehicle 

position and differential torque between left and right wheels to control yaw motion; yaw rate 

and vehicle position information are feedback signals. However, as a two-input-two-output 

system, the two feedback loops have different frequencies which present difficulty for 

controller design. Moreover, due to image processing, uneven visual information delay 

should be considered in this application. The two problems are solved using the multi-rate 

Kalman filter proposed in Chapter 4 that reconstructs measurements and inter-sample 

residuals. First of all, the research background is introduced to explain the necessity of 

implementing integrated vehicle lateral control system, and the issues for fusing yaw rate and 

visual information are explained. Then, multi-rate Kalman filter with residual reconstruction 

is developed to estimate vehicle lateral position. Finally, an integrated vehicle lateral 

controller is designed with the information from a gyro sensor and the multi-rate Kalman 

filter as feedback. 

 

6.1 Introduction 

For vehicle stability control systems, online information of vehicle states such as yaw rate are 

considered as key enablers. In [77], a yaw moment control algorithm was developed using 

differential torque of IWMs for vehicle yaw motion stabilization. Another research tried to 

control both yaw rate and body slip angle at the same time using IWMs [39]. Some research 

utilize front wheel steering for body slip angle control and yaw moment for yaw rate control 

[97]. In fact, differential torque is an effective input to control yaw rate as can be seen from 

the bode plot of γ/Nz as shown in Fig. 3.10. Yaw rate can be easily obtained from a gyroscope 

sensor which is widely used for a variety of control applications.  
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Meanwhile, automatic steering methods for lane keeping have been extensively 

investigated by automotive companies and research institutions. Joel C. McCall et al. 

surveyed some previous research, proposed their own methods for lane detection and 

evaluated the methods with systematic criteria [61]. Another research was conducted by M. 

Bertozzi et al. [99], they used stereo vision system to detect lane and obstacles on the road. In 

addition to the literatures in academic field, many patents were generated on lane detection 

and lane following systems. Timothy W. Kaufmann et al. proposed methods to detect vehicle 

offset to the lane and to control the steering wheel accordingly for lane keeping [100]; Toru 

Saito et al. invented a similar device for lane keeping assistance [101]. While lane keeping 

strategies of these proposed methods differ somewhat, most of them use look-ahead onboard 

vision system for lane detection and location, i.e., the vehicle position information can be 

obtained from onboard vision system in real time. 

Most of the previous studies focused on independent yaw motion control or vehicle 

position control; however, they have limitations if independently controlled. For example, 

even if yaw rate is controlled to be zero, the vehicle may deviate from the desired path; on 

the other hand, the vehicle may spin (yaw rate is too large) even the vehicle is kept within the 

lane. In [102], they derived some equations to relate yaw rate and vehicle lateral position, and 

employed steering for control the two states. In this Chapter, an integrated lateral controller 

addressing yaw motion and vehicle position at the same time is investigated. 

Unfortunately, yaw rate and vehicle position are acquired from different devices and thus 

have different sampling rates. This brings trouble to the controller design. For traditional 

vehicles, this can be solved easily by adjusting the fast sampling times to adapt to the vision 

system. However, for the application of EVs, the sampling time of motors is in millisecond-

level which requires faster feedback information compared with traditional vehicles using 

internal combustion engines and hydraulic actuators. The sampling rate of normal cameras is 

not fast enough for EV-related motion control applications. In addition, image processing 

time is not constant in practice (because of different incoming images and processing loads). 

In this study, the information from vision system is considered to be random delayed. For 

measurement delay, a widely employed approach is to augment the states with delayed 

measurements. However, in case of uneven and large time delay as the system investigated in 

this study, expansion of system state space equation is difficult to be practically 

implemented. In this paper, the uneven delay issue is solved with a residual reconstruction 

approach. Moreover, sampling mismatch between vision system and other onboard sensors is 

addressed in the Kalman filter design. 
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6.2 Infrequent and Random Delayed Visual 

Information 

The integrated vehicle lateral controller has two loops: front steering is used to control 

vehicle position and differential torque is utilized to control yaw motion. For controller 

design with more than one loop, a unified sampling time is necessary. However, as stated 

before, visual information and yaw rate signal have different updating frequencies. As the 

secondary measurement, the updating time of yaw rate is short (Ts), and the sampling period 

of the primary device, the camera, is much longer (Tl). In addition, measurements from the 

vision system are random delayed due to image processing time needed. Therefore, the visual 

output equation becomes 

_
_ _

, ( 1) (6
d i

d i d i

vis vis vis

k k n k n
if ky C x v i N n

− −
== ⋅ + − ⋅ + .1)

 

From equation 6.1, it can be known that the information from the vision system at step k 

represents the measurement at step k-nd_i. Notably, nd_i is not constant due to the varying of 

image processing time. In this research, Td_i is managed to be less than one sampling period 

of the camera, therefore, nd_i can only be one value from the set {1, 2, …, 33} at an arbitrary 

visual stamp i. In case of constant and small time delay, augmentation of state vector can be 

effectively employed. However, state augmentation approach is calculation intensive and 

complex for the random delay with large multi-ratio which is the case discussed in this 

dissertation. 

The vehicle model-related and vision model-related measurement can be expressed 

together as given in equation 6.2. Visual information is not always available at every time 

step. Therefore, the inter-sample residuals of the visual information must be addressed for 

Kalman filter design. 
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6.3 Multi-rate Kalman Filter Design with Uneven Delay 

Compensation for Integrated Vehicle Lateral States 

Estimation 

The multi-rate Kalman filter design involves two steps: measurement reconstruction, and 

inter-sample residual estimation. The time sequences before and after reconstruction are 

shown in Fig. 6.1. 

 

6.3.1 Measurement Reconstruction 

As can be seen in Fig. 6.1 (a), the out-of-sequence visual information is not straightforward 

for fusion with other sensor signals, and it is therefore desired to reconstruct the visual 

signals. Consider that the image data are sampled at ( )1 li T− ⋅ , but are not available until  time 

, it is reasonable to assume that the samplings are taken at ( )  

instead of ( . Thus, the delay is removed from the reconstructed sampling sequence. As 

the measurements at ( )  represent the information at 

( ) _1 l di T T− ⋅ + i i

T

i

_1 l di T T− ⋅ +

)1 li − ⋅

_1 l di T T− ⋅ + ( )1 li T− ⋅ , and corresponding 

modification of residual is necessary. 

After the above re-arrangement, the delays are removed from the measurements. 

However, the visual updates are still uneven and the sampling time is much longer than that  

 

_1dT _ 2dT

lT lT lT lT

_ 3dT
_ 4dT

sT

 

(a) 
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_ 2 _ 3l d dT T T− + _ 3 _ 4l d dT T T− +

sT

_1 _ 2l d dT T T− +

 

(b) 

Fig.6. 1 Measurement sequence. (a) Normal sampling sequence. (b) After 

measurement reconstruction. 

 

of the yaw rate. The problem of this study is therefore transformed into designing a multi-rate 

Kalman filter for a discrete system with random multi-ratio. Two points need to be 

considered in this case: 1) residual modification at every ( ) _1 l di T T− ⋅ + i
 time; 2) residuals 

estimation between every neighboring visual samples. 

 

6.3.2 Design of Multi-rate Kalman Filter 

Based on the reconstructed measurement, the multi-rate Kalman filter is designed using the 

inter-sample residual technique given in Chapter 4. It is aimed at utilizing the yaw rate signal 

every 1 ms (instead of 33 ms in case of single-rate Kalman filter) and increasing the updating 

rate of the estimator to 1 kHz which can match with the frequency of the control input for 

enhanced control performance. Different from the augmented model utilized in Chapter 5, the 

model employed here is the original one given in equation 5.8. Like normal Kalman filters, 

the design of multi-rate Kalman filter has three parts: time update (prediction), measurement 

updates (correction), and Kalman gain design. 

1) Time update 

For the time update, there is no difference between multi-rate Kalman filter and 

single-rate one, i.e., the vehicle model-related states and vision model-related 

states can be updated together using the system model as given in equation 6.3. 
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1 1 1 1 (6.3)ˆ ˆ
k k k k kx G x H u−

− − − −= ⋅ + ⋅
 

2) Measurement update 

The measurement updates can be explained in terms of residual, and have to 

consider three situations as explained in Chapter 4. The first one is the period 

before the first sample comes, where there are no measurement updates. The 

second situation is residual reconstruction at every visual information arrival time. 

This is because of the arrived visual information actually reflects previous state, 

and they have to be modified to represent the current one. The last situation is 

residual estimation between every neighboring visual samples. The sampling 

period of the vision system is Tl -Td_i +Td_i+1, which changes from time to time 

depending on the delay time of image processing. During the updating intervals, 

no information from the vision system is available. Therefore, pseudo-corrections 

have to be implemented for the operation of the measurement update. The multi-

rate Kalman filter with measurement reconstruction and inter-sample estimation 

given in Chapter 4 is employed. The estimation equation is given as 

(6.4)ˆ ˆ
k k k kx x K ε−= + ⋅ %
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and the visual pseudo-residuals at step k (k ≥ nd_i) can be calculated using equations 

4.47 and 4.48. 

3) Kalman gain design 

The performance of Kalman filters relies on the adjustment of Q and R. Here, both 

Q and R are composed of vehicle model-related and vision model-related parts. As 

shown in equation 6.5, they are designed in diagonal forms to release the 

calculation burden. That is, the individual noise elements are assumed to be 

noncross related [93]. 



97 

(6.5)
0 0

, .
0 0

veh veh

vis vis

Q R
Q R

Q R

⎡ ⎤ ⎡ ⎤
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The Kalman gain is calculated based on the degree by which the model and the 

measurements are weighted. Q represents the confidence placed on the observer 

model. If Q is set to be large, the Kalman gain becomes large accordingly, and the 

estimates therefore rely more on the measurements. R determines how much 

information from the measurements can be trusted, and the Kalman filter will 

follow the measurements more if R is smaller. Given that the system in this 

research is based on the combined model, the Q and R elements related to the 

different models need to be considered independently. For example, given that the 

vehicle model contains more uncertainties than the vision model, the elements of 

Qveh are set to be relatively larger than those of Qvis. The elements of R can be 

determined by offline analysis of the sensor signals. 
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Fig.6. 2 Integrated lateral controller for EVs 
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6.4 Integrated Vehicle Lateral Controller with Multi-

rate Feedback 

As aforementioned, independent yaw control or lane keeping control has limitations. 

Therefore, controlling yaw motion and vehicle lateral position at the same time is desirable. 

As shown in Fig. 4, two controllers are incorporated in the system. The upper controller is 

designed for vehicle lateral position manipulation, i.e., if the vehicle is deviated from the 

desired path, the controller generates a steering control command for path correction. The 

lower controller is implemented for yaw motion stabilization based on the well-known two-

degree-of-freedom controller and yaw moment observer (YMO) [78]. The steering input for 

vehicle position control generates a desired yaw rate (it is simplified as a first order transfer 

function in this simulation), and the differential torque of EVs can correct yaw motion in case 

of undesired vehicle movement. 

Obviously, there are two feedback loops: yaw rate feedback and lateral position feedback 

loops. Due to the sampling restriction of vision system, the two loops have different sampling 

rates. That is, yaw rate has higher sampling frequency than the visual information; moreover, 

the vision signals are contaminated by time-varying delays. Thus, the multi-rate Kalman filter 

considering random delay proposed in the previous section is employed to generate the 

lateral position signal at the same updating rate as yaw rate. Then, the sampling time of the 

overall system can be unified. 

 

6.4.1 Vehicle Lateral Position Controller 

The vehicle lateral position controller aims at controlling vehicle lateral position to a 

predefined value using front steering system. It involves two parts: the lateral position 

estimator and position controller. In fact, this kind of controller has been studied thoroughly 

in the literatures such as [95]. For example, a feedback controller can be easily designed 

based on the transfer function from lateral distance to front steering angle which is given in 

equation 3.15. The yaw moment also has effect on vehicle position, however, the DC gain of 

the transfer function from yl to Nz is so small that yaw moment is not a effective way for 

vehicle position control. 

The problem of conventional method is, the sampling rate of the whole system has to be 

decreased for controller design due to the restriction of visual feedback. In this research, the 
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slow updating rate of visual signals is solved using a multi-rate Kalman filter and, the 

controller can then be design in a normal way without down-sample the sampling time of the 

whole system. 

 

6.4.2 Yaw Motion Controller 

Yaw motion control for EVs is a mature technique studied by many researchers. Among 

them, YMO is a novel direct yaw-moment control approach based on disturbance observer 

which compensates immeasurable terms as lumped disturbances. 

The basic idea of YMO is to reconstruct equation 2.17 as 

(6.6)n z t d

d
I N N N

dt

γ
⋅ = − −

 

where Nd is the disturbance yaw moment, Nt is the moment generated by tires. By using the 

moment Nz as control input and yaw rate as measurement, the disturbance observer can be 

designed as the lower part in Fig. 6.2. This method can compensate the lumped disturbance 

and nominalize the system as 

1
( ) ( ) (6.7)in

n

s N s
I s

γ ≈
⋅

 

Using this method, all the un-modelled dynamics as well as disturbances can be 

compensated by additional yaw moment control input. The feed forward controller of yaw 

motion control is therefore designed as inverse of the transfer function from yaw rate to yaw 

moment input as given below 

(6.8)FF nC I s= ⋅
 

 

6.5 Simulations and Experiments 

Yaw rate can be easily and frequently obtained from a gyro sensor, therefore, in this section, 

simulations and experiments are only performed to verify the proposed vehicle position 

estimator. The controller performance is verified by simulations. 
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Fig.6. 3 Estimation comparison in simulation. 
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Fig.6. 4 Random delay pattern (0.02s, 0.015s, 0.01s, 0.025s) in simulation. 
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6.5.1 Vehicle Lateral Position Estimation 

Simulation: 

The performance of the proposed multi-rate Kalman filter with random delay compensation 

was demonstrated in simulation. The vehicle was assumed to run at a speed of 30 km/h, and a 

sinusoidal steering input was given. To simulate real condition, the vehicle model and the 

Kalman filter model were made different from each other: the cornering stiffness were set as 

1.2 times larger than the estimator ones. Moreover, a random delay pattern was generated as 

shown in Fig. 6.4, where a pattern in the form of {20 ms, 15 ms, 10 ms, 25 ms} is repeated. 

As can be seen in Fig. 6.3, the vehicle lateral offset measurement was random delayed by the 

random delay pattern. That is, it could not match with true value. With the proposed multi-

rate estimator with random delay and inter-sample compensations, even in the condition of 

vehicle model mismatch, the estimation can match with the true value very well. 

Experiment: 

The same as simulation, the proposed Kalman filter exhibits better performance than the 

multi-rate Kalman filter with a constant delay compensation in experiments, where a sine 

steering was applied. It can also smooth the visual sampling as can be seen in Fig. 6.5. The 

image processing delay pattern is shown in Fig. 6.6. 
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Fig.6. 5 Estimation comparison based on experimental data. 
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Fig.6. 6 Random image processing time in one experiment. 

 

6.5.2 Integrated Vehicle Lateral Control 

Simulation: 

After obtaining the lateral offset, it can be feedback at the same frequency as yaw rate. As 

described in section 5, the front steering is employed for vehicle position control, and the rear 

differential torque is utilized for yaw moment stabilization.  The vehicle is assumed to run at 

the speed of 30 km/h. An initial position error is set to be 0.15m, and the desired one is set to 

0.1 m.  

Therefore, the steering system generates an input for reference tracking. Meanwhile, the 

differential torque is calculated by the 2DOF and YMO for yaw moment control. The 

simulation results are shown from Fig. 6.7 to Fig 6.10. 

Fig. 6.7 shows the steering input comparison between vehicle position control only case 

and integrated vehicle lateral control case. The feedback gain is set to be the same, and the 

two values are therefore very close to each other. Fig. 6.8 is the yaw moment control input 

comparison. In case of position control only, yaw moment is zero, i.e., no control is applied. 

Fig. 6.9 is the vehicle position control result. As can be observed, both of the two methods 

can manipulate the vehicle position. The yaw rates comparison are given in Fig. 6.10. The 

yaw rate in case of position control is much larger than the integrated controller. 



103 

 

0 0.5 1 1.5 2 2.5 3
-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

Time (s)

S
te

e
ri

n
g

 A
n

g
le

 I
n

p
u

t 
(r

a
d

)

 

 

Vehicle position control only

Integrated vehicle lateral control

 

Fig.6. 7 Steering angle input comparison. 
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Fig.6. 8 Yaw moment input for yaw rate control. 
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Fig.6. 9 Steering angle input for vehicle position control. 
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Fig.6. 10 Steering angle input for vehicle position control. 
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6.6 Chapter Summary 

In this chapter, considering the importance of vehicle lateral control, an integrated control 

system that addressing both vehicle motion and position is proposed. However, the feedback 

signals of vehicle position and motion have different rates. How to unify the sampling rates 

of the two feedback loops becomes a problem. Employing the multi-rate Kalman filter in 

Chapter 4, an estimator that can update vehicle position more frequently is designed, and the 

updating rate can match with the rate of control input. This chapter can be summarized as: 

first of all, a combined vehicle and vision model was derived. Then, the multi-rate and 

uneven time-delay issues were explained and formulated. Aimed at solving the uneven and 

multi-rate sampling issues, multi-rate Kalman filter is designed. Finally, simulation and 

experiment results were demonstrated to show the effectiveness of the proposed Kalman 

filter, and simulations were conducted to verify the integrated control system. 
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Chapter 7 

 

Conclusions and Future Works  

 

7.1 Conclusions 

In this dissertation, new estimation methodologies considering multi-rate and time delay 

issues were developed based on the inter-sample residual estimation technique, and were then 

applied to vision-based state estimation and control systems for electric vehicles. What 

should be highlighted are, the proposed multi-rate Kalman filter address inter-sampling 

performances during intermittent periods of sensor measurements, and therefore can smooth 

estimation performance. In addition, it can serve as a general solution for state estimation 

with multi-rate and delayed measurements. That it, this method is not only applicable for 

vision-based system, but can also be applied to chemical process monitoring and control, 

GPS-based estimation and control, etc.  

Moreover, this dissertation raised an interesting topic for EV motion control that, besides 

the advantages that are inherently available, what kind of unique challenges are brought by 

EVs and what are the countermeasures for control performance improvement. For example, 

the control periods of conventional vehicles are tens of milliseconds or hundreds of 

milliseconds, and no problem exist if the feedback information is slow as long as the input 

and output match with each other. However, in case of EVs, the sampling frequency of the 

actuators (IWMs) is high and a consistent feedback rate is desirable in consideration of 

control performance. In this dissertation, the above problems were solved using a multi-rate 

Kalman filter with inter-sampling compensation. On the other hand, from the viewpoint of 

vehicle safety and stability control, some vehicle states need to be estimated instead of direct 

measurement, and non-traditional sensor configurations can be a solution for robust 

estimation against model uncertainties. For example, a body slip angle estimation 

methodology that is robust against vehicle parameter varying was proposed using a new type 

of sensor configuration. 
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7.1.1 Multi-rate Estimation Considering Measurement Delay 

The proposed multi-rate Kalman filter is aimed at enhancing inter-sampling performances of 

the estimation. Based on different delay periods, this dissertation investigated two situations: 

multi-rate measurements with constant delay and multi-rate measurements with random delay. 

Both of the two issues were solved based on the inter-sample residual estimation technique. 

For the multi-rate and constant delay issue, the system was first augmented using the 

delayed measurements, and a Kalman filter was then built based on the augmented system. 

To smooth sampling intervals of the primary measurements, an inter-sampling residual 

estimation method was developed. Demonstrated by the convergence analysis, the Kalman 

filter with inter-sample residual compensation was better than the without case in terms of 

convergence performance and, was naturally better than the single-rate Kalman filter. 

Considering that state augmentation can be complex for random delay case, a 

measurement (residual) reconstruction method was employed to deal with the delay issue. 

After reconstruction, the constant sampling with random delay issue was transformed to a 

random sampling without delay one. Again, with inter-sample residual estimation approach, 

the “blank” steps were compensated and smoothed. Convergence analyses were also 

conducted to verify the proposed method. 

 

7.1.2 Vision-based Multi-rate Estimation and Control for EVs 

Onboard vision systems are becoming more and more popular in nowadays vehicles and this 

dissertation investigated two estimation and control applications using onboard camera based 

on the afore-proposed multi-rate Kalman filter. 

Robust estimation of vehicle states such as body slip angle is a challenging issue for 

vehicle motion control systems. Considering the unobservability and model uncertainty 

issues, a non-traditional sensor configuration that combines gyro sensor and onboard vision 

system was explored for robust estimation of body slip angle. As gyro signal and visual 

information have different sampling characteristics, the multi-rate Kalman filter with delayed 

information augmentation was employed for better estimation performance. The estimated 

body slip angle was then utilized by a 2DOF controller for stability control. The proposed 

estimator and controller were verified by both simulations and experiments. 

Yaw motion control and vehicle position control have been independently investigated for 
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decades. However, this is not enough in some situations. For example, even if the yaw rate is 

controlled to be zero, the vehicle may deviate from the desired path; on the other hand, the 

vehicle may spin even the vehicle is kept within the lane. Therefore, this dissertation 

proposed an integrated lateral control system that manipulates vehicle yaw motion and 

position together for EVs. Considering the fast control input characteristics of EVs, a multi-

rate Kalman filter with measurement reconstruction method was employed to provide vehicle 

position information with adequate updating frequency. The estimator was tested by both 

simulations and experiments, and the effectiveness of the controller was verified by 

simulations. 

 

7.2 Future Works 

This dissertation addressed both theories and applications, i.e., new multi-rate estimation 

methods and new vision-based applications for EVs were investigated. However, there 

remain some open issues for future improvements. 

 Theory aspect: 

  For measurement updates of a Kalman filter, two important factors have to be 

considered, i.e., Kalman gain and residual. This dissertation solved the inter-sample 

residual issue, but simplified the problem by keeping a constant Kalman gain during 

inter-sampling periods of the visual measurements. The future work can be: find 

characteristics for visual measurements, i.e., design the noise covariance of the visual 

measurements in a better way. Also, online tuning of process noise is a challenging but 

interesting topic.  

 Application aspect: 

Experimental verification of the integrated vehicle lateral control system should be 

conducted. Also, fault detection and isolation methods for visual information can be 

studied in case of the malfunction of the vision system. On the other hand, vision 

system provides additional information on vehicle states that can be utilized for the 

fault detection of other onboard sensors and actuators.  
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Appendix A  

Experimental Electrical Vehicle Introduction 

The experimental vehicle used in this research is a single-seat EV with IWMs, as shown in 

Fig. A.1. The prototype is produced by Toyota Auto Body Co., Ltd., and it was modified for 

studies related to capacitor and motion control [103] by our laboratory. The vehicle’s 

specification is given in Table A.1. 

The vehicle structure and sensor configurations are shown in Fig. A.2. In this vehicle, 28 

electric double-layer capacitor (EDLC) modules with a total voltage of 210 V were installed, 

and they were directly connected to an inverter to drive the two IWMs attached in the rear 

wheels. The maximum speed of this vehicle can reach up to 45 km/h. For the steering system, 

a Maxon DC motor was installed to drive the front-steering shaft, and it can operate with 

steer-by-wire function. A PC104 embedded computer with real-time Linux system was 

employed for vehicle control, and the control program was configured to run at the speed of 

one millisecond per cycle. Based on the measured and estimated vehicle state information, 

the controller calculates the desired torques in real time and gives the commands to the 

inverter for torque generation. For vehicle state measurement and estimation, several sensors 

were installed. An accelerometer/gyro-integrated sensor was installed in the vehicle’s CoG to  

 

 

Fig.A. 1 Experimental vehicle COMS 
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provide longitudinal acceleration and yaw rate information. A steering angle sensor was 

attached to the steering shaft to detect the steering angle and direction. Wheel speed encoders 

were installed in the front wheels (nondriven wheels) to acquire the vehicle velocity. To 

evaluate the estimation results, S-400, a noncontact optical sensor produced by Corrsys-

Datron was installed for online body slip angle acquisition. The onboard vision system 

includes a Grasshopper camera produced by Point Grey and a laptop computer for image 

processing. The camera was installed at the top of the vehicle with a tilt angle of 8° and a 

preview distance of 5.135 m, and the frame rate of the camera was set to 30 fps. The images 

captured by the camera were grabbed by a CARDBUS frame grabber in the laptop and then 

processed by the image processing program in real time. The image processing software was  

 

γ
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Fig.A. 2 Structure of the experimental vehicle 
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implemented in C++ with OpenCV and Point Grey Research's libraries, and the image 

processing time was designed to be constant (30 ms) for the benefit of data post-processing. 

The final outputs from the vision system are ψ and yl, which were sent to the vehicle 

controller based on socket programming using UDP protocol. 

 

Table A. 1 Vehicle Parameters 

ITEM Description 

Vehicle Parameters 

Total mass (m) 380 kg 

Distance from CoG to front axle (lf) 0.8 m 

Distance from CoG to rear axle (lr) 0.6 m 

Tread at rear axle (dr) 0.82 m 

Wheel radius (r) 0.22 m 

Front tire cornering stiffness (Cf) 6,000 N/rad 

Rear tire cornering stiffness (Cr) 6,000 N/rad 

Yaw moment of inertial (Iz) 136.08 N·m/(rad/s2) 

Maximum torque of IWM 100 N·m 

Sensor Configurations 

Gyro/acceleration integrated Sensor Nissan EWTS53BC 

Steering angle sensor Nissan 47945-AS500 

Wheel encoder  Aisin AW 

Acceleration pedal sensor  Toyota Auto Body 

Brake on/off sensor Toyota Auto Body 

Body slip angle sensor CORRSYS-DATRON S-400 

Onboard camera Point Grey GRAS-03K2M 

Control System 

Inverter Myway (PWM Vector Control) 

Sampling time 0.001 s 

Operation system Real-time Linux 

Control computer PC104 board, A/D board, D/A board, 

Counter board 
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Appendix B  

Image Processing Techniques for Lane 

Detection 

To feedback vehicle position information in real time, vision system (hardware) and image 

program (software) are indispensable. The vision system setup is illustrated in Fig. B.1. The 

images are first captured by the camera, and are then sent to the laptop for image processing. 

Finally, the processed signals are sent to vehicle controller. 

For the image program, it basically has two parts: transform image plane to road plane and 

lane detection/extraction. 

Mapping from image plane to road plane: 

Camera can map 3-dimensional world onto its 2-dimensional image view, however, this kind 

of mapping lose important information such as depth and that is why many researches use 

stereo camera instead of single one. For the application of road information capturing, since 

common road can be simplified as planar, i.e., the coordinate in vertical direction is zero, a 

monocular camera is fairly enough to correlate pixels of the image with real road. In case of 

roads with slope, grade estimation methods can be employed to compensate the influence of 

road shape [111], [112]. 

Fig. B.2 shows the geometric relationships among pinhole camera, image plane and road 

plane. To find the mapping matrix from image coordinate to road coordinate, one typical 

method is to calibrate the camera model C which is composed of both intrinsic and extrinsic  

 

,Ψ ly

 

Fig.B. 1 Structure of the experimental vehicle 
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vα

 

Fig.B. 2 Geometric relationship among camera, image plane and road 

 

parameters, this model can be expressed as equation B.1, where K is the intrinsic parameter 

matrix, R and V are the rotational matrix and translating vector, respectively. 

[ | ] (B.1)C K R V=  

 

pixelv

  

pixelu

sin cosh xθ θ⋅ + ⋅  

Fig.B. 3 View from different of image plane axes 
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The above method needs complex calibration, and another more straightforward method 

to get road coordinates from image pixel positions is to derive functions based on geometric 

relationships as shown in Fig. B.1 [104]. For better demonstration, Fig. B.2 is reconstructed 

as Fig. B.3 from U and V axes of the image plane.  

It is desirable to analyze one arbitrary pixel in the image plane and its projection on road 

plane. In Fig. B.3, h is the height of camera, f is focal length, θ is camera inclination angle, αv 

and αu are angle of view in vertical and horizontal axis of image planes respectively, (upixel, 

vpixel) is a arbitrary pixel coordinate in the image plane. Assume the resolution of image is m 

by n, the following functions mapping road coordinate to pixel coordinate can be derived.  

1 tan
(1 cot ) 1

2 tan
(B.2)

1
(1 cot ) 1

2 sin cos

pixel v

pixel u

m h x
u

h x

n y
v

h x

θ α
θ

α
θ θ

− − ⋅
= ⋅ + ⋅ +

⋅ +
−

= ⋅ − ⋅ +
⋅ + ⋅  

From the two equations, given any pixel in the image plane, the corresponding road 

coordinate can be calculated. After pixel remapping, a new 2-D array of pixels is generated, 

and the resulting image represents a bird view of the road region in front of the 

camera/vehicle. From the above equations, it can be known that, the row of pixel coordinate 

only has relationship with x coordinate of road plane, while the column of pixel coordinate 

correlate with both x and y coordinate of road plane. 

 

   

Fig.B. 4 Original and mapped view of the road. 
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Lane detection and extraction: 

In most applications, the key road feature that needs to be sensed is lane. Thanks to the strong 

brightness contract between road and lane, the two can be distinguished with suitable 

algorithm. Since images contain noise more or less, it is desirable to smooth the image before 

applying lane finding algorithm. Two typical smoothing algorithms are Wiener filter and 

Median filter. Wiener filter performs as a low pass filter in the area where there are no edges, 

and it can remove blurs due to linear motion or unfocussed optics which is common for the 

images captured by on-board cameras; Median filter is an effective nonlinear filter that can 

suppress isolated noise without blurring sharp edges, specifically, the filter replaces a pixel 

by the median of all pixels in the neighborhood. Another effective method for image 

smoothing is Gaussian filter. The Gaussian filter gives more weight to the current pixel 

position and then tapers the weights as distance increases according to the Gaussian formula. 

By weighting a pixels contribution to the final pixel value, this filter can better preserve 

edges than the Median filter which specifies equal weights to all pixels within the filter 

window. The 2-D Gaussian filter written in Cartesian coordinates x and y, with Gaussian 

standard deviation of σ  and centered on zero has the form of equation B.3. 

2 2

2

( )

2
2

1
( , ) ( B.3)

2

x y

G x y e σ

π σ

− +
⋅=

⋅ ⋅  

After pre-processing, the lane detection algorithm can be implemented. The most common 

used feature extraction methods are Sobel and Laplacian. Sobel operator performs a 2-D 

spatial gradient measurement on an image, it uses a pair of 3x3 convolution masks, one 

estimating the gradient in the x-direction while the other estimating the gradient in the y-

direction; the mask slide over the image, manipulating a square of pixels at a time; unlike the 

Sobel method which approximates the gradient, Laplacian operator is a convoluted mask to 

approximate the second derivative, and checks for zero crossings, i.e., when the resulting 

value goes from negative to positive or vice versa, the regions of rapid intensity change can 

be highlighted; Laplacian is therefore often used for edge detection. The Laplacian L(x,y) of 

an image with pixel intensity values I(x,y) is given by 

2 2
( , ) ( B.4 )

2 2

I I
L x y

x y

∂ ∂
= +
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The above mentioned methods is a two step process. Alternatively, Laplacian of Gaussian 

(LoG) method can perform the same function in a one step manner as equation B.5. 

2 2

2

( )2 2

2
4 2

( , ) ( , ) ( , )

1
1 (

xx yy

x y

LoG x y LoG x y LoG x y

x y
e σ

π σ π σ

− +
⋅

= +

⎛ ⎞+
= − ⋅ − ⋅⎜ ⎟⋅ ⋅⎝ ⎠

B.5)

 

LoG will give zero to the uniform region of the image; wherever a change occurs, the LoG 

will give a positive response on the darker side and a negative response on the lighter side, 

and hence the lane can be extracted. 

Although the white lane can be extracted from the image using the methods above, the 

position of white pixels is still unknown; since most of the applications need exact lane 

position, it is desirable to locate the lane quantitatively, for example, get gradient and 

intercept of the lane in the image plane. In this study, RANdom SAmple Consensus 

(RANSAC) algorithm is adopted to generate the solution. This is a re-sampling technique 

that gives solutions by using the minimum number data required for model estimation. 

RANSAC randomly selects smallest data set and solve for the model parameters; then find 

how many data items in total fit the model with the calculated parameters within a user given 

tolerance; if the fitting ratio is big enough, accept fit and exit with success, otherwise proceed 

to prune outliers. The image process examples are shown in Fig. B.5. 

 

   

Fig.B. 5 Image processing results (from left to right: original image, Binarized image, Lane 

fitting result). 
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