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Abstract The sports community needs technological aid

to extract accurate statistics and performance data from both

practice sessions and games. To obtain such information,

players must be tracked over time and their movements

processed so that individual actions and team plays are simul-

taneously analyzed. In order to perform this analysis in an

automated, formal and accurate way, the authors developed

a cost conscientious processing system fed by two overhead

cameras (roughly one video stream for each half-field). Play-

ers are detected by vest colors, and Fuzzy Logic is used

to allow for a given color to be shared by different teams.

Color models for the background and the teams are dynamic

over time to make up for changes in natural lighting condi-

tions and consequent color changes. Player tracking is fur-

ther enhanced using Kalman Filtering. Some examples of the

analysis, made possible by the proposed system, are shown.

Results are based on videos collected during the Portuguese

Handball SuperCup competition for the year 2011.
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1 Introduction

Sports play an important role on nowadays society and there

is an increasing interest by the sports’ community on hav-

ing mechanisms that allow them to better understand the

dynamics of players and teams. Often, this information is

manually extracted by operators that, after the game, visu-

alize game recordings (frequently TV footage) and perform

hand annotation, which is a time consuming and error prone

task.

The effort and time involved in such tasks are huge

and the results are subjective to the person performing it,

as mentioned in [6,31,32]. From these works it is possi-

ble to notice that recording a video of the entire field is

already very useful for sports’ experts since they are able

to visualize all players and ball movements. This allows

them to identify weaknesses, define tactics and new train-

ing directions to improve the teams’ global behavior, reduce

the teams’ weaknesses and explore the opponents’ weak

points. However, the next step, automatic detection and track-

ing enables a systematic, objective, accurate and consis-

tent analysis. The process will also be much more time

efficient.

In this paper, we present a non-invasive, automatic visual

system for detecting and tracking handball players based on

a Fuzzy inspired methodology [35].

The document structure is as follows: the next sec-

tion presents relevant information on image segmentation

methodologies and automatic visual systems for detecting

and tracking players. Section 3 discusses the proposed archi-

tecture principles, providing an overview of the methodol-

ogy used. Section 4 presents the results achieved, including

a detailed sensitivity analysis and, finally, Sect. 5 concludes

this paper with the main conclusions and further investigation

directions.
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2 Fundamentals and related research

The field of automatic player/team detection and tracking

represents a very challenging problem due to the complexity

of sports analysis itself, as there are several similar fast mov-

ing targets that are frequently changing direction and contact-

ing with each other. Although there are two main categories

of technologies used for automatic detection and tracking:

intrusive (where special tags or sensors are placed on the tar-

gets) and non-intrusive (where there are no extra objects in

the game environment). This paper only addresses the sec-

ond category because one of the major problems of intrusive

systems is that usually regulations do not allow their usage

on official games, where the most interesting information for

game analysis is provided.

Non-intrusive systems have vision as the main sensory

source and, therefore, devote a great effort on develop-

ing image processing methodologies that allow a good

video/image segmentation.

The two following subsections provide a good insight

into the existing video/image segmentation methodologies

as well as into systems devoted to the player detection and

tracking problem.

2.1 Video segmentation

Video segmentation is the first step, and probably the most

critical, in any video (image) processing system because the

quality of the final result is highly dependent on a good seg-

mentation. There are two main categories of video segmen-

tation:

– Temporal segmentation: segments the video into mean-

ingful temporal sequences. It is usually used as the first

step of video annotation and segments the video taking

into account similarities/dissimilarities between succes-

sive frames [19].

– Spatial segmentation: aims to divide the content of each

frame into homogeneous regions that correspond to inde-

pendent objects.

The focus of this work is on spatial segmentation; hence, for a

detailed survey on temporal video segmentation please refer

to [19].

Spatial video segmentation inherits many of the method-

ologies used for image segmentation and can also make use

of the temporal characteristics inherent to video.

Image segmentation methodologies can be subdivided

into the following categories [8]:

– Histogram thresholding by determining the peaks or

modes of the uni/multi-dimensional histogram of the

image.

– Feature space clustering by grouping the image feature

space into a set of meaningful groups or classes based on

intensity, color or texture characteristics of pixels.

– Region based which includes region growing, Watershed

transform and region split and merge. These methods

attempt to divide the image domain based on the fact

that adjacent pixels in a same region have similar visual

features (color, intensity, texture or motion).

– Edge detection that segments the image by finding the

edges of each region using an edge detector.

– Fuzzy methods allow classes and regions to have a slight

uncertainty and ambiguity, which is generally the case of

image processing.

– Neural networks allow parallel processing and adding

non-linearities. They can be used either to pattern recog-

nition, classification or clustering.

Nowadays, the tendency is to aggregate techniques from

different categories to achieve better results. A typical exam-

ple of this is the JSEG algorithm [10] that initially clusters

colors into several representative classes, afterwards replaces

each pixel with its corresponding color class label and only

then applies a region growing process directly to the class

map.

As stated previously, videos can also be segmented based

on temporal properties, namely on motion along time. In

order to perform this task there are two main approaches:

Background Subtraction and Optical Flow. Background Sub-

traction methods model background as a simple static image

without objects; more complex variations propose methods

such as moving average [14], median filters or mixture of

Gaussians [13]. Optical Flow strategies [2] are based on

the motion of brightness/color of parts of the image asso-

ciated with objects—the method assumes a linearization of

the objects’ trajectories and, therefore, primarily applies to

small displacements.

Following the tendency, the proposed method for the video

segmentation step is a methodology that combines temporal

information through dynamic background subtraction with

physical and color information through a Fuzzy color cali-

bration based on region growing and pixel labelling.

2.2 Player tracking using vision systems

There are two main streams of research in this area depending

on how video footage is obtained: television broadcasting or

dedicated camera systems. In both cases, advanced image

and video processing techniques must be used due to the

complexity of the problem.

Usually, these systems involve three steps: image segmen-

tation, player detection, and finally, player tracking.
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2.2.1 Television broadcasting

Nowadays, most games (especially soccer) are filmed by tele-

vision networks and are available for everyone; therefore, this

information is not hard to obtain and to create instruments to

perform player detection and tracking.

However, most of the systems use a single broadcast cam-

era that does not provide an entire view of the playing area

and only gives useful information on wide angle images.

The first step (image segmentation), in the majority of

the literature, consists of modelling the background which

can be based on color histograms [33], color intensities [26],

clustering [18] or more robust and complex methodologies,

such as Mixture of Gaussians (MOG) [4,16,36]. The usage

of dynamic methodologies such as dynamic clustering and

MOG allows having a more robust solution that can bet-

ter adapt to colour and luminance changes which is crucial

in outdoor applications. Nevertheless, MOG methodologies

may not be effective in highly static matches, because play-

ers that stay still for too long may be absorbed into the back-

ground model.

Afterwards, the remaining regions are filtered to iden-

tify players, using simple clues such as physical constraints

[18,26], boost cascade detector of Haar features [33], cluster-

ing algorithms [16], colour template matching [12] or support

vector classification [36]. The work [22] adopted a slightly

different methodology and performs player detection without

background subtraction using two classifiers that are previ-

ously trained with hand selected samples. It is important to

notice that the usage of classifiers, template matching and

boost cascade detectors, requires prior training. Therefore,

before analyzing each game, a set of representative sam-

ples must be collected. The usage of background subtraction

methodologies usually speeds up the processing time, since

only a few regions need to be analyzed with more complex

algorithms.

Player tracking is achieved with weighted graphs [26],

Kalman Filters [22], fast level contours [18], CamShift [16]

or probabilistic models such as Markov Chain Monte Carlo

[33] and Particle Filters [15,36]. The choice of the track-

ing methodology plays an important role when dealing with

occlusion and merging situations. For example, CamShift

cannot deal well with merging, even if it is for short peri-

ods of time. On the other hand, probabilistic models are well

suited for the non-linear movement often made by the players

on the field. However, the computational effort is high.

Once the players’ trajectories have been detected, some

authors still convert the players’ coordinates into real-world

coordinates [5,16,33], which is extremely important if ball

tracking [5,18,36] or high-level game analysis [5,16,36] is

to be performed.

Despite these efforts, it is possible to verify that the detec-

tion and tracking accuracy is never 100 % because, although

temporary occlusion may be handled, more persistent situa-

tions, like overcrowded scenes, serious video blur or abrupt

camera motion, may lead to miss-tracked players.

2.2.2 Dedicated cameras

Dedicated camera systems are mostly used in indoor envi-

ronments because the smaller playing area makes it possible

to use a single camera [25]. However, authors tend to use

two [3,24,27] or even more cameras [1,9,11,28] to cover

the entire field. Benefits of using multiple cameras include

higher resolutions, overlapped regions, which allow mini-

mizing occlusion problems and open the possibility of 3D

localization [1].

Dedicated systems follow the same processing flow as

broadcast camera-based systems. So, the first stage usually

consists of eliminating the play field area (that has no useful

information), either by static background modelling [25] or

dynamic methods, with more or less complex methodologies

(ranging from median filters to MOG, or mixture of both) that

take into account light variations [3,9,11,24,27,28].

The results of the previous step usually contain noisy

regions, but only some of them really correspond to play-

ers. These regions are detected using morphological filtering

[11] aided, more recently, by an Adaboost classifier [3], color

histograms [27,28], templates [24] that are updated along

the game or occupancy maps [1,9] generated from multiple

views of the field.

Tracking is performed via weighted graphs [3,11], prob-

abilistic methodologies [25,27], Kalman filters [28] or more

simply methodologies based on velocity constraints [1] or

fixed area around the players [9]. An interesting aspect—

“Closed world assumptions” —used by [20] and followed

by [24] defines several heuristics that can be used on semi-

controlled environments and include the partition of the

world into Voronoi cells that may be occupied by a single

player and, hence, improve the tracking.

Dedicated systems place the cameras at specific locations

and, therefore, most authors compute the cameras homogra-

phies and translate the players’ positions into world coor-

dinates [1,3,11,24,25,27,28]. Additionally, [9] scans the

player’s regions for digits to determine the player’s num-

ber, [28] is able to track the 3D position of the ball and [27]

performs high-level game analysis.

3 Proposed vision and processing system

The challenges of defining a vision system able to identify

and track the game elements in an invasion team game are

huge due to the dynamic and spatial characteristics of the

game itself. In fact, handball is played in an area of 20 by

40 meters and it is quite a dynamic game, with high physical
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Fig. 1 System’s architecture

contact among players and rapid movements (a player can

achieve velocities higher than 5 m/s). These characteristics

impose a careful choice on the system’s architecture, which

includes choosing not only the cameras and their disposition

but also defining the software design.

The system must cover the entire handball field including

the extra border, the image should have enough resolution to

correctly detect all players and capture images with a frame

rate adequate to the involved speeds. The characteristics of

the problem and of the sports hall place the ceiling as the best

spot to set the camera system, since there is no interference

from the crowd, a single player never fills the entire field

of view of the camera and a bird’s-eye perspective usually

means less occlusion and/or merging situations (this solution

was also adopted by [21,24]).

On the other hand, placing the cameras on the ceiling gen-

erally forces the usage of multi-camera systems for additional

resolution. Although this choice may result in a more com-

plex system, it also carries the advantage that some parts of

the field are covered by more than one camera, which pro-

vides two views of the same portion of the field that can be

used to overcome or minimize occlusion situations.

Given the enumerated characteristics, the proposed sys-

tem uses two Gigabit Ethernet cameras DFK 31BG03.H

model from Imaging Source. Resolution is 1,024 × 768 pix-

els and the camera delivers 30 frames per second. The used

lenses are Computar T2Z1816CS Vari-focal lens with focal

distances ranging from 1.8 to 3.6 mm (wide angle lens).

When compared with other implementations, the pre-

sented architecture and hardware choice allow an “easy” set-

up that can be transferred between sports halls. The choice for

industrial grade Gigabit Ethernet interfaced cameras allows

reliability with digital quality, high data rate and low cost: no

frame grabber, common hardware, low cable costs while still

allowing large distances. The available data rate is very high

and that, in turn, allows large frame rates with high resolu-

tions. The chosen Vari-focal lens has an interesting price and

allows (manual) “zooming” of different pavilions that have

ceilings at different heights. These advantages come at the

expense of an important image distortion.

A three module software system is proposed, one respon-

sible for acquiring the images from the two cameras (Acquisi-

tion System) and another for the off-line processing of the two

video streams (Processing System). This last one detects and

tracks the players and generates a log file with the players’

positions, so that they can be used by the sports community

to perform game analysis and infer game statistics. Addi-

tionally, another application (Visualizer) is able to merge the

two video streams and the log file to create a global image

of the field with the players highlighted, so that the user can

latter analyze the collected information. Figure 1 illustrates

the architecture described.

Figure 2 shows the images collected from the two cameras.

It can be seen that the barrel effect is wide due to the usage

of inexpensive lenses. The mentioned combination offered

excellent performance at an interesting cost at the time of the

start of the project, in 2010.

3.1 Player detection

Player detection is achieved through color identification and

is composed of three steps. The first step (Sect. 3.1.1) con-

sists of the user-based color calibration of each team, using

a region growing method allied with a Fuzzy categorization

methodology (evolution of [29]). This calibration is respon-

sible for subdividing the color space into subspaces, which

are not necessarily disjoint since there may be colors com-

mon to both teams (for example, it is common to have teams
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Fig. 2 Images collected from the two camera’s system

with white stripes). Afterwards, the user manually indicates

the location of each player on the field by clicking on the

videos.

The second step (Sect. 3.1.2) consists of detecting fore-

ground regions through a dynamic background subtraction

method, which uses an empty image of the field and a

dynamic threshold that is continuously and locally updated

at each new frame.

After the foreground pixels are identified, their color is

compared against the color subspaces and classified into one

of the teams (Sect. 3.1.3). In case there is a belonging tie

between teams, information of adjacent pixels is used to

break the tie. Additionally, the teams’ color subspaces are

updated with new information.

Finally, pixels are aggregated to form blobs and catego-

rized into player or no player (noise), according to size and

density restrictions. The center of mass of the blob is con-

sidered the player’s position, that is afterwards transformed

into field coordinates using the cameras’ homographies.

The usage of simple, robust and parallelizable methodolo-

gies is intentional, so that, making use of parallel technolo-

gies (multi-threading, Open Multi-Processing (OPENMP)

[7], Graphics Processing Unit (GPU) [23] and code opti-

mization), real-time processing can be achieved.

3.1.1 Color calibration

The color calibration is performed under user supervision

and is achieved using a region growing method allied with a

Fuzzy categorization methodology [29].

Let us define color subspace Sc as the set of RGB color

triplets that are tagged as having the colors of the vests of

team c. The initial colour seeds C(xs, ys) for each color sub-

space Sc are set manually using the mouse to click on the

objects that will be segmented. Afterwards, the surrounded

pixels’ colors C(xa, ya) are agglomerated around these seeds

using color distance criteria. Color expansion is performed

on the HSL (Hue, Saturation and Luminance) color space to

minimize the effects of shadows and light variations.

Regions growth is performed in all directions (using a

8 neighbour mask n8) in a recursive way until reaching a

pixel that, in terms of color, is more than a global threshold

(CThresG) away from the seed or more than a local thresh-

old (CThresL) away from its previous neighbor C(x p, yp),

according to the following definition (both thresholds are

user definable):

Rule 0

C(xa, ya) ∈ Sc ⇔ ∀(xa, ya) ∈

n8(x p, yp) ∧ �(C(xa, ya), C(x p, yp)) < CThresL

∧ �(C(xa, ya), C(xs, ys)) < CThresG)

where

• C(x, y) is the HSL color of pixel at location (x, y),

• n8(x, y) are the eight neighbors of the pixel at location

(x, y), and

• �(C1, C2) is a configurable weighed distance function,

involving HSL components of colors C1 and C2.

During the color expansion, each color value is attributed

a given belonging degree to the subspace being calibrated.

This value is stored in a lookup table that contains, for each

color triplet, the belonging degree to each subspace. Despite

the expansion being performed on the HSL color space, the

color lookup table is built on the RGB (red, green, blue)

color space, which is the format provided by the camera.

Therefore, in execution time, labelling is performed via this

lookup table, which allows fastening the process.

The Fuzzy belonging degree µ of the color C of a pixel

P of coordinates (xP , yP ) to a given color subspace Sc
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Table 1 Mapping of BSc to Fuzzy belonging µ

Color BSc µSc

Not the color C0 0

Resembles the color CL 0.5

Is the color CF 1

Is a seed color CS 1

is µSc(C(xP , yP )) and can assume 4 levels, according to

Table 1. By default, and before the calibration takes place,

all the colors are categorized with no belonging degree to

every subspace.

In order to determine the belonging degree of the color

triplet to the respective subspace, the following rules are

sequentially applied during the color calibration region grow-

ing process:

Rule 1

BSc (C(xa, ya)) = CS ⇐ C(xa, ya) ∈

(Sc ∧ �((xa, ya), (xs, ys)) < SmallThresG)

If the pixel was assigned to the subspace, is physically

quite close to the initial seed pixel and the color distance to the

initial seed pixel is less than a small threshold (SmallThresG),

then it is also assumed to be a seed pixel with a full belonging

degree.

Rule 2

BSc (C(xa, ya)) = CF ⇐ C(xa, ya) ∈

(Sc ∧ �(C(xa, ya), C(xs, ys)) < MediumThresG)

If the color distance to the initial seed pixel is less than a

medium threshold (MediumThresG) for the growing process,

then the pixel is categorized with a full belonging degree but

without being a seed.

Rule 3

Otherwise, and in case the pixel obeys to the region growing

conditions (Rule 0), it is categorized with a low belonging

degree (CL ).

By the end of the calibration process, the color space

is subdivided into subspaces, which are not necessary dis-

joint since the same color can belong to different subspaces,

with different belonging degrees. The motivation for allow-

ing non-disjoint subspaces is that teams frequently share col-

ors, for example uniforms with white stripes are common

and, thus, the exact same well known color belongs to the

two opposing teams.

As will be seen later, the belonging degrees assigned to

each color triplet will allow to break ties but also to generate

dynamic subspaces that can adapt (either grow or shrink) dur-

ing the game. Subspaces do not have, nor ever create, any pre-

defined specific shape as they are created from user-selected

seeds on the image and based on the frames’ characteristics.

3.1.2 Background subtraction

Since the background is more or less static, due to the semi-

controlled environment of an indoor game, the subtraction

is performed using an empty image of the viewed scene

recorded prior to the Portuguese SuperCup Competition and

only the threshold used to distinguish between foreground

and background pixels is allowed to vary. This threshold is

specific for each pixel.

Background subtraction is performed on the RGB color

space, because tests showed that, for some pixels, a small

difference between the RGB color components of the back-

ground and the processed images corresponded to a large

difference on the Hue component (HSL color space). In fact,

non-linear color spaces suffer from the non removable sin-

gularity problem as stated by [8].

In addition, to make the processing time shorter, the sub-

traction is executed locally and not to the entire image. In

other words, only predefined regions, which are defined

by the Kalman Filter predictive stage, suffer this process

(Sect. 3.2).

The threshold applied to each pixel is only updated if the

pixel is classified as background, otherwise its value remains

unchanged. The update obeys to Eq. 1 and the value is never

allowed to go below 4 % or above 23.5 % of the entire color

range (0–255) for each color component (these values were

obtained experimentally by trial and error).

σ c
t + 1(x, y)

=

⎧

⎪

⎨

⎪

⎩

α(I c
t (x, y)−Bc(x, y))+(1−α) σ c

t (x, y),

if It (x, y) ∈ B(x, y)

σ c
t (x, y), otherwise

(1)

where

• σ c
t+1 is the threshold of the pixel at position (x, y), time

t+1 and color component c,

• I c
t is the color intensity of the pixel at position (x, y),

time t and color component c,

• Bc is the background color intensity of the pixel at posi-

tion (x, y) and color component c, and

• α is a learning constant, that for our specific case was set

to 0.02.

Pixels whose color difference from the background image

is less than the respective threshold are labelled as back-

ground, the others are labelled as foreground.

3.1.3 Team identification

After the foreground pixels are identified, their color is com-

pared against the color lookup table that resulted from the
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Table 2 Fuzzy inference associative matrix

calibration process (Sect. 3.1.1) and then classified into one

of the subspaces.

Since the same color can belong to different subspaces it

may occur that a pixel is classified into more than one sub-

space. To obtain a crisp value of the team the pixel belongs to

(Sc), the Fuzzy inference model uses not only the belonging

degree itself (µ), but also information about adjacent pixels

that have already been classified, or more precisely the pro-

portion of pixels belonging to each subspace ( n A

nB
) according

to the inference associative matrix defined on Table 2 (δ is a

small constant defined by the user and � is the empty set).

Using this Fuzzy inference model it is possible that,

although the belonging degree of a pixel to a subspace based

on the color calibration information is higher than the belong-

ing degree to the other subspace, it may be the winner due to

the neighbourhood characteristics.

Additionally, if the winning subspace has a full belong to

that color triplet and corresponds to a seed color (CS), then

a region growing process is triggered, and the color lookup

table that contains the information concerning the color sub-

spaces is updated. This auto-expansion is more restrictive

than the one performed during the manual initialization and

is triggered at time intervals (texp), that can be defined by the

user.

For this update to add not only color triplets to the sub-

spaces but also to remove them, each color triplet has asso-

ciated a persistence (pSc(R, G, B)) to that subspace. Colors

with lower belonging have lower persistence and colors with

higher belonging have higher persistence. The initial persis-

tence given to the color is proportional to the time between

auto-expansions, according to Eq. 2.

⎧

⎪

⎨

⎪

⎩

pSc (R, G, B)=CLow × texp, if BSc(R, G, B)=CL

pSc (R, G, B)=CMed × texp, if BSc(R, G, B)=CF

pSc (R, G, B)=CHigh × texp, if BSc(R, G, B)=CS

(2)

The persistence is maximum, with the values defined in

Eq. 2, when the color is added to the subspace and diminishes

whenever it is not detected in a frame. When the persistence

value reaches zero, the color triplet is removed from the sub-

space.

With the introduction of this dynamical behavior (the

update of the look up table), it is possible to have mutable

subspaces that adapt to lighting changes, either occurring at

different regions of the same frame or between frames.

At the same time the foreground pixels are classified, they

are also aggregated horizontally to form Run Length Encod-

ing (RLE) structures characterized by the y, xmin and xmax

positions of the RLE. An outline of the algorithm to generate

these RLE structures ([30]) is presented next.

The f ill RL E End function is described using Algo-

rithm 2.

As shown in Algorithm 2, if the distance between two

RLEs is small and they belong to the same color subspace

(line 12), they are considered as being part of the same RLE

and connected together.

Finally, the RLEs are merged vertically to form blobs. The

blobs resulting from this pixel aggregation are further refined,

according to size and color density constraints. Therefore,

blobs that are too small or too large or blobs that have

low color density are discarded as being players. The color

density is measured as the percentage of pixels inside the

rectangular bounding box of the blob that belong to the sub-

space divided by the total number of pixels. The remaining
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blobs are considered players that belong to a given subspace

(team) (Sc) and have an (x, y) position on image and world

coordinates.

The position on image coordinates is calculated as the

blob’s center of mass, according to Eq. 3. This is an weighted

center of mass calculation because it uses the belonging

degrees defined on Table 1. This way, pixels that are seeds

or fully belong to the subspace (CS or CF ) have a higher

contribution to the final result.

(xcm, ycm) =

(
∑

x

∑

y µSc(C(x, y))x
∑

x

∑

y µSc(C(x, y))
,

∑

x

∑

y µSc(C(x, y))y
∑

x

∑

y µSc(C(x, y))

)

(3)

where

• c is the team the blob belongs to,

• C(x, y) is the color of pixel at location (x, y), and

• µSc is the Fuzzy belonging degree assigned during the

color calibration phase

The world coordinates are obtained by first removing the

barrel effect produced by the lens (only radial effect was

considered, since the tangential component was found to be

insignificant) using Eq. 4. The unknowns in this equation

system (k1, k2, k3, xc and yc) are determined using the

information extracted from the field lines.

{

xu = xd + (xd − xc)(k1r2 + k2r4 + k3r6)

yu = yd + (yd − yc)(k1r2 + k2r4 + k3r6)
(4)

where

• r2 = (xd − xc)
2 + (yd − yc)

2,

• (xu, yu) are the undistorted coordinates,

• (xd , yd) are the distorted coordinates,

• (xc, yc) are the coordinates of the center of distortion of

the lens, and

• k1, k2 and k3 are the radial coefficients for barrel distor-

tion.

Figure 3 illustrates the images before and after removing

the barrel effect for the two cameras.

Once the barrel effect is removed from the images, it is

possible to apply the pinhole camera model to obtain the

world coordinates. This model uses intrinsic parameters (K)

and extrinsic parameters (R and T) to map image coordinates

(X) into world coordinates (x), according to Eq. 5, a process

known as homography.

Fig. 3 a and b left image before and after removing the barrel effect distortion. c and d right image before and after removing the barrel effect
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x = K [R|T ]X ⇔ x = Hw X (5)

The H matrix is defined according to Eq. 6

Hw =

⎡

⎣

f 0 cx

0 f cy

0 0 1

⎤

⎦

⎡

⎣

RT11 RT12 RT13 RT14

RT21 RT22 RT23 RT24

RT31 RT32 RT33 RT34

⎤

⎦ (6)

where

• RT11 = cos φ cos α

• RT12 = sin ω sin φ cos α − cos ω sin α,

• RT13 = cos ω sin φ cos α + sin ω sin ω sin α,

• RT14 = Tx ,

• RT21 = cos φ sin α,

• RT22 = sin ω sin φ sin α + cos ω cos α,

• RT23 = cos ω sin φ sin α − sin ω cos α,

• RT24 = Ty,

• RT31 = − sin φ,

• RT32 = sin ω cos φ,

• RT33 = cos ω cos φ,

• RT34 = Tz,

• f is the focal length,

• cx and cy are the coordinates of the optical center,

• φ, ω and α are the rotations around the x , y and z axes

respectively, and

• Tx , Ty and Tz are the translations on x, y and z directions.

Since we are only interested in the players center of mass

position, only these coordinates are converted and not the

entire field. In addition, these coordinates are projected at

an average player height, which allows a more correct mea-

sure of the players’ positions and enables better information

fusion between cameras, that will be crucial for the tracking

methodology when a player passes from one camera to the

other.

3.2 Player tracking

Player tracking is based on a vector of Kalman filters [17,34]

(one per player) with state xk (Eq. 7), measure zk (Eq. 8) and

input uk (Eq. 9) at instant time k.

xk = [xy]T (7)

zk = [xy]T (8)

uk = [vxvy]
T (9)

where

• x and y are the player’s center of mass position in real-

world coordinates and

• vx and vy are the player’s velocity in real-world coordi-

nates.

And modelled according to the following linear stochastic

difference equations (Eqs. 10, 11).

xk = Axk−1 + Buk + wk−1 (10)

zk = H xk + vk (11)

where A represents the state model matrix, B the control input

model and H is the observation model matrix. These matrices

correspond to an identity matrix of size 2 × 2. The random

variables wk and vk represent the process and measurement

noise.

The input to the system (uk) is determined based on the

players subsequent positions according to Eq. 12.

vk(x, y) =

(

xk − xk−1

�t
,

yk − yk−1

�t

)

(12)

The usage of real-world coordinates allows a transparent

tracking between the two video streams. Moreover, in the

overlapped region, two measures can be extracted from both

images. The Kalman filter deals with these two measures in

a straightforward way because they are in real-world coordi-

nates.

Whenever the user indicates a player (with the mouse),

a new Kalman filter is added to the vector with the player’s

real world position and a default velocity of 0 m/s. After-

wards, the players’ locations on the subsequent frames are

predicted using Eq. 10. The area around the predicted mea-

sure corresponds to a region of interest (ROI) that is searched,

according to the process explained on Sect. 3.1.3, to generate

a measure (zk) to update the estimate.

By predicting the position of the players on the subse-

quent frames it is possible to reduce the computational cost

because only a few regions of the entire image are searched

for players.

For the cases when the tracking is lost beyond a given

configurable threshold (called Tracking Prediction Window-

TPW), the system prompts the user to locate the player on the

field. If the subsequent tracking is successful, no further user

actions are required and current tracking is linked to previous

history as a normal result of the Kalman Filter. The user may

also signal other special game circumstances that are not in

the scope of this article.

4 Results

In order to validate the approach, the system was mounted at

a public sports hall to capture the official games of the Por-

tuguese Handball SuperCup, 2011. The video footage col-

lected supports the proposed approach since the entire field

was covered with good resolution and a large overlapped

zone as shown in Fig. 2.
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Fig. 4 Measure of error: dots

represent real coordinates and

bars represent the measure

obtained using the homography

estimated

The presented results relate to system’s accuracy, player

detection and tracking rates. Also, an in-depth sensitivity

analysis was performed to evaluate the robustness of the

approach. The last subsection illustrates how the resulting

information can be visualized by the user.

4.1 Processing time

The ultimate goal of this work would be to make the system

work in real time. Results indicate that the system takes, on

average, about 160ms to process each frame using an Intel

Core i7-2630QM@(2.00–2.90) GHz computer operating on

Windows7 and can go up to 1s during an auto-expansion

process.

In order to obtain real-time processing, a speed-up of

around 5 times would be required, since a frame should

be processed in less than 33 ms (cameras operate at 30fps),

excluding auto-expansions. Although our algorithm is pre-

pared to be optimized with strategies that promise to deliver

such speed-ups (GPU aided processing, parallel and/or dis-

tributed processing or even smart cameras), they are beyond

the scope of this paper.

4.2 Measurement accuracy

Tests conducted on the accuracy of the measure show that

the error is less than 35 cm for the 2 cameras for the total

of 20 × 40 m. This error is comparable with other works

devoted to handball [3] (7–28 cm) and [21] (30–50 cm). The

following image (Fig. 4) illustrates the errors at known points

of the field. The green dots indicate the real positions, while

the bars represent the distances to the measures obtained with

the calculated homographies.

The error obtained is satisfactory given the characteris-

tics of the implemented system: high area to be covered,

the distortion induced by the used wide angle lenses and

the system’s inherent resolution (3.6, 3.7 cm). Additionally,

the maximum errors are achieved in the field periphery and

not in critical areas for the game.

4.3 Player detection

In order to validate the Fuzzy methodology, two distinct

teams that we named green and red teams (examples of both

teams can be found in Fig. 5b) were calibrated as explained

on Sect. 3.1.1. The original seeds were selected by clicking

on the players of both teams, which resulted on the initial

color subspaces illustrated in Fig. 5a.

After 1020 frames and texp = 30 (which corresponds to

34 expansions), it is possible to confirm that the teams’ color

subspaces have updated and dynamically changed from the

original color subspaces (Fig. 5a) into the new color sub-

spaces of Fig. 6. It is convenient to disable the auto-expansion

process when the color subspaces become stable and the

detection rates high because the overhead time induced by

the auto-expansion is high and can slow down the processing

time.

Graphs in Fig. 7 provide an overview of the color spaces

evolution during the auto-calibration process. It is possible

Fig. 5 a Initial color subspaces for green and red teams. Lighter dots

are seed colors (CS), intermediate are team color (CF ) and the darkest

resemble the team color (CL ). b Examples of players from red team

(up) and green team (down) (color figure online)
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Fig. 6 Final color subspaces

after 34 auto-expansions (color

figure online)

(a)

(b)

Fig. 7 Evolution of the number of color triplets that belong to each

team and the respective belonging degree. The expansion is performed

every 30 frames (texp = 30) (color figure online)

to verify that, from the initial color subspaces (Fig. 5a) to the

final ones (Fig. 6), the color triplets that belong to each class

are adapting.

On the red team, the initial color subspace defined by the

user consisted of color triplets that in fact do not belong to it.

By making use of the persistence the auto-expansion process

adaptively “pruned” those color triplets from the subspace

which resulted in a slight more condensed and stable form.

On the other hand, the initial green team calibration did

not reflect well the characteristics of the team’s uniform.

Therefore, it is possible to state that the color triplets that

are seeds increase greatly during the auto-expansion, the CF

color triplets increase less due to their smaller persistence

and color triplets that resemble the color CL stay quite stable

at low values.

From what has been said, it is important to highlight that

the initial seed choice (a well known problem of region grow-

ing methods) as well as the specific characteristics of the

team’s uniform will influence on how well the color subspace

(a)

(b)

Fig. 8 Number of miss-detected field players in each frame with and

without color auto-expansion: a red team, b green team. Each point on

the graphs was obtained by passing an averaging filter of size 9 to the

original points (color figure online)

adapts to the environment conditions. In fact, the initial seeds

for the red team resulted in a faster adaptation: the color sub-

space adaptation is very quick at the initial process on pruning

color triplets (CF ) that were miss categorized by the user. On

the other hand, for the green team the stabilization seems to

occur more at the end of the process.

Comparing the number of not detected players in each

frame with and without the Fuzzy model of color expan-

sion, it is possible to verify that the overall player detection

achieves better results with the mutable color subspaces, as

depicted in Fig. 8 (each handball team is composed of six

field players).

The usage of the auto-expansion methodology greatly

improves the detection rate for the green team, in fact, the

number of miss-detected players per frame, after frame 100,

sporadically gets higher than 1 but never higher than 2, and

most of the time is 0, while with the initial color subspace

continuously oscillates between 4 and 6.

For the red team the behavior is somewhat different,

and the number of non-detections is similar for both cases

because the initial color subspace already reflected the team

characteristics well. An important aspect to highlight is that,

despite some pruning, the auto-expansion process was able

to maintain the color triplets that really belong to the team.

The results for the two teams indicate that the auto-

expansion is extremely important and can greatly improve

the results when the initial color subspace does not reflect
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Fig. 9 Results of the player detection at frame 671: a without auto-

expansion and b with auto-expansion. Green and red crosses indicate

correct detection while blue crosses indicate the position was predicted

by the Kalman filter (color figure online)

well the team characteristics. Furthermore, during the game

if the light conditions change, the color subspace will also

adapt to accommodate the new color triplets and remove the

ones that no longer belong to the team.

Figure 9 shows a zoom around the 6 meter-line of the

players’ detection at frame 671, where the green/light red

pixels correspond to pixels that were labelled as belonging to

green/red team, the green/red crosses correspond to players

detected from green/red team, while the blue crosses indi-

cate that the player’s position was predicted by the Kalman

filter and, therefore, it was not detected. Analyzing the two

images, it is possible to verify that, using the Fuzzy auto-

expansion model, all players from both teams were detected

(Fig. 9b), while using the initial color subspaces (Fig. 5a)

only one player from the green team was detected (Fig. 9a).

In addition, the detected area of the players is higher with

the Fuzzy model (visible on player 9) which allows to have

a better measure of the player’s center of mass.

4.4 Sensitivity analysis

In order to better assess the proposed global methodology,

systematic tests were carried out. A sensitivity analysis of the

most relevant parameters—time between expansions (texp),

background learning constant (α), tracking prediction win-

dow (TPW) and initial seeds choice—was performed. In

addition, robustness tests to changes in brightness and image

resolution were conducted.

4.4.1 Expansion time

As explained on Sects. 3.1.1 and 3.1.3, the evolution of the

color subspaces is governed by the texp. This dependence is

twofold, first because the auto-expansion process is triggered

at intervals of texp and second the triplets persistence is also

dependent on the texp, according to Eq. 2.

The choice of the texp plays an important role in the overall

detection, because a value too low, while providing a fast

response, will also increase the processing time since auto-

expansions occur more often. On the other hand, higher time

between expansions will make the system adaptation slower

and a good calibration will not be achieved so fast. Figure 10

shows the miss-detection rates using different texp values. It

is possible to verify that for lower values (15 and 30) the

system quickly adapts, while for texp = 60 it takes around

400 frames to obtain similar rates.

The overall values indicate that, for this specific case, the

best performance is achieved with texp = 30 which has a

6.95 % global average of miss detections. Similar values are

7.72 % for texp = 15, 8.13 % for texp = 45 and 8.09 % for

texp = 60.

4.4.2 Illumination

The impact that illumination changes may have on the sys-

tem’s performance was tested by artificially changing the

brightness of the video, similarly to what is expected to

happen in a sudden illumination change. Figure 11 shows

the miss-detection rates for the original behavior (plot

“Original”) compared with the ones obtained when the

videos’ brightness is changed by

Fig. 10 Comparison of miss-detection rates using different texp: 15, 30, 45 and 60 frames (each point on the graphs was obtained by passing an

averaging filter of size 9 to the original points)
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Fig. 11 Comparison of miss-detection rates (bottom) between the orig-

inal video and video with artificially changed brightness. Original video

and corresponding detection deficiencies are shown in the “Original”

plots. Video with long-term added brightness step is shown on “Step”

plots. Video with added ramp brightness is show on “Ramp” plots.

Video with added noise of Gaussian distribution is shown on “Gauss”

plot. Top graph indicates the average brightness of the video. Results

were collected with texp = 30 and each point on the graphs was obtained

by passing an averaging filter of size 9 to the original points

– applying a step of brightness of −20 at frame 600 and

changing it to a step of +20 (above baseline) at frame

1200 (plot “Step”)

– applying a ramp of brightness from frame 500 until frame

700 of −20 and a ramp from frame 1100 to 1400 of +40

(plot “Ramp”)

– applying Gaussian noise at every video frame (plot

“Gauss”)

The visual difference between the brightness of the several

test limits (−20, +20) and the original image can be seen in

Fig. 12.

By analyzing the plots it is possible to verify that the sys-

tem behaves well when Gaussian noise is applied. Although

the miss-detection rate is slightly higher than that in the orig-

inal case the overall performance is very similar. For the Step

and Ramp tests, the miss-detection rate increases specially

when applying the −20 brightness delta.

Fig. 12 Example of images

obtained by applying a

brightness step of −20 (top),

0 (middle) and +20 (bottom) to

the original videos

4.4.3 Color learning constant

Concerning the background learning constant, the choice of

its value must take into account that high values tend to induce

fast absorption of foreground features into the background

which causes miss detections, while low values make the

background detection slower and, therefore, more pixels are

considered foreground.

Table 3 Foreground detection using different learning constants (α =

0.02, α = 0.08, α = 0.16 and α = 0.20) at frames 31, 82 and 120. The

pixels classified as background were darkened
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Fig. 13 Comparison of miss-detection rates between two different initial sets (Experiment A and Experiment B). All results were collected with

texp = 30 and each point on the graphs was obtained by passing an averaging filter of size 9 to the original points

The following table (Table 3) illustrates how the back-

ground detection behaves when two players stay still for a

quite long period of time using four different learning con-

stant values (0.02, 0.08, 0.16 and 0.20).

High learning constants (0.16 and 0.20) rapidly absorb

foreground features, and the two static players are miss

detected from frame 82 onwards. A smaller constant (0.08)

has a better behavior; however, on frame 82 only one of

the players is detected, the other was included on the back-

ground. The smallest tested constant (0.02) proved to have

better results, since it was able to completely absorb the play-

ers’ shadows in a relatively short period of time (51 frames),

while keeping the detection rates high.

4.4.4 Seed pixels choice

Another important aspect to take into consideration is the ini-

tial choice for seed pixels which impacts heavily on detection

rates, as previously mentioned. Figure 13 illustrates how the

detection rate may be influenced, depending on the initial

color calibration. Therefore, Experiment B, due to a poorer

choice of the initial seeds, presents higher miss-detection

rates, particularly at the initial phase, only getting similar

values after frame 600.

It is also possible to verify that the dynamic of the color

subspaces behaves differently, as illustrated on Table 4. This

difference is more noticeable for the red team, for which

Experiment B results in a more condensed color subspace,

compared with the one from Experiment A on frame 1600.

For the green team, despite the differences on the initial sub-

spaces the final ones are very similar.

4.4.5 Video resolution

A final sensitivity test on the detection methodology con-

sisted on evaluating how the camera resolution would influ-

ence the miss-detection rate. The videos were down-sampled

by a factor of two, and the resulting miss-detection rates can

be seen on Fig. 14. For the down-sampled video, the para-

meters concerning the minimum area that allowed for a blob

Table 4 Color subspaces evolution depending on the initial seeds.

Lighter dots are seed colors (CS), intermediate are team color (CF )

and the darkest resemble the team color (CL )

to be considered a player were adjusted accordingly. Down-

sampling the video proved to induce a higher miss-detection

rate, which is justified by the smaller number of pixels that

composes each player, as can be seen in Fig. 14a.

4.4.6 Tracking prediction window (TPW)

Normal Kalman filtering transforms the sequence of detec-

tions into tracking. In case of missed detections, the sys-

tem is able to make a limited prediction in time, to avoid

user intervention. However, if a given player is not detected

beyond a given configurable threshold called TPW, the user

is prompted to locate the player or indicate a special game

circumstance.

The TPW plays an important role in the tracking rate.

Therefore, this experiment evaluated how the tracking rate is

affected using TPWs of 1, 5, 10 and 20 frames. The results

are shown in Fig. 15.

As can be seen, with the smallest TPW, which corresponds

to 1, the tracker behaves like a pure filtered tracker, where

the results are based solely on the detection and, therefore,
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(a) (b)

Fig. 14 Comparison of miss-detection rates using original image and

down-sampled image with a scale factor of 1/2 (b) and examples of the

two images (a). All results were collected with texp = 30 and each point

on the graphs was obtained by passing an averaging filter of size 9 to

the original points

Fig. 15 Comparison of tracking rates using different temporal win-

dows (1, 5, 10 and 20 frames) for the predictive stage of the Kalman

Filter (TPW) (results were collected with texp = 30 and each point on

the graphs was obtained by passing an averaging filter of size 9 to the

original points)

the tracking rate is lower (around 99.44 %). Increasing the

TPW allows for higher tracking rates (around 99.70 % for

TPW = 20 frames), because the user is prompted to correct

the tracker less often. However, the operator must pay more

attention to the entire process, otherwise the tracker may be

lost and continue to rely on a misleading prediction.

4.5 Detection with shared colors

The Fuzzy methodology enables a better auto-expansion

process, and also the possibility of having one color belong-

ing to more than one team. To test it, a game where two teams

(team A and team B) have the color white on their uniforms

was used. The color subspaces are shown in Fig. 16a and the

resulting process in Fig. 16b.

Despite the fact that the color white is common to both

uniforms (shown by the color yellow triplet on the color sub-

spaces Fig. 16a), the processing is able to identify the neigh-

bouring pixels and correctly label the pixel under analysis.

So for player 7 from team A, the white pixels are labelled as

belonging to team A, because they are near red pixels that

only belong to the team A, while for players 2 and 3, most

of the white pixels are labelled as belonging to team B, due

to their neighborhood to blue pixels that only belong to team

B’s color subspace.

Fig. 16 a Color subspaces for two teams with common color (white)

and the b corresponding image processing (color figure online)

4.6 Player tracking

The miss detections achieved with the auto-calibration pro-

cess are not consistent and persistent with time, so they are

compensated by the predictive stage of the Kalman filter

(Eq. 11), and the benefits of the method are evident on the

results obtained for the green team.

Taking into account the results of Sect. 4.4.6, tests were

performed with TPW = 5 frames, which allows not only a

good tracking rate, but also an accurate measure, because in

case the tracker is lost, this fact will be highlighted to the

operator sooner.
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Fig. 17 Comparison of miss-detection rates with different setups:

without auto-calibration and without Kalman filter (noExp noKalman);

with auto-calibration and without Kalman filter (Exp noKalman); with-

out auto-calibration and with Kalman filter (noExp Kalman); with auto-

calibration and with Kalman filter (Exp Kalman). The Kalman filters

used a T PW = 5 frames and each point on the graphs was obtained by

passing an averaging filter of size 9 to the original points

Figure 17 compares the miss-detection rates with and

without the auto-calibration as well as with or without the

Kalman filter. As expected, the worst case is when no Kalman

filter nor auto-calibration is performed. The usage of the auto-

calibration method greatly improves the overall detection

rates, which are further enhanced with the aid of the Kalman

filter. Results for the non auto-calibration case are only plot-

ted until frame 1000, because the human operator effort of

correcting the tracking is very high, and more data do not

provide extra information for what we are demonstrating.

Numerical results for each player on the tracking rate dur-

ing the auto-calibration process can be found on Table 5

(these data were obtained by manual validation performed

by an expert during the tracking process, and combine miss

detections resulting from the TPW parameter, as well as cor-

rections made by the operator in case the prediction was

wrong). As expected, despite some miss detections, the track-

ing achieved very good rates, having a success that ranges

from 95.44 to 99.90 % (and a corresponding average of

98.79 %).

When compared with other approaches, these results

prove to be similar to the ones obtained with other methodolo-

gies, such as the fast Rao-Blackwellized Resampling parti-

Table 5 Tracking rates of all the players (6 field players per team)

during 11000 frames analyzed (≈370 s)

Player ID Rate (%) Player ID Rate (%)

P0 99.44 P6 99.78

P1 99.61 P7 99.62

P2 97.87 P8 98.83

P3 96.95 P9 99.90

P4 99.32 P10 99.67

P5 99.04 P11 95.44

cle filter proposed by [4] (>90 %), the Condensation particle

filter proposed by [21] (ranging from 99.12 to 99.57 %) or

directed weighted graphs [26] (around 93.26 %).

4.7 Data visualization

The log file, generated during the processing of the 11000

frames, contains the players’ positions and velocities and,

as explained in chapter 3, can be used by the Visualizer not

only to see the two images fused into a single image with the

tracked players highlighted, but also to extract statistics of the

players’ behavior. The image fusion (Fig. 18) is performed by

first converting each pixel coordinate into real-world coor-

dinates and then converting back to a common coordinate

system (in this case the right image coordinate system).

In addition, the application provides statistics for each

player, position and velocity maps per player and the team

tactical map.

Table 6 shows the statistics for the 12 field players that

started the game (it is important to mention that handball

Fig. 18 Image provided by the visualizing application. Crosses above

players indicate the player ID, and the two concentric circles with Tx

indicate the center of mass of the respective team

123



Vision system for tracking handball players

Table 6 Player statistics
T P D (m) Ti (s) Te (s) Avg vel (m/s) Max vel (m/s)

A P0 569.64 0 367 1.51 7.15

P1 600.21 0 367 1.59 7.44

P2 71.36 0 42 1.55 4.92

P3 106.09 0 56 1.67 9.41

P4 589.43 0 367 1.54 6.55

P5 570.29 0 367 1.49 7.15

P12 78.30 42 72 2.34 6.43

P14 58.25 56 73 3.25 6.75

P15 61.15 72 106 1.62 4.69

P16 185.31 73 186 1.58 6.78

B P6 645.93 0 367 1.74 8.34

P7 135.61 0 79 1.67 5.84

P8 165.65 0 73 2.10 6.64

P9 585.69 0 367 1.58 7.56

P10 539.65 0 367 1.43 5.61

P11 148.82 0 50 2.10 6.47

P13 135.27 51 108 2.09 5.95

P17 209.61 73 178 1.91 7.62

is a game that allows unlimited substitutions and, therefore,

players are constantly being replaced). From the table it is

possible to verify that

– for the same amount of time, players P1 and P6 have

covered more distance (above 600 m) than players P0 or

P10,

– the average velocities of the players ranged from 1.43

m/s (player P10) to 2.11 m/s (player P11) and

– the maximum instantaneous velocity ranged from 4.92

m/s (player P2) to 9.41 m/s (player P3).

The field areas as well as the velocity maps for players P5

and P6 can be seen in Fig. 19.

Analysing these maps, we see that player P5 plays more

on the downside of the field (Fig. 19a), while player P6 plays

more on the upper side of the field and seems to have made

a dynamic swap of tactical position because he also plays

on the center of the field (Fig. 19b). Also, players tend to

have higher velocities (represented by the color blue) during

transition phases (when players change from an attacking

position into a defending one or vice versa).

Using the team’s tactical maps (Figs. 19, 20), it is also

possible to verify where the teams preferentially occupy the

field during specific situations. The Visualizer allows the user

to interact and choose specific time frames to be displayed.

This statistical information can be very useful for sports

experts since it allows them to have perception of the

preferred field areas of each player as well as the effort spent

during the game (distance travelled, average velocity and

peaks of velocity).

5 Conclusions

This paper presented a cost-interesting system for tracking

sports players in indoor games. Although the proposed sys-

tem aims to be generic, only handball is currently addressed.

It uses two cameras to retrieve high-quality video, and the

system is somewhat portable among sports hall.

Player detection is based on an initial manual color cali-

bration that is, during the processing stage, able to dynam-

ically and automatically adapt to the light conditions that

influence the color (different field zones, shadows, influence

from outside conditions due to the presence of windows).

The methodology adopted includes the identification of fore-

ground pixels, using dynamic background subtraction, and

the notion of team color subspaces, using a Fuzzy inspired

dynamic model to detect players based on the color proper-

ties of their clothes. Due to the Fuzzy color classification, a

given color may be shared among teams. Player tracking is

further improved with Kalman Filtering.

In addition, the conversion of the players’ image coor-

dinates into real-world coordinates (measures errors below

35 cm) allows not only to have a transparent tracking of the

players among cameras and to include more cameras in the

system easily, but also to extract metrics of the players’ per-

formance (players’ positions, velocity and distance traveled).
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Fig. 19 a and b position maps

for player P5 and P6, c and d

velocity maps for player P5

and P6

Fig. 20 Position maps for two

game situations: a red team

defending green team attacking,

b green team defending red team

attacking (color figure online)

The distinctive feature of the presented approach is the

usage of a Fuzzy Logic-based color processing of the video

stream, which allows not only to identify the teams but also

to enable a dynamic behavior of the color subspaces that

characterizes each team. It is expected that these simple and

robust methodologies can be easily parallelized, so that, in

future, the system can operate in real-time. Moreover, the

visualization tool allows for a better understanding of the

teams’ behavior by providing a global, undistorted view of

the field, as well as, schematic views concerning the players’

movements and teams’ interactions.

Results obtained with a video footage of a professional

handball game (during the Portuguese Handball SuperCup

competition, year 2011) validated the proposed system and

indicate that it is possible to obtain high tracking rates (above

95 %) using simple clues, such as color and physical con-

straints aided by a robust tracking method (Kalman Filter).

The usage of adaptive color subspaces generated by the Fuzzy
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inspired methodology allowed to better define the teams’

color properties during the game and increased the overall

detection rates, minimizing the user intervention.

An in-depth sensitivity analysis of the proposed methodol-

ogy, which evaluated the relevant parameters (time between

expansions, background learning constant, initial seeds

choice and tracking prediction window) and the system’s

robustness to changes in brightness and image resolution,

was performed. It was demonstrated that the texp value must

be carefully chosen, so that a fast adaptation of the color

subspaces is achieved without compromising the process-

ing time, while the TPW value choice influences the track-

ing rate and the amount of user intervention. This analysis

also proved the robustness of the methodology to lighting

changes and, as expected, its downside dependence on the

initial seeds choice (due to the region growing nature of the

methodology).

As future work, it would be interesting to explore more

belonging degrees on the Fuzzy inspired model, the pos-

sibility of having colors that belong to the subspace, but

not labelled as seeds, could also trigger the auto-expansion

process and the automatic enable/disable of the auto-

expansion. Another aspect that is of much interest is the

prospect of using the processing system’s output not only to

generate simple metrics, as described on this paper, but also

to perform more high-level analysis which may include game

tactics and game events. Long-term future work includes

addressing other sports, such as volleyball or basketball.
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