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Abstract: Dementia is a degenerative disease that is increasingly prevalent in an aging society.
Alzheimer’s disease (AD), the most common type of dementia, is best mitigated via early detection
and management. Deep learning is an artificial intelligence technique that has been used to diagnose
and predict diseases by extracting meaningful features from medical images. The convolutional
neural network (CNN) is a representative application of deep learning, serving as a powerful tool
for the diagnosis of AD. Recently, vision transformers (ViT) have yielded classification performance
exceeding that of CNN in some diagnostic image classifications. Because the brain is a very complex
network with interrelated regions, ViT, which captures direct relationships between images, may be
more effective for brain image analysis than CNN. Therefore, we propose a method for classifying
dementia images by applying 18F-Florbetaben positron emission tomography (PET) images to ViT.
Data were evaluated via binary (normal control and abnormal) and ternary (healthy control, mild
cognitive impairment, and AD) classification. In a performance comparison with the CNN, VGG19
was selected as the comparison model. Consequently, ViT yielded more effective performance than
VGG19 in binary classification. However, in ternary classification, the performance of ViT cannot be
considered excellent. These results show that it is hard to argue that the ViT model is better at AD
classification than the CNN model.

Keywords: Alzheimer’s disease; 18F-Florbetaben; amyloid brain imaging; image classification;
vision transformer

1. Introduction

Dementia is a degenerative disease that is increasing in prevalence within an aging
population [1]. Alzheimer’s disease (AD) is the most common type of dementia, accounting
for 60–80% of dementia cases, and is one of the leading causes of death worldwide [2].
AD begins with mild declines in memory, thinking, and learning processes and may lead
to severe loss of consciousness and difficulty with physical abilities due to brain dam-
age [3]. Although it is possible to prevent and delay the onset of AD using FDA-approved
therapeutic approaches, there is currently no treatment that can dramatically reverse the
pathological changes following onset [4]. Therefore, early detection and management are
the best ways to slow the progression of AD, and early diagnosis is especially crucial.

AD biomarkers (biological markers of diseases such as amyloid and tau) can be utilized
for the early identification of diseases in people with mild or no cognitive impairment [5].
Amyloid accumulation in the brain, which is one of the causes of AD, is known to occur
when an abnormal form of amyloid is deposited in the brain due to a metabolic problem [6].
Through an amyloid positron emission tomography (PET) test, an amyloid biomarker is
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injected into the body, and a brain image is taken to determine the location and amount of
the deposited amyloid.

Deep learning is an artificial intelligence technique that has been used to diagnose
and predict diseases by extracting meaningful features from medical images [7–9]. The
convolutional neural network (CNN), a representative application of deep learning, is pri-
marily used in image data recognition tasks, and has also been employed as a powerful tool
in diagnosing AD [10–12]. Almost all previous studies have used CNN-based backbones
for feature extraction; however, vision transformers (ViT) have recently emerged as an
image diagnostic classification tool to replace CNNs. The transformer architecture was
initially developed for the natural language processing (NLP) field [13]. It has since been
applied to computer vision tasks [14–16], as it yields a performance exceeding that of CNN
in some diagnostic image classifications [17–19]. Whereas a CNN uses a convolutional
filter to gradually extract important features from an entire image, a ViT directly captures
the correlation between image areas. Because the brain is a very complex network with
interrelated regions, vision transformers that capture direct relationships between images
may be more effective for brain image analysis than CNN.

Many prior studies have conducted AD classification by applying FBB PET images to
various CNN models; however, such images have not yet been used for ViT models. The
most common type of data used with ViT is MRI data [17–23], with 18F FDG images used
as PET images [24,25]. We therefore applied a novel 18F-FBB PET image to a ViT, and subse-
quently evaluated the classification performance. VGG19 [24] was selected for comparison
with ViT, with both models being pre-trained using ImageNet. The performance of the two
pre-trained models was evaluated through a two-group classification (normal control and
abnormal) and three-group classification (healthy control, mild cognitive impairment, and
Alzheimer’s disease).

This article makes several contributions. First, it was confirmed that the pretrained
model and augmented data effectively classify brain PET image data into brain imaging
regions. Lack of medical image data is a chronic problem in learning models, and this
study utilized data augmentation to solve the imbalance of each class among the data. We
expected that the learning performance would improve considering the non-generalization
of the model when training an insufficient amount of brain PET images as data, but rather,
when the model is trained by augmenting data with severely imbalanced data of each class,
we found that the learning performance was worse. Second, to evaluate the possibility of
replacing VGG19 and ViT models with CNN in AD classification using brain PET images,
we compared VGG19 and ViT models in terms of classification performance. We expected
either the ViT model or the CNN model to have better classification performance, but the
ViT model performed better than the VGG19 model on the binary classification task and
performed poorly on the ternary classification task. The ViT model did not necessarily
outperform the CNN model in brain PET image AD classification.

1.1. Related Works

Due to the importance of prevention and delay, there are many studies on the diagnos-
tic classification of AD. For example, Hu et al. [26] proposed a VGG-TSwinformer model
based on a convolutional neural network (CNN) and transformer. The classification process
of stable MCI (sMCI) and progressive MCI (pMCI) was performed, and an accuracy of
77.2%, sensitivity of 79.97%, specificity of 71.59%, and AUC of 0.8153 were obtained. The
VGG-TSwinformer model is a deep learning model for short-term longitudinal studies of
MCI that can build a model of brain atrophy progression from longitudinal MRI images and
improve diagnostic efficiency compared to algorithms that only use cross-sectional sMRI
images. Yin et al. [19] proposed a SMIL-DeiT network for the AD classification task between
three groups: AD, MCI, and normal control (NC). Vision Transformer is the basic structure
of our work, and the data pre-training was performed using DINO, a self-supervised tech-
nique, while the downstream classification task was performed by multi-instance learning.
The learning performance reached 93.2% on the Alzheimer’s Disease Neuroimaging Initia-
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tive (ADNI) dataset (MRI), with the accuracy higher than 90.1% of Transformer and 90.8%
of CNN. Carcagnì et al. [27] studied three deep convolutional models (ResNet, DenseNet,
and EfficientNet) and two transducer-based architectures (MAE and DeiT) to improve the
automatic detection of dementia in MRI brain images. Experiments showed that the very
deep ResNet and DenseNet models performed better than the shallow ResNet and VGG
versions tested in the literature. The significant improvement in accuracy (up to 7%) moti-
vated us to consider the CAD approach in real-world applications. Lyu et al. [17] proposed
a slicewise convolutional embedding method to improve the standard patching operation
in vanilla ViT. The proposed cross-domain transfer learning method classified AD and
CN, with an accuracy of 95.3%, recall of 94.4%, and precision of 90.0%, which can achieve
similar classification performance compared to the most recent research. Kadri et al. [28]
proposed a multimodal method based on MRI and PET modalities for the diagnosis of
Alzheimer’s disease using a combination of efficientnet V2 and a vision converter enhanced
by a novel data augmentation based on self attention generative adversarial networks
(SAGAN). The proposed method achieved 96% accuracy by combining the main advan-
tages of vision transducer and Efficientnet V2. We validated the proposed method using
ADNI and the Open Access Series of Imaging Studies (OASIS). Jang et al. [29] proposed a
three-dimensional medical image classifier using Multi-plane and Multi-slice Transformer
(M3T) networks to classify Alzheimer’s disease in three-dimensional MRI images. They
used the Alzheimer’s Disease Neuroimaging Initiative (ADNI) training dataset containing
MRI images, and for validation data, they used datasets from three institutions (AIBL,
OASIS, and ADNI). In the validation results, ADNI achieved AUC 0.9634 and ACC 93.21%,
AIBL with AUC 0.9258 and ACC 93.27%, and OASIS with 0.8961 and ACC 85.26%, which
demonstrated the feasibility of efficiently combining CNN and Transformer for 3D medical
imaging. Kushol et al. [30] analyzed the performance of a multi-visual transducer network
to detect AD based on features extracted from a set of 2D coronal slices. ImageNet was used
to train the model with coronal 2D slices, which were selected to utilize transfer learning
properties. The classification performance to distinguish between AD and CN showed an
ACC of 88.2%, a recall of 95.6%, and a specificity of 77.4%. Zhu et al. [31] proposed an
advanced deep learning architecture called Brain Informer (BraInf) based on an efficient
self-attention mechanism. The proposed model integrated representation learning, feature
extraction, and classifier modeling into a unified framework. The effectiveness of the
proposed model was validated using the Alzheimer’s Disease Neuroimaging Initiative
dataset. The model achieved 97.97% and 91.89% accuracy on the Alzheimer’s disease
and mild cognitive impairment classification tasks, respectively. Liu et al. [32] proposed a
novel transformer for disease classification based on multimodal data, the Multi-Modal
Mixing Transformer (3MT). In addition to the fact that labeled medical images are already
scarce, the performance of data-driven methods such as deep learning is severely hampered.
Therefore, multimodal methods that can seamlessly handle missing data in various clinical
settings are highly desirable. We tested our model for AD and NC classification using
neuroimaging data, gender, age, and MMSE scores. The model used a novel cascaded
modality transducer architecture with cross-attention to integrate multimodal information
for prediction. 3MT was directly applied to AIBL after training on the ADNI dataset
and achieved a test accuracy of 92.5% without fine-tuning. Wang et al. [33] proposed a
hybrid machine learning framework consisting of multiple convolutional neural networks,
which are linear support vector classifiers that use extracted image features along with
non-image information to make robust final predictions. The model achieved an ACC of
88% and an AUC of 0.95 in classifying sMCI and pMCI. On a completely different cohort
dataset collected from a different population, it achieved an ACC of 84% and an AUC of
0.91. Eroglu et al. [34] proposed an mRMR-based hybrid CNN in their study. First, they
extracted MRI features from Darknet53, InceptionV3, and Resnet101 models. The extracted
features were then concatenated. The obtained features were then optimized using the
mRMR method. SVM and KNN classifiers were used to classify the optimized features,
achieving an accuracy of 99.1%.



Appl. Sci. 2023, 13, 3453 4 of 14

1.2. Organization of Article

In the introduction part of the article, the topic and related studies are examined. In
the second part, the dataset used in the article are described. Then, the models and the
methods are revealed. In the third part, the experiments and the results are presented. In
the fourth part, the subject is discussed. Finally, the fifth part is the conclusion.

2. Materials and Methods
2.1. Data Acquisition

This study included subjects with dual FBB images who underwent FBB testing be-
tween 1 April 2016, and 30 June 2022, in the Dong-A University cohort. In total, 716 subjects
underwent FBB testing during this period. We included 383 subjects, excluding those with
neurological, medical, or psychiatric disorders, as well as cases of unavailable or damaged
images. The 383 subjects were classified according to their diagnoses into 220 patients with
AD, 113 patients with MCI, and 37 subjects as HC (Table 1, Figure 1). Each phase of an FBB
image was confirmed by a nuclear medicine physician following collection to ensure that
the Aβ distribution labels were accurate. The brain amyloid plaque load (BAPL) score is a
system measured by a doctor according to the visual assessment of amyloid deposition.
BAPL is a three-grade scoring system: BAPL score 1 is No Amyloid-β Load, BAPL score
2 is Minor Amyloid-β Load, and BAPL score 3 is significant amyloid-β load [35]. During
binary classification, subjects with AD and MCI were classified in the “abnormal group”,
whereas HC subjects were classified into the “normal group”. The Dong-A University
Hospital Institutional Review Board (DAUHIRB) reviewed this study with the members
who participated in the Institutional Review Board Membership List and approved this
study protocol (DAUHIRB-17–108).

Table 1. Subject characteristics.

Subjects M/F Age Range BAPL Score 1 BAPL Score 2 BAPL Score 3

AD 224 102/122 47–90 39 25 156
MCI 113 44/69 44–86 61 17 35
HC 50 18/32 37–80 48 2 0

AD: Alzheimer’s disease; MCI: mild cognitive impairment; HC: healthy control; M/F: male/female; BAPL: beta
amyloid plaque load.
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Figure 1. Preprocessed FBB images of subjects. (a) FBB image of AD. (b) FBB image of MCI. (c) FBB
image of HC.

2.2. Data Preprocessing
2.2.1. Image Acquisition and Preprocessing

All PET scans were performed using a Biograph 40 m CT Flow PET/CT scanner
(Siemens Healthcare, Knoxville, TN, USA). PET images were acquired by performing
without an intravenous contrast agent at 100 kVP and 228 mA with a spin time of 0.5 s.
The skull was scanned from apex to base using Ultra HD-PET (True X-TOF) for 90–110 min
after injection.

Image pre-processing was performed using PMOD software (version 3.613, PMOD
Technologies Ltd., Zurich, Switzerland). Using PMOD ‘s Fuse It program, CT and PET
are called at the same time and matched. Using the Neuro program of PMOD, the area is
cropped so that the CT image is not cut. Using PMOD’s Fusion program, trans matrix (tx)
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files are saved by matching standard CT images with cropped CT images. The matrix file is
applied to the PET image and performs spatial normalization. The PET image is called up
using PMOD’s View program and performs a count normalization with the cerebellum.
Skull stripping was performed, enabling the model to classify only the brain tissue and
finally acquire the preprocessed 3D image (size 91 × 109 × 91) (Figure 2).
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Figure 2. Data preprocessing. (a) Match: match CT and PET images into one; (b) Spatial Norm:
spatial normalization. With the matrix information obtained by matching the CT to the CT template,
the shape of the PET is also matched to the CT template; (c) Skull stripping: Remove the skull from the
matched image; (d) Count norm: count normalization. Divide the total pixels by the cerebellum value.

2.2.2. Conversion of 3D Images to 2D Images and Data Augmentation

The final image obtained through preprocessing is a 3D image. Because the model
accepts 2D images as input, each 3D image was converted to a 2D image. The 3D image
was segmented into 91 pieces in the axial direction, and 28 pieces corresponding to the
middle were selected. Consequently, 28 2D images were obtained for each subject. Data
augmentation techniques were applied to maximize the dataset size and prevent overfitting.
Specifically, we resized every image to 224 × 224 pixels as the input for the ViT model. For
data analysis for the experiment, a MW Digitbox (single processor 4GPU) located at the
Neuroscience Translational Research Solution Center (Busan, Republic of Korea) was used.

Transfer learning can alleviate the scarcity of training samples. Although transfer-
trained models are known to be less sensitive to sample size [14], the sample size still
affects transmission performance. Accordingly, we applied data augmentation to increase
the amount of training data [36]. Data augmentation is a technology that increases the
amount of data through various algorithms using machine learning and deep learning
techniques. We applied only image rotation among the affine transforms, considering that
amyloid plaques were identified in the entire brain when diagnosing AD with FBB images.
Rotations of ±5◦, ±10◦, and ±15◦ were applied to each original image.

Test set was selected separately as BAPL scores 1, 2, and 3 indicated in Table 2a, and
train/validation set was configured in consideration of the ratio of BAPL scores 1, 2, and 3
in Table 2b. The original and augmented datasets were constructed as shown in Table 2c.
For the test data, 30 subjects were selected, with 10 subjects representing AD, MCI, and
HC. Based on the test data, the original dataset was allocated according to a 6:2:2 ratio.
The data were randomly extracted to configure the training and validation sets, with the
test set for the augmented data prepared equivalently to that for the original data. The
augmented data was configured by randomly extraction by applying ±5◦, ±10◦, and ±15◦

to the remaining data except the test data.
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Table 2. Train, validation, and test sets.

a. BAPL Score Ratios of train, validation, and test Sets

Train/Validation Set Ratio Test Set Ratio
BAPL 1 BAPL 2 BAPL 3 BAPL 1 BAPL 2 BAPL 3

AD 8 4 28 2 1 7
MCI 24 8 8 6 2 2
HC 39 1 0 9 1 0

b. The number of train, validation, and test sets in the original data

Train/Validation Test
BAPL 1 BAPL 2 BAPL 3 BAPL 1 BAPL 2 BAPL 3

AD 8 4 28 2 1 7
MCI 24 8 8 6 2 2
HC 39 1 0 9 1 0

Sum (Train)
90

(Validation)
30 30

c. The number of train, validation, and test sets in the augmented data

Train/Validation Test
BAPL 1 BAPL 2 BAPL 3 BAPL 1 BAPL 2 BAPL 3

AD 56 28 196 2 1 7
MCI 168 56 56 6 2 2
HC 273 7 0 9 1 0

Sum (Train)
630

(Validation)
210 30

2.3. Pretrained Models Used in the Study

The architectures used in this study are the Vision Transformer and VGG19 models.

2.3.1. ViT Architecture

The transformer is a model first proposed in the paper ‘Attention is All You Need’ [14],
published by Google in 2017. The encoder-decoder, characterized by a sequence-to-
sequence structure, has a disadvantage in that some information of the input sequence is
lost when the sequence is compressed into a single vector. However, the use of attention to
compensate for this loss is outside the network bounds. The architecture of the ViT used in
this study is illustrated in Figure 3 [14].
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First, an image patch is created. Transformers require one-dimensional embeddings
as a starting point in the field of NLP. The image in (224, 224, 1) produces 28 × 28 patch
images in (8, 8, 1). The following steps include the creation of patch embedding, addition
of class tokens, and addition of positional embedding. The conversion of each patched
image to one dimension is known as linear projection. Each pixel is connected in a row to
ensure one-dimensionality.

x ε RH×W×C (1)

(1) represents the original image size.

xl ∈ RN×(P2×C) (2)

(2) is the input to the ViT after flattening the original image:

N =
HW
P2 (3)

(3) represents the number of patches, with N being the sequence length of the transformer.
P is the size of the patch, which is a square. The resolution of the original image is (H,
W) and the patch resolution of each image is (P, P).

A learnable class token is added to the front of the embedded patch. When this
class token passes through several encoder layers of the transformer and emerges as a
final output, it serves as a one-dimensional representation vector for the image. Finally, a
position embedding of the same dimension is added to the vector, and order information is
added to the embedding. Consequently, the entire image is defined as a one-dimensional
embedding vector and input into the transformer’s encoder.

Layer normalization, multi-head self-attention (MSA), and residual connections are
performed. All image embeddings are layer normalized on a channel basis. To perform
self-attention using patch + position embedding, one key (k), query (q), and value (v) are
obtained for each embedding, and attention values are obtained accordingly, concatenated
in the dimensional direction, with the multi-head creating attention. Subsequently, a
residual connection is made by adding input embeddings to the multi-head attention.

Layer normalization, multilayer perceptron (MLP), and residual connections are
applied. The residual connection matrix is normalized on a channel basis, as previously
described. The MLP consists of two linear layers. The embedding size is expanded in the
first layer and restored to its original size in the second layer. Subsequently, matrices are
added to generate the final output feature. The process of creating the final output feature
through input embedding is summarized by the following equations:

z0 =
[

xclass·x1
c E; x2

c E ; xN
c E

]
+ Ecos , EεR(l2·C)×D, Ecos ∈ R(N+1)×L (4)

z′l = MSA(LN
(

z(l−1)

)
+ z(l−1) , l = 1 · · · L (5)

zl = MLP
(

LN
(
z′L
))

+ z′L , l = 1 · · · L (6)

y = LN
(

z0
L

)
(7)

The MLP classifier can be considered the output stage of the transformer and is
functionally identical to the image classifier of a general CNN. The peculiarity is that only
class tokens are used. When a class token passes through several encoder layers and the
transformer’s layer normalization to obtain the final output, it serves as a one-dimensional
representation vector for the image.

2.3.2. VGG19 Architecture

VGGNet is a model developed by the Oxford University research team VGG, which
was the runner-up in the 2014 ImageNet image recognition competition. VGGNet refers
to a model with 16 or 19 layers, and the model used in this study is VGG19 [37]. Among
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the CNN models for comparison with the ViT model, we chose VGG19 because it achieves
the best performance on various tasks and uses a small kernel (3 × 3) [38] instead of a
large kernel. The image is input with a size of 224 × 224 × 3, and the convolutional
kernel dimension is 3 × 3. The layer structure used Maxpooling for downsampling and
adjusted ReLU as the activation function. By selecting the largest value in the image region
as the region’s pooled value, features can be extracted with minimal image distortion
(Figures 4 and 5) [39].
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3. Experiments and Results

To compare the efficiency of the pre-trained models (VGG19, ViT), experiments were
conducted based on classification tasks of two and three classes.

3.1. Experimental Setting

We compared the ViT and VGG19 architectures. All models were trained using the
hyperparameters listed in Table 3 to equalize the experimental conditions.

Table 3. Representative hyper-parameters used for model training.

Hyper-Parameter Value

Batch size 16
Epochs 100

Input size 224
Dropout 0.1

Learning rate 0.001
Batch size: quantity of data loaded at one time during training; epochs: number of learning iterations; input size:
size of the image input to the model; dropout: probability of ignoring the layers of the model; learning rate: model
learning rate.

There were 28 2D images per subject, with each chapter classified differently. Ac-
cordingly, the subject classification criteria were defined as follows: In the case of binary
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classification, if more than five out of the 28 sheets were found to be abnormal, the subject
was classified as abnormal. In the case of three-class classification, if more than five of
the 28 chapters were classified as AD, the subject was classified as AD; if more than five
chapters were classified as MCI, the subject was classified as MCI; and if both AD and MCI
were classified with less than five chapters, the subject was classified as HC.

3.2. Classification Performance

The classification performance of the introduced model settings was reported and ana-
lyzed. The model was considered as follows: accuracy, recall, precision, and F1 score [40].
Depending on the normal and abnormal outcomes of the model, it can be represented
as true positive (TP, the total number of correct predictions in the abnormal case), true
negative (TN, the total number of incorrect predictions in the abnormal case), false positive
(FN, the total number of correct predictions in the normal case), and false negative (FN, the
total number of incorrect predictions in the normal case).

Accuracy is a performance metric that is typically evaluated when positive and nega-
tive groups are equal.

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Recall (=sensitivity) is the percentage of correctly predicted positive observations out
of the total positive predictions.

Recall =
TP

TP + FN
(9)

Precision calculates the accuracy of the classification model with a positive predicted value.

Precision =
TP

TP + FP
(10)

Accuracy does not take into account the distribution of the data. The F1 score is used
to manage the distribution.

F1 score =
2× Precision× Recall

Precision + Recall
(11)

In Table 4, we confirm that the ViT model performed better than the VGG19 model for
the classification of normal and abnormal subjects. However, contrary to the expectations,
we observe that the augmented dataset exhibited worse results than the original dataset
irrespective of the model. This suggests that the augmented data applied to the two models
were not effective. When the augmented dataset was used, recall and precision were very
low, indicating that there were many false positives. We believe that the model was trained
to match the abnormal group, as the quantity of abnormal data increased proportionally
when data augmentation was performed with a 1:2 ratio between the normal and abnormal
groups. The confusion matrix for the binary classification in Table 4 can be found in Table 5.

Table 4. Binary classification performance of ViT and VGG19.

Model Data Set ACC Recall Precision F1 Score

ViT original data 0.8000 0.6000 0.7500 0.6667
ViT augmented data 0.7000 0.1000 1.0000 0.1818

VGG19 original data 0.7333 0.6000 0.6000 0.6000
VGG19 augmented data 0.6667 0.1000 0.5000 0.1667

Binary: Abnormal vs. normal control, ViT: Vision Transformer, ACC: accuracy.
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Table 5. Binary classification confusion matrix of ViT and VGG19.

Predictive Class

ViT Model VGG19 Model

Original Data Augmented Data Original Data Augmented Data

0 1 0 1 0 1 0 1

Actual Class
0 6 4 1 9 6 4 1 9

1 2 18 0 20 4 16 1 19

In Table 6, VGG19 shows better classification performance for AD, MCI, and HC with
the original dataset, whereas ViT shows better classification performance with the aug-
mented data. However, both models generally exhibited a low classification performance
of less than 0.7. The confusion matrix for the three-class classification in Table 6 can be
found in Table 7. As shown in Table 4, classification performance with the augmented
dataset is better than that with the original dataset.

Table 6. Three-class classification performance of ViT and VGG19.

Model Data Set ACC Recall Precision F1 Score

ViT original data 0.5667 0.5667 0.5278 0.5455
ViT augmented data 0.5333 0.5333 0.5056 0.5174

VGG19 original data 0.6667 0.6667 0.6794 0.6660
VGG19 augmented data 0.4667 0.4667 0.3286 0.3673

Three-class: AD vs. MCI vs. HC, ViT: Vision Transformer, ACC: accuracy.

Table 7. Three-class classification confusion matrix of ViT and VGG19.

Predictive Class

ViT Model VGG19 Model

Original Data Augmented Data Original Data Augmented Data

0 1 2 0 1 2 0 1 2 0 1 2

Actual Class

0 3 7 0 6 2 2 8 3 0 2 5 3

1 1 5 4 1 4 5 1 4 2 1 2 7

2 0 3 7 0 2 8 1 3 8 0 0 10

Because performance with the augmented dataset is poorer than that with the original
dataset, we attempted to check the classification performance in training and validation.
As shown in Table 8, the validation accuracy of the ViT and VGG19 models was higher
with the augmented dataset than the original dataset. In the binary case, the validation
accuracy of VGG19 was higher than that of ViT, and in the three-class case, ViT and VGG19
both exhibited higher validation accuracy.

Table 8. Three-class classification performance of ViT and VGG19.

Data Set
2 Class 3 Class

ViT VGG19 ViT VGG19

original data 0.6893 0.8119 0.6429 0.6429
augmented data 0.7689 0.9671 0.7778 0.8260

4. Discussion

Authors should discuss the results and how they can be interpreted from the previous
perspective because the idea that ViT conveys the function of different regions within the
brain has great potential for future work. The model’s performance was compared with that
of the CNN-based model VGG19. Although ViT exhibited higher performance than VGG19
in the binary classification task, its performance was low in the three-class classification.
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Furthermore, when data augmentation was applied, classification performance was lower
than that of the original data regardless of the model. When comparing the validation
accuracy performance following training, a higher value was obtained in the case of the
augmented data; therefore, data augmentation resulted in overfitting.

There are several speculations regarding the failure of ViT. The first is the augmented
data problem. In fact, data augmentation resulted in lower classification performance
regardless of the model. We attempted data augmentation through image rotation to
solve the problem of data scarcity. Consequently, the training set increased in volume
from 60 subjects to 630 subjects. When the actual augmented data were applied, the
validation accuracy after training increased. However, when performance was compared
by applying the test, it was lower than that before data augmentation. Furthermore, it was
confirmed that the classification performance for normal subjects deteriorated as the data
were augmented.

Furthermore, we did not perform proper fine-tuning. Although ViT consumes rela-
tively less time per epoch than VGG19, it requires significant trial and error to optimize the
hyperparameters. There is no certainty we achieved optimal performance, and the condi-
tions to attain such performance can only be ascertained within the researcher’s efforts.

The third reason for poor performance is that we had to set a very small batch size to fit
the model into GPU memory. Under a small batch size, the statistics for batch normalization
degrade the performance of the unstable station model.

However, although ViT has been reported to perform better than some other models,
it is not possible to reliably judge the classification performance, owing to the lack of
consistency, as the techniques are not implemented on the same criteria, such as the number
of data samples, form, preprocessing technique, and database. Moreover, the best and most
accurate technique for diagnosing Alzheimer’s disease has yet to be determined. Deep
learning models, such as CNNs, appear promising for AD diagnosis, especially given that
they can utilize transfer learning to overcome the availability limitations of many medical
images [20].

The limitations of this study are, first, that it was conducted with data from the Dong-
A University Hospital cohort only. According to Table 1, we can see the imbalance of
the classes included in this study and the BAPL scores corresponding to the classes. We
expected the model to be able to learn the final AD classification through training, as
opposed to the BAPL score classification typically performed with PET images. However,
the results suggest that the number of data was not large enough for the model to learn
the final AD classification rather than the BAPL score classification. Not only did the HC
group misclassify 100% of the two subjects in BAPL 2, but the majority of the MCI group
(61 subjects in BAPL 1, 17 subjects in BAPL 2, and 35 subjects in BAPL 3) were misclassified
as either AD or HC. To solve this data imbalance and lack of data, we augmented the
data by rotating the images, but this only made the data more imbalanced, resulting in
worse classification performance. Another limitation is that we did not train various
models and compared the AD classification performance with only two models, ViT and
VGG19. Currently, there are many different ViT models and CNN models for medical
image classification. It is difficult to say that our study has found and compared the most
suitable model among them.

In the future, we plan to conduct a comparative study between the advanced ViT and
CNN models by acquiring more data. In addition, we plan to apply dual PET images by
adding early PET images [41], as it is considered that there are limitations in classifying
HC, MCI, and AD with PET images alone.

5. Conclusions

In this study, augmented FBB PET image data were applied to a pre-trained ViT model
for Alzheimer’s disease diagnosis. We evaluated the accuracy, recall, precision, and F1
scores by comparing different classifications and differences in data size. However, the
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classification performance of this model was not ideal, possibly owing to overfitting and
under-induction bias due to the limitations of the PET image data.

We hypothesized that the computer would yield accurate AD classification results
apart from amyloid accumulation through amyloid PET imaging. In fact, the limitations of
amyloid PET imaging have been identified previously. As a result, this study did not find
that ViT could outperform CNN in PET image analysis. In addition, clinical classification
through PET images can be divided into two classes by comparing normal and abnormal
groups; however, there is a limitation in classifying the three classes by comparing HC, MCI,
and AD. As a result, it is difficult to claim that the ViT model is better at AD classification
than the CNN model. Further research is needed to acquire enough PET image data or add
multimodal data to supplement the lack of image data [42,43].
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