
Vision Transformer for NeRF-Based View Synthesis from a Single Input Image

Kai-En Lin*1 Lin Yen-Chen2 Wei-Sheng Lai3 Tsung-Yi Lin†4

Yi-Chang Shih3 Ravi Ramamoorthi1

1UC San Diego 2MIT 3Google 4NVIDIA

Abstract

Although neural radiance fields (NeRF) have shown im-
pressive advances in novel view synthesis, most methods
require multiple input images of the same scene with ac-
curate camera poses. In this work, we seek to substan-
tially reduce the inputs to a single unposed image. Exist-
ing approaches using local image features to reconstruct a
3D object often render blurry predictions at viewpoints dis-
tant from the source view. To address this, we propose to
leverage both the global and local features to form an ex-
pressive 3D representation. The global features are learned
from a vision transformer, while the local features are ex-
tracted from a 2D convolutional network. To synthesize a
novel view, we train a multi-layer perceptron (MLP) net-
work conditioned on the learned 3D representation to per-
form volume rendering. This novel 3D representation al-
lows the network to reconstruct unseen regions without en-
forcing constraints like symmetry or canonical coordinate
systems. Our method renders novel views from just a single
input image, and generalizes across multiple object cate-
gories using a single model. Quantitative and qualitative
evaluations demonstrate that the proposed method achieves
state-of-the-art performance and renders richer details than
existing approaches. https://cseweb.ucsd.edu/
%7eviscomp/projects/VisionNeRF/

1. Introduction

We study the problem of novel view synthesis from a sin-
gle unposed image. Recent works [39, 41, 59] infer the 3D
shape and appearance by projecting the input image features
on the queried 3D point to predict the color and density.
These image-conditioned models work well for rendering
target views close to the input view. However, when tar-
get views move further, it causes significant occlusion from

*Work done while interning at Google.
†Work done while at Google.

Input View

PixelNeRF Ours
Ground Truth

Target View

LPIPS: 0.20
PSNR: 21.85

LPIPS: 0.09
PSNR: 21.03

Figure 1. Novel view synthesis in occluded regions. The vi-
sual quality of image-conditioned model (e.g., PixelNeRF [59])
degrades significantly when pixels in the target view are invisi-
ble from the input. We propose to incorporate both global fea-
tures from vision transformer (ViT) and local appearance features
from convolutional networks to achieve significantly better ren-
dering quality with more details in the occluded regions. Note that
LPIPS [60] (lower is better) reflects the perceptual similarity better
than PSNR.

Target view Input view

Query pixel

Local features

Useful features

Figure 2. The challenge of image-conditioned models in the
presence of self-occlusion. To render a car’s occluded wheel
(blue dot) in the target view, image-conditioned models, e.g., Pix-
elNeRF [59], query features along the ray, which corresponds to
the car’s window in the input view (red cross). Our method uses
self-attention to learn long-range dependencies, which is able to
find the most related features in the source view (green dot) for
rendering a clear target view.

the input view, leading to dramatic degradation of the ren-
dering quality, as shown in Fig. 1. We hypothesize that
self-occlusion causes the incorrectly-conditioned features.
As illustrated in Fig. 2, when the query pixel in the target
view (e.g., the car’s wheel) is invisible from the input view,
image-conditioned models incorrectly use the features from
other surface (e.g., the car’s window) for the target view.

To tackle this issue, we propose a novel approach that
utilizes the recent advances in vision transformer (ViT) [11]

ar
X

iv
:2

20
7.

05
73

6v
2

 [
cs

.C
V

]
 1

3
O

ct
 2

02
2

https://cseweb.ucsd.edu/%7eviscomp/projects/VisionNeRF/
https://cseweb.ucsd.edu/%7eviscomp/projects/VisionNeRF/

and neural radiance fields (NeRF) [31] to learn a better
3D representation. We first lift the input 2D image into
feature tokens and apply ViT to learn global information.
Subsequently, the feature tokens are unflattened and resam-
pled into multi-level feature maps which allow the network
to capture global information in a coarse-to-fine manner.
In addition, we adopt a 2D convolutional neural network
(CNN) to extract local features that capture details and ap-
pearance from the input image. Finally, we render the novel
viewpoints using the volumetric rendering technique [31].
Our method is able to render unseen regions with more ac-
curate structure and finer details.

We train and evaluate our method on the ShapeNet
dataset [6] including 13 object categories. Our method
generalizes well across multiple categories, and works
well on real-world images. Quantitative and qualitative
comparisons demonstrate that our method performs favor-
ably against existing approaches, e.g., SRN [46], Pixel-
NeRF [59], FE-NVS [16], SRT [42], and FWD [5], and
generates more visually appealing results. We summarize
our contributions as follows:

• We introduce a NeRF-based rendering method that
synthesize novel views from a single unposed image.

• We propose a novel 3D representation that integrates
global and local information using vision transformer
and 2D CNN.

• We demonstrate state-of-the-art performance against
existing approaches on category-specific and category-
agnostic datasets as well as real input images.

2. Related work

2.1. Novel View Synthesis

Earlier works in view interpolation [7] and light
fields [15, 25] establish the groundwork for image-based
rendering. Later works utilize proxy geometry [4, 9] and
layered representations [43, 48] to better represent the 3D
scene and synthesize novel views. There has been a plethora
of learning-based methods [13, 14, 21, 26, 28, 30, 45, 62]
and single-input view synthesis algorithms [33, 41, 44, 56,
57, 58]. These approaches exploit the differentiable ren-
dering pipeline to generate photorealistic results. Recently,
neural radiance fields (NeRF) [31] encodes the 3D scene in
a compact continuous 5D function, allowing photorealistic
reconstruction of the given scene. Nonetheless, it requires
tens or hundreds of input images and time-consuming op-
timization to train a single scene. To address this problem,
several methods [39, 50, 53, 59] utilize 2D image features
to improve the generalization, or use pretrained networks
with 1D latent code to represent the 3D shape, e.g. CodeN-
eRF [19]. Guo et al. [16] adopt a discrete 3D volume to
represent the scene and achieve real-time rendering perfor-
mance. Instead of relying on pure 1D, 2D, or 3D represen-

tations, we propose to learn a novel 3D representation that
utilizes global information and local image features. Table 1
compares the proposed method to previous approaches.

2.2. Transformer

The transformer architecture [51] has brought significant
advances in natural language processing (NLP). While self-
attention and its variant have achieved state-of-the-art per-
formance in many NLP [3, 10] and vision [11, 38, 47] tasks,
directly applying self-attention to an image is prohibitively
expensive, as it requires each pixel to be attended to every
other pixel. Several works [18, 35, 37, 61] approximate self-
attention by applying it to local patches of each query pixel.
Recently,the vision transformer (ViT) [11] and follow-up
works [38, 54] demonstrated that applying a transformer to
a sequence of patches (split from an image) achieves com-
petitive performance on discriminative tasks (e.g., image
classification). Wang et al. [52] include transformers in both
the encoder and decoder for 3D reconstruction from multi-
views. NeRF-ID [1] uses a transformer to sample 3D points
along rays. Other approaches [20, 39, 53] use transformers
to aggregate source view features extracted by a CNN. Our
work is different from these methods as we focus on learn-
ing global image information using ViT. In our experiment,
ViT encodes image features that achieves higher reconstruc-
tion quality on unseen regions than previous CNN-based
approaches. SRT [42] uses a fully transformer-based frame-
work to encode and decode 3D information. It learns the 3D
scene information as a set of latent code, while our work
adopts radiance field as the scene representation. SRT uses
a transformer to decode the set of latent code, whereas our
method uses the per-pixel information from a set of feature
maps, thus having an explicit mapping between the input
image and the 3D point query. Sec. 4.2 shows that our pro-
posed method achieves favorable results over SRT in PSNR
and SSIM metrics.

3. Novel View Synthesis From a Single Image
Our goal is to infer a 3D representation from a single

input image for novel view synthesis. We first discuss
three different paradigms to learn such a 3D representation
(Sec. 3.1). Then, we propose a hybrid representation to
improve rendering quality on occluded regions, where we
utilize a ViT to encode global information (Sec. 3.2) and
a 2D CNN to encode local appearance features (Sec. 3.3).
Finally, we learn a NeRF [31] module that conditions the
encoded features for novel view synthesis (Sec. 3.4).

3.1. Synthesizing Occluded Regions

In this section, we describe how previous works and our
method reconstruct unseen regions illustrated in Fig. 3. Ad-
ditionally, we analyze the strengths and weaknesses of each
method, and propose a hybrid representation to address the

NeRF PIFu PixelNeRF CodeNeRF NeRFormer FE-NVS SRT FWD Ours[31] [41] [59] [19] [39] [16] [42] [5]

Single-view input 7 3 3 7 7 3 3 3 3
Viewer-centered coordinate 7 3 3 7 3 3 3 3 3
Cross-category generalization 7 3 3 7 3 3 3 3 3
Image features 7 3 3 7 3 3 7 3 3
Global features 7 7 7 3 7 7 3 7 3

Table 1. Comparisons with recent novel-view synthesis methods. Our method takes as input a single image to perform novel view
synthesis. Different from methods that assume an object-centered coordinate system, we infer the 3D representation in viewer-centered
coordinate system and thus do not require the camera pose of the input. Additionally, our method is able to generalize to multiple categories
using a single model. We extract local image features using 2D CNN and retrieve global information using a ViT encoder to synthesize
faithful and appealing details on occluded regions (see Fig. 1).

Image Encoder

Input
Image

Voxel Encoder

(a) 1D latent code (b) 2D image features (c) 3D volume features

Figure 3. Illustration of different representations for a 3D ob-
ject. (a) 1D latent code-based approaches [8, 12, 19, 29, 32, 34]
encode the 3D object in an 1D vector. (b) 2D image-based meth-
ods [41, 59] are conditioned on the per-pixel image features to
reconstruct any 3D point. (c) 3D voxel-based approaches [16, 28]
treat a 3D object as a collection of voxels and apply 3D convolu-
tions to generate color and density vector RGBσ.

critical issues in existing methods. Given a single image Is
at camera s, our task is to synthesize novel view It at cam-
era t. If a 3D point x is visible in the source image, we can
directly use the color Is(π(x)), where π denotes the pro-
jection to source view, to represent the point as seen by a
novel viewpoint. If x is occluded, we resort to information
other than the color at the projection π(x). There are three
possible solutions to gather such information.

1D latent code. Existing methods encode 3D and appear-
ance prior through a 1D global latent vector z [8, 12, 19, 29,
32, 34, 40], and decode the color c and density σ through
CNN as the following, shown in Fig. 3(a) [19]:

(σ, c) = F1D(z; x;d). (1)

where x and d denotes the the spatially-varying sampling
position and viewing direction. Since different 3D points
share the same latent code, the inductive bias is limited.

2D spatially-variant image feature. There are many inter-
ests around image-conditioned methods, such as PIFu [41]
and PixelNeRF [59], due to the flexibility and high-quality
results around the input views. These approaches are more
computationally efficient as they operate in the 2D image

space rather than 3D voxels, as illustrated in Fig. 3(b). As a
representative example, PixelNeRF defines the output as

(σ, c) = F2D(W(π(x)); xc;dc), (2)

where xc is the 3D position and dc is the ray direction.In
this case, the spatial information is encoded inside the fea-
ture map W when it is extracted by an image encoder. Con-
sequently, any 3D point along a ray xt ∈ r would share
the same feature W(π(xt)). This representation encourages
better rendering quality in visible areas, and is more com-
putationally efficient. However, it often generates blurry
predictions in unseen parts shown in Fig. 1.

3D volume-based approaches. To utilize 3D locality, an-
other way is to treat the object as a set of voxels in 3D space
and apply 3D convolutions to reconstruct unseen areas (see
Fig. 3(c)). The voxel grid can be constructed by unproject-
ing 2D images or feature maps to a 3D volume [16]. For
each 3D point, we have features W(π(x)) and 3D location
x. The 3D CNN can utilize information from neighboring
voxels to infer geometry and appearance at x as follows

(σ, c) = F3D(W(π(xn)); xn), (3)

where xn denotes the set of neighboring voxels of x. This
method is faster in rendering, and leverages 3D prior to ren-
dering unseen geometry. On the other hand, it suffers from
limited rendering resolution due to the voxel size and lim-
ited receptive fields.

Our approach. We observe that the 1D approach enjoys a
holistic view on the object and is able to encode the overall
shape in a compact format. The 2D method offers better
visual quality around input views, while the 3D method re-
fines the shape. However, volume-based methods are more
computationally-intensive and require more memory when
increasing the grid size. Our method combines the advan-
tage of 2D-based method that condition on local image fea-
tures, and 1D-based methods that encode global informa-
tion. Specifically, we utilize (i) a ViT architecture and its

...

Flatten &
Project

...

0

1

3

2

4

*

Transformer
Encoder

Convolutional
Decoder

Latent
Features

Multi-level
Feature Maps

C Volume
Rendering

* Class token Positional embeddingsImage token

Input Image

C Concatenation

Output Image

Algorithm Pipeline

Transformer Encoder

LayerNorm

Query Key Value

Multi-Head Attention

LayerNorm

+

MLP

+J X

Latent Features
from j-th Layer

Convolutional Decoder

Drop Class Token

Unflatten

Conv Layer

Conv / Transpose Conv Layer

Conv Layer

Volume Rendering

Input View

Target View

Sample from
Feature Maps

Color c
Density σ

NeRF MLP

Rendered Image

σ

Ray distance

Integrate Ray Samplesj-th Level Output

Input Tokens

2D CNN

Figure 4. Overview of our rendering pipeline. We first divide an input image into N = 8 × 8 patches P. Each patch is flattened and
linearly projected to an image token Pl. The transformer encoder takes the image tokens and learnable positional embeddings e as input
to extract global information as a set of latent features f (Sec. 3.2). Then, we decode the latent feature into multi-level feature maps WG

using a convolutional decoder. In addition to global features, we use another 2D CNN GL to obtain local image features (Sec. 3.3). Finally,
we sample the features for volume rendering using the NeRF MLP (Sec. 3.4).

fully-connected networks to learn global information, and
(ii) a 2D CNN module to extract local image features. Re-
cent success in vision transformer [11, 38] shows the ef-
ficacy of using ViT to learn the long-range dependencies
between features. Thus, our local and global hybrid repre-
sentation allows for more flexibility and better reconstruc-
tion quality in the unseen regions. Unlike CodeNeRF [19]
and DISN [57], our method does not require a canonical co-
ordinate system to utilize the global features. Our method
enjoys the benefits of high-resolution image features from
2D-CNN, while improving the receptive fields through ViT
encoder.

3.2. Global Features from Vision Transformer

We adopt the image-based approach that conditions on
per-pixel feature W for rendering. We divide W into two
parts: (i) global feature maps WG and (ii) local feature maps
WL. In this section, we describe how we obtain WG with
a vision transformer. Our model takes as an input a single
image Is ∈ RH×W×3, whereH andW are the image height
and width, respectively.

Flatten and project. As shown in Fig. 4, the image Is
is first reshaped into a sequence of flattened 2D patches
P ∈ RN×P 2×3, where N = HW

P 2 is the number of patches,

and P denotes the patch size [11]. As the transformer takes
a latent vector of sizeD, we project the patches with a train-
able linear layer to produce Pl ∈ RN×D. In previous ViT
work [11], a learnable class token is usually concatenated
to the image tokens to incorporate global information that
is not grounded in the input image. In our case, we treat
the class token as a “background” token to represent fea-
tures that are not shown in the image. Consequently, we
have N + 1 tokens in total, denoted as P0

l ,P
1
l , ...,P

N
l . We

also add learnable positional embeddings e to distinguish
between different spatial patches: Pi

e = Pi
l + ei.

Transformer encoder. The tokens {P0
e,P

1
e, ...,P

N
e } un-

dergo J transformer layers to generate latent features f j ,
where j denotes the output of the j-th transformer layer.
The transformer layer is composed of multiheaded self-
attention (MSA) and MLP layers [11]. The MSA block per-
forms self-attention on the images and extracts information
by comparing a pair of tokens. Therefore, the transformer
encoder has a global receptive field in all the layers, which
can easily learn long-range dependency between different
image patches [11, 38].

Convolutional decoder. After generating a set of latent
features f = {f0, ..., fJ}, f j ∈ RD, our algorithm then

utilizes a convolutional decoder to promote the latent fea-
tures into multi-level feature maps. These multi-level fea-
ture maps extract coarse-to-fine global information and al-
low us to concatenate with the local appearance features in
the final rendering stage (see Sec. 3.3). To generate the fea-
ture maps, we first drop the class token. The class token
is useful during the self-attention stage but does not have
physical meaning when unflattened [38]. Consequently, we
define the operation as O : R(N+1)×D → RN×D. Af-
ter dropping the class token, we unflatten the image by
U : RN×D → RH

P ×
W
P ×D. Now we have a set of fea-

ture patches Pf = {P0
f , ...,P

J
f }, where Pj

f ∈ RH
P ×

W
P ×D.

We then construct the multi-level feature maps with a set
of convolutional decoders as in Fig. 4. The convolutional
decoders are defined as D : RH

P ×
W
P ×D → RHj×W j×Dj

,
where the feature patches are (i) first convolved with a 1×1
convolution layer, (ii) resampled with a strided convolution
or transposed convolution to have size Hj ×W j , and (iii)
convolved with a 3× 3 convolution layer to have Dj chan-
nels. We can describe the feature maps as,

Wj
G = (D ◦ U ◦ O)(f j),where j ∈ {0, 1, ..., J}. (4)

3.3. Local Features from Convolutional Networks

We empirically find that only using the global informa-
tion from ViT compromises the rendering quality of target
views that are close to the input view, e.g., the color and
appearance are inconsistent (see Fig. 9). To alleviate this
problem, we introduce an additional 2D CNN module GL
to extract local image features, which can improve the color
and appearance consistency in the visible regions. The local
features can be represented as

WL = GL(Is),GL : RH×W×C → R
H
2 ×

W
2 ×DL , (5)

where DL is the output dimension of GL.
Finally, we use a convolutional layer G to fuse the infor-

mation from both global feature WG and local feature WL

and generate the hybrid feature map:

W = G(W0
G,W

1
G, ...,W

J
G;WL) (6)

3.4. Volumetric Rendering with NeRF

Once we obtain the hybrid features W, we can adopt
the volumetric rendering [31] to render a target view con-
ditioned on W. We start by sampling a ray r(t) = o + td
from the target viewpoint, where o is the origin of the ray,
d is the ray direction, and t is the distance from the ori-
gin. Note that t is bounded by near plane tnear and far plane
tfar. Along the ray, we first pick equally distributed samples
between the bounds [tnear, tfar]. We denote a 3D sample lo-
cation as x, which can be projected onto the source image
with coordinate π(x) with known camera parameters. We
then extract the per-pixel feature as W(π(x)). The NeRF

MLP module takes as input the per-pixel feature W(π(x)),
3D sample location in camera coordinate xc and viewing
direction dc. We encode xc with positional encoding γ:

γ(p) = (sin(20πp), cos(20πp), ...,

sin(2M−1πp), cos(2M−1πp)),
(7)

whereM is the number of frequency bases. We setM = 10
in all our experiments. The MLP outputs color c and density
σ, which can be written as:

(σ, c) = MLP(γ(xc);dc;W(π(x))). (8)

Finally, we render the target view into a 2D image via

Ĉ(r) =
∫ tf

tn

T (t)σ(t)c(t)dt, (9)

where T (t) = exp(−
∫ t

tn
σ(r(s))ds) is the accumulated

transmittance along the ray from tn to t. Here we approxi-
mate the integral with quadrature [31].

We adopt a L2 norm loss to compare the rendered pixel
Ĉ(r) against the ground-truth pixel:

L =
∑

r

||Ĉ(r)− C(r)||22. (10)

Implementation details. We implement our method us-
ing PyTorch [36]. The ViT module is initialized from the
pretrained weights of [55] and fine-tuned with the training.
The 2D CNN module GL has three ResBlocks. The detailed
architecture of the entire model is provided in the supple-
mentary material. We train our model on 16 NVIDIA A100
GPUs, where the training converges at 500K iterations. We
set the learning rate to be 10−4 for the MLP and 10−5 for
ViT and the CNN. To improve training stability, we use a
linear warm-up schedule to increase the learning rate lin-
early from 0 for the first 10k steps. Please see our supple-
mentary material for more details. As NeRF is trained with
batches of rays, we use 512 rays for 1 instance and the batch
size of 8.

4. Experimental Results
To evaluate our method, we conduct experiments on

category-specific view synthesis (Sec. 4.1) and category-
agnostic view synthesis (Sec. 4.2). Sec. 4.3 shows the qual-
itative results of our method on real input images. Sec. 4.4
provides ablation studies to analyze the key components in
our method. Sec. 4.5 replaces the ViT with different back-
bones and show the efficacy of using ViT features. Finally,
we discuss the limitations and future work (Sec. 4.6).

4.1. Category-specific View Synthesis

We evaluate our method on the same experimental setup
and data as SRN [46]. The dataset consists of 6591 chairs

Input SRN PixelNeRF Ours GT

Figure 5. Category-specific view synthesis on Chairs. The re-
sults of SRN and PixelNeRF are often too blurry, especially on
the legs that are not visible in the input views. Our method can
generate novel views with clearer structures and sharper edges.

Input FE-NVS Ours GTSRN PixelNeRF

Figure 6. Category-specific view synthesis on Cars. Our method
can generate sharper car structure and richer details, such as the
rear lights and windows in the first row, the wheels and door in the
second row, and the windows in the third row.

and 3514 cars in total, which are split into training, valida-
tion, and test sets. For each object in the training set, 50
views lying on a sphere around the object are selected to
render with simple lighting. For testing, the objects in the
test set are rendered from 251 views on an archimedean spi-
ral with the same illumination as training. During the eval-
uation, the 64-th view is selected as the input view and all
other 250 views are used as target views. The image resolu-
tion is 128× 128. We compare our method with SRN [46],
PixelNeRF [59]1, CodeNeRF [19]2 and FE-NVS [16]3.

As shown in Table 2, our method achieves state-of-the-
art performance against existing approaches in terms of
PSNR, SSIM, and LPIPS [60]. On the chair dataset, our
method shows significant improvement on all three met-
rics. As shown in Fig. 5, our rendered results have better
appearance and clearer structures, while SRN [46] and Pix-
elNeRF [59] have blurry predictions on the chair legs. On
the car dataset, we obtain the best LPIPS and SSIM scores.
While PixelNeRF [59] has the highest PSNR, their results
are overly-blurry with smooth textures, as shown in Fig. 6.
In contrast, our predictions have finer details and reveal

1LPIPS is calculated from the results provided by the authors.
2LPIPS and code for unposed inference are not available.
3LPIPS is provided by the authors on request.

Chairs Cars
Methods PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)
SRN [46] 22.89 0.89 0.104 22.25 0.89 0.129
PixelNeRF [59] 23.72 0.91 0.128 23.17 0.90 0.146
CodeNeRF [19] 22.39 0.87 0.166 22.73 0.89 0.128
FE-NVS [16] 23.21 0.92 0.077 22.83 0.91 0.099
Ours 24.48 0.93 0.077 22.88 0.91 0.084

Table 2. Category-specific view synthesis on the ShapeNet
dataset. Our method performs favorably against other approaches,
especially on LPIPS. Note that while PixelNeRF has higher PSNR
on the cars dataset, their results look blurry (see Fig. 6).

Input SRN PixelNeRF Ours GTSRTFWD

Figure 7. Visual comparison of category-agnostic view synthe-
sis. The results of SRN [46], PixelNeRF [59] and SRT [42] are
often too blurry and contain smearing artifacts. In contrast, our
results are sharper with more fine details. FWD [5] produces dis-
torted renderings at far viewpoints because the depth is not as ac-
curate for occluded regions. The visual results of all 13 categories
are provided in the supplementary material.

more details such as the windows, lights, and wheels. Note
that we do not compare visual results with CodeNeRF [19]
as their pre-generated results are not publicly available, and
their source code does not support inference without camera
poses. FE-NVS [16] does not provide source code or pre-
generate results as well. However, we try our best to obtain
high-resolution screenshots from their paper and compare
with their results on the same view.

4.2. Category-agnostic View Synthesis

Our method is able to generalize across multiple object
categories using a single model. We follow the training/test
splits of the ShapeNet dataset defined in NMR [22] and
choose 1 view as input while the other 23 views as target
in both training and evaluation. There are 30642 objects
for training and 8762 objects for evaluation (from 13 cate-

Metrics Methods plane bench cbnt. car chair disp. lamp spkr. rifle sofa table phone boat average

PSNR(↑)

SRN 26.62 22.20 23.42 24.40 21.85 19.07 22.17 21.04 24.95 23.65 22.45 20.87 25.86 23.28
PixelNeRF 29.76 26.35 27.72 27.58 23.84 24.22 28.58 24.44 30.60 26.94 25.59 27.13 29.18 26.80
FE-NVS 30.15 27.01 28.77 27.74 24.13 24.13 28.19 24.85 30.23 27.32 26.18 27.25 28.91 27.08
FWD 30.01 26.16 28.49 27.01 23.44 24.00 27.84 24.45 30.40 26.76 25.91 27.61 28.69 26.66
SRT 31.47 28.45 30.40 28.21 24.69 24.58 28.56 25.61 30.09 28.11 27.42 28.28 29.18 27.87
Ours 32.34 29.15 31.01 29.51 25.41 25.77 29.41 26.09 31.83 28.89 27.96 29.21 30.31 28.76

SSIM(↑)

SRN 0.901 0.837 0.831 0.897 0.814 0.744 0.801 0.779 0.913 0.851 0.828 0.811 0.898 0.849
PixelNeRF 0.947 0.911 0.910 0.942 0.858 0.867 0.913 0.855 0.968 0.908 0.898 0.922 0.939 0.910
FE-NVS 0.957 0.930 0.925 0.948 0.877 0.871 0.916 0.869 0.970 0.920 0.914 0.926 0.941 0.920
FWD 0.952 0.914 0.918 0.939 0.857 0.867 0.906 0.857 0.968 0.909 0.906 0.924 0.936 0.911
SRT 0.954 0.925 0.920 0.937 0.861 0.855 0.904 0.854 0.962 0.911 0.909 0.918 0.930 0.912
Ours 0.965 0.944 0.937 0.958 0.892 0.891 0.925 0.877 0.974 0.930 0.929 0.936 0.950 0.933

LPIPS(↓)

SRN 0.111 0.150 0.147 0.115 0.152 0.197 0.210 0.178 0.111 0.129 0.135 0.165 0.134 0.139
PixelNeRF 0.084 0.116 0.105 0.095 0.146 0.129 0.114 0.141 0.066 0.116 0.098 0.097 0.111 0.108
FE-NVS 0.061 0.080 0.076 0.085 0.103 0.105 0.091 0.116 0.048 0.081 0.071 0.080 0.094 0.082
FWD 0.034 0.055 0.056 0.042 0.081 0.079 0.062 0.091 0.026 0.054 0.049 0.056 0.052 0.055
SRT 0.050 0.068 0.058 0.062 0.085 0.087 0.082 0.096 0.045 0.066 0.055 0.059 0.079 0.066
Ours 0.042 0.067 0.065 0.059 0.084 0.086 0.073 0.103 0.046 0.068 0.055 0.068 0.072 0.065

Table 3. Category-agnostic view synthesis on the NMR dataset. Our method achieves the state-of-the-art performance across all 13
categories using a single model.

Input

Ours

PixelNeRF

Ours

PixelNeRF

Ours

PixelNeRF

Figure 8. Results on real input images. Our method is able
to generate visually-pleasing results even trained on a synthetic
dataset. Conversely, PixelNeRF fails to keep the finer details. Note
the side mirrors and headlamps of the bottom right inset.

gories). The image resolution is 64× 64.
Table 3 shows the quantitative results. Our method

achieves the state-of-the-art performance against SRN [46],
PixelNeRF [59], FE-NVS [16], FWD [5] and SRT [42]
on all 13 categories in PSNR and SSIM. Our method
achieves competitive performance in LPIPS compared to
recent state-of-the-art approaches, FWD [5] and SRT [42].
The results demonstrate that our hybrid representation is
more expressive than the locally-conditioned models or 3D
voxel methods. The visual comparisons in Fig. 7 shows that
our method reconstructs finer object structure and details.
Even though FWD [5] achieves better LPIPS scores, their
results show distorted renderings at larger displacements,
possibly due to erroneous depth estimation at unseen areas.

Input ViT-Only +Viewing
Direction Ours Ground Truth+

(3-layer CNN)

Figure 9. Effects of different components. The ViT-only model
can render realistic images, but the local appearance and color may
not look similar to the input view. By extracting local features with
a 3-layer CNN, the rendered car shows more faithful colors to the
input. With the viewing direction in volume rendering, our model
can improve fine structures such as the left mirror of the car and
the back of the chair. In our final model, replacing the 3-layer
CNN with ResBlocks can further refine the details and geometry
structure of the rendered objects.

In Fig. 7, the vehicle on the third row shows severe artifacts
when FWD tries to render viewpoints at the opposite side of
the input. Please refer to supplementary materials for more
examples. Since SRT [42] converts input images to a set
of latent codes without a one-to-one mapping to the source
image, their results often lose fine details, e.g., the bench on
the second to the last row in Fig. 7.

4.3. View Synthesis on Real Images

Our method generalizes to real images. We use our
model trained on the ShapeNet car dataset to test on real
car images from the Stanford cars dataset [24]. We use an
image segmentation model [23] to remove the background.

Cars Chairs
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
PixelNeRF 23.17 0.90 0.146 23.72 0.91 0.128

ViT only 21.95 0.89 0.130 23.45 0.92 0.099
+ GL (3-layer CNN) 22.42 0.90 0.113 23.42 0.92 0.085
+ Viewing Direction 22.70 0.91 0.088 24.53 0.93 0.094
Ours 22.88 0.91 0.084 24.48 0.93 0.077

Table 4. Ablation studies. We start from a baseline model that
uses ViT to extract global features. While PSNR/SSIM are slightly
lower than PixelNeRF, our results have much better LPIPS scores
and sharper details (see Fig. 1). By using a 3-layer CNN to extract
local features, our performance on the car dataset is improved, and
the rendered images have more faithful appearances to the input
views (see Fig. 9). By adding the viewing direction in volume
rendering, the performance is improved significantly. Finally, by
replacing the 3-layer CNN with ResBlocks, we see more fine de-
tails and better object structure in Fig. 9.

Cars Chairs
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
PixelNeRF 23.17 0.90 0.146 23.72 0.91 0.128

Replace ViT with EfficientNet 23.28 0.91 0.106 24.09 0.92 0.105
Replace ViT with ConvNeXt 23.30 0.91 0.092 24.37 0.93 0.089
Ours 22.88 0.91 0.084 24.48 0.93 0.077

Table 5. Comparison with different backbone choices. We
replace the vision transformer with EfficientNet [49] and Con-
vNeXt [27] to observe potential performance impact. Our method
achieves favorable overall performance in LPIPS compared to
other backbones.

Note that our method does not require any camera pose as
input, which is often difficult to obtain from real images.
We compare our results with PixelNeRF in Fig. 8. In the oc-
cluded regions, PixelNeRF suffers from blurry predictions
as pointed out by the arrows. In contrast, our method is
able to reconstruct the entire shape and keep details such as
headlights and side mirrors.

4.4. Ablation Studies

We start from the baseline method using only the ViT to
extract global features. While ViT encodes the high-level
global information, it fails to preserve the color and appear-
ance from the input view due to the low-resolution latent
embeddings, as shown in Fig. 9. The rendered results show
inconsistent appearances to the input view on non-occluded
regions, as shown in the second column in . By introduc-
ing GL (using a simple 3-layer CNN) to extract local image
features, the rendered car looks closer to the input view (top
of the third column in Fig. 9). However, we can see that
the chair’s back is still blurry (bottom of the third column
in Fig. 9). Next, we add the viewing direction as input to
the NeRF MLP, which significantly improves the sharpness
(bottom of the 4-th column in Fig. 9) and reveals more de-
tails such as the rear mirror of the car (top of the 4-th col-
umn in Fig. 9). Our final model adopts a more complex

ResBlocks design inGL, which further improves the geom-
etry shape of the car and chair (the 5-th column in Fig. 9).
Table 4 also reports the quantitative results of these design
decisions on both datasets.

4.5. Global Features from Different Backbones

To further verify that ViT outperforms convolutional
backbones for image-conditioned NeRFs, we benchmark
our method against two baselines that replace the proposed
ViT backbone with EfficientNet [49] and ConvNeXt [27],
i.e., modern CNN models with better performance than
ResNet34 and comparable numbers of parameters to ViT.
The results are presented in Table 5 which shows that our
method achieves better LPIPS compared to these baselines
on both the car and chair categories. This ablation study
demonstrates that using ViT as the backbone achieves bet-
ter performance for image-conditioned NeRFs due to the
model architecture design instead of more parameters.

4.6. Limitations and Future Work

First, our method does not utilize geometry priors such
as symmetry [56]. For example, in the car dataset, some
details on the car are symmetrical and can be reused for
the unseen side. However, it remains a question on how
to select the symmetry plane or find the canonical space
for such a prior. Another limitation is that we do not fully
utilize the high-level semantics of the objects. A semantic
understanding on the smaller components could help recon-
struct the unseen areas much better. For example, a car has
four wheels. Given the partial observation, it is possible
to use semantic knowledge to recover the unseen compo-
nents. Lastly, generative methods can be helpful in gen-
erating texture in occluded parts of the object. Integrating
locally-conditioned models with GAN loss training remains
a challenging problem for future research.

5. Conclusions

In this work, we present a NeRF-based algorithm for
novel view synthesis from a single unposed image. We uti-
lize vision transformer in conjunction with convolutional
networks to extract global and local features as 3D rep-
resentations. This hybrid representation shows promising
performance in recovering the occluded shapes and appear-
ance. Additionally, we show that vision transformer can
be used to generate global information without enforcing a
canonical coordinate system (which requires camera pose
estimation). We believe that our work has shed light on fu-
ture research to synthesize faithful 3D content with local
and global image features, and we hope that it could bring
about more exciting advances in the frontier for immersive
3D content.

6. Acknowledgement
This work was supported in part by a Qualcomm

FMA Fellowship, ONR grant N000142012529, ONR grant
N000141912293, NSF grant 1730158, a grant from Google,
and an Amazon Research award. We also acknowledge gifts
from Adobe, Google, Amazon, a Sony Research Award, the
Ronald L. Graham Chair, and the UC San Diego Center for
Visual Computing.

Supplementary Material

A. Video Results
We include video results as a webpage (https:

//cseweb.ucsd.edu/˜viscomp/projects/
VisionNeRF/supplementary.html). In each
video, we compare the input, SRN [46], PixelNeRF [59],
ours and ground-truth. The renderings of SRN and Pix-
elNeRF are provided by the authors of PixelNeRF on
request.

B. Network Architecture

Transformer encoder. We adopt the pretrained ViT-b16
model from Wightman [55] as our transformer encoder. The
transformer encoder has 12 layers (J=12), where each layer
uses the LayerNorm [2] for normalization and GELU [17]
for activation. The positional embedding is resized to the
same size as the input image (e.g., 128 × 128 for the
ShapeNet dataset, and 64× 64 for the NMR dataset).

Convolutional decoder. We provide the architecture details
of our convolutional decoder in Table 6. Our convolutional
decoder takes the tokens f3, f6, f9, and f12 [38] as in-
put and generate multi-level features W3

G,W
6
G,W

9
G,W

12
G ,

as shown in Fig. 4 of the main paper. We then resize all
feature maps WG to the size of H

2 ×
W
2 via bilinear inter-

polation. Finally, we adopt a two-layer CNN module (see
Table 7) to generate the global feature representation W′G.

2D CNN GL. We use the ResBlocks in Fig. 10 to generate
the local feature representation WL. The local feature WL

and global feature W′G are then concatenated as our hybrid
feature representation W.

NeRF MLP. We utilize the hierarchical rendering [31] to in-
clude detailed geometry and appearance. We use 6 ResNet
blocks with width 512 for both coarse and fine stages to
process the global and local features.

C. Implementation Details

Learning rate. We set the initial learning rate to be 10−4

for the MLP and 10−5 for ViT and the 2D CNN module.
To improve training stability, we use a warm-up schedule
to increase the learning rate linearly from 0 for the first 10k
steps. We decay the learning rate by a factor of 0.1 at 450k
steps. Our learning rate schedule for the NeRF MLP is plot-
ted in Fig. 11.

D. Experiment Configurations
We provide the detailed experiment setups in Sec. 4 of

the main paper.

3x3, 1, 256

3x3, 1, 256

+
3x3, 1, 256

3x3, 1, 256

+

3x3, 1, 256

3x3, 1, 256

+

7x7, 2, 64
BN, ReLU

BN, ReLU

BN

ReLU

BN, ReLU

BN

ReLU

BN, ReLU

BN

ReLU

Figure 10. Illustration of the ResBlocks. We use three ResBlocks
as our 2D CNN module to extract local feature representation from
the input image. The numbers in each layer denote the kernel size,
stride, and output channels, respectively. BN denotes BatchNorm,
and ReLU is the nonlinear activation function.

0

1e-4

5e-5

500k400k300k200k100k10k 450k

1e-5

Figure 11. Illustration of the learning rate strategy for the MLP
module. We first linearly increase the learning rate to 1e − 4 for
the first 10k step. Then, we set a learning rate decay of scale 0.1
at 450k steps.

D.1. Category-specific View Synthesis.

SRN [46] and PixelNeRF [59]: We obtain the PSNR and
SSIM from Table 2 in [59]. We use the pre-generated results
provided by the authors of [59] (on request) to calculate the
LPIPS score.

CodeNeRF [19]: We obtain the PSNR and SSIM of the
unposed input from Table 2 in [19]. As the pre-generated
results are not available, and the source code of CodeNeRF
does not provide optimization stages for unposed inputs, we
are not able to calculate the LPIPS score.

FE-NVS [16]: We obtain the PSNR and SSIM of the un-
posed input from Table 1 in [16]. We obtain the LPIPS
score from the authors on request. As FE-NVS does not
provide source code to reproduce any qualitative results, we
crop the high-resolution images from their paper to show

https://cseweb.ucsd.edu/~viscomp/projects/VisionNeRF/supplementary.html
https://cseweb.ucsd.edu/~viscomp/projects/VisionNeRF/supplementary.html
https://cseweb.ucsd.edu/~viscomp/projects/VisionNeRF/supplementary.html

#j layer kernel stride dilation in out activation input

3
Conv0-0 1× 1 1 1 768 96 N/A f3

TransConv0-1 4× 4 4 1 96 96 N/A Conv0-0
Conv0-2 3× 3 1 1 96 512 N/A TransConv0-1

6
Conv1-0 1× 1 1 1 768 192 N/A f6

TransConv1-1 2× 2 2 1 192 192 N/A Conv1-0
Conv1-2 3× 3 1 1 192 512 N/A TransConv1-1

9
Conv2-0 1× 1 1 1 768 384 N/A f9

Conv2-1 3× 3 1 1 384 512 N/A Conv2-0

12
Conv3-0 1× 1 1 1 768 768 N/A f12

Conv3-1 3× 3 2 1 768 768 N/A Conv3-0
Conv3-2 3× 3 1 1 768 512 N/A Conv3-1

Table 6. Architecture of the convolutional decoder. Conv denotes convolution layer. TransConv denotes transposed convolution
layer.

Layer kernel stride dilation in out activation input

Conv0 3× 3 1 1 1024 512 ReLU WG

Conv1 3× 3 1 1 512 256 ReLU conv0

Table 7. Architecture of the last two layers for generating
global feature representation W′

G.

the comparison in Fig. 6 of the main paper.
Note that all the methods except CodeNeRF uses view 64

as input, while CodeNeRF uses view 82 as input for evalu-
ation in their paper. As the source code for CodeNeRF does
not include unposed inference, we are not able to generate
the full evaluation using view 64.

D.2. Category-agnostic View Synthesis

Similar to category-specific view synthesis, we obtain
the numbers of SRN [46] and PixelNeRF [59] from Table 4
of [59]. We obtain the numbers of FE-NVS [16] from Table
4 of [16]. Qualitative results for SRN and PixelNeRF are
generated using the pre-generated results from [59]. The
detailed categorical numbers of SRT [42] and FWD [5] are
provided by their authors. For qualitative results, we obtain
the images from SRT project website and from the author
of FWD. Note that SRT does not provide the full renderings
of the dataset.

D.3. View Synthesis on Real Images

We use the real car images provided by PixelNeRF and
the Stanford Cars dataset [24] for evaluation. We remove
the background using the PointRend [23] segmentation and
resize the images to 128 × 128 resolution. We assume the
input camera pose is an identity matrix and apply rotation
matrices to simulate 360◦ views. We use the source code
and pre-trained model of PixelNeRF to generate the results
for PixelNeRF, where we synthesize the renderings at the
same camera poses.

(a) Input (b) View 1 (c) View 2

Figure 12. Results for unseen real data. We run our category-
agnostic model on a real image (a) and render two viewpoints from
the right (b) and left (c). Our method is able to predict a reasonable
geometry even though mugs are not presented in the training data.

E. Additional Results

E.1. Generalization on Unseen objects.

For unseen categories, we feed an image of a real mug
to the category-agnostic model as shown in Fig. 12. While
the training data do not include mugs, our method is able to
predict reasonable novel views.

E.2. Results on Category-specific and Category-
agnostic View Synthesis

We include extra results on category-specific view
synthesis in Fig. 13 and 14, results on category-
agnostic view synthesis in Fig. 15-21. Note that we
choose the target views where most pixels are not vis-
ible in the input view to better compare the render-
ing quality of each method on occluded regions. The
video results (in GIF format) are also provided on
website (https://cseweb.ucsd.edu/˜viscomp/
projects/VisionNeRF/supplementary.html).

References

[1] Relja Arandjelović and Andrew Zisserman. NeRF in detail:
Learning to sample for view synthesis. arXiv:2106.05264,
2021.

https://cseweb.ucsd.edu/~viscomp/projects/VisionNeRF/supplementary.html
https://cseweb.ucsd.edu/~viscomp/projects/VisionNeRF/supplementary.html

Input SRN PixelNeRF Ours GT

Figure 13. Category-specific view synthesis results on cars.

Input SRN PixelNeRF Ours GT

Figure 14. Category-specific view synthesis results on chairs.

Input SRN PixelNeRF Ours GT

Pl
an

e
B

en
ch

FWD

Figure 15. Category-agnostic view synthesis results on the NMR dataset.

C
ab

in
et

C
ar

Input SRN PixelNeRF Ours GTFWD

Figure 16. Category-agnostic view synthesis results on the NMR dataset.

C
ha

ir
D

is
pl

ay

Input SRN PixelNeRF Ours GTFWD
Figure 17. Category-agnostic view synthesis results on the NMR dataset.

La
m

p
Sp

ea
ke

r

Input SRN PixelNeRF Ours GTFWD

Figure 18. Category-agnostic view synthesis results on the NMR dataset.

R
ifl

e
So

fa

Input SRN PixelNeRF Ours GTFWD
Figure 19. Category-agnostic view synthesis results on the NMR dataset.

Ta
bl

e
Ph

on
e

Input SRN PixelNeRF Ours GTFWD

Figure 20. Category-agnostic view synthesis results on the NMR dataset.

B
oa

t

Input SRN PixelNeRF Ours GTFWD
Figure 21. Category-agnostic view synthesis results on the NMR dataset.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, and Amanda Askell. Lan-
guage models are few-shot learners. In NeurIPS, 2020.

[4] Chris Buehler, Michael Bosse, Leonard McMillan, Steven
Gortler, and Michael Cohen. Unstructured lumigraph ren-
dering. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, 2001.

[5] Ang Cao, Chris Rockwell, and Justin Johnson. Fwd: Real-
time novel view synthesis with forward warping and depth.
CVPR, 2022.

[6] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model
Repository. arXiv:1512.03012, 2015.

[7] Shenchang Eric Chen and Lance Williams. View interpola-
tion for image synthesis. In Proceedings of the 20th Annual
Conference on Computer Graphics and Interactive Tech-
niques, 1993.

[8] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. 2019.

[9] Paul E Debevec, Camillo J Taylor, and Jitendra Malik. Mod-
eling and rendering architecture from photographs: A hybrid
geometry-and image-based approach. In Proceedings of the
23rd annual conference on Computer graphics and interac-
tive techniques, 1996.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv:1810.04805,
2018.

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021.

[12] Emilien Dupont, Bautista Miguel Angel, Alex Colburn,
Aditya Sankar, Carlos Guestrin, Josh Susskind, and Qi Shan.
Equivariant neural rendering. In ICML, 2020.

[13] John Flynn, Michael Broxton, Paul Debevec, Matthew Du-
Vall, Graham Fyffe, Ryan Overbeck, Noah Snavely, and
Richard Tucker. DeepView: View synthesis with learned
gradient descent. In CVPR, 2019.

[14] John Flynn, Ivan Neulander, James Philbin, and Noah
Snavely. DeepStereo: Learning to predict new views from
the world’s imagery. In ICCV, 2016.

[15] Steven J Gortler, Radek Grzeszczuk, Richard Szeliski, and
Michael F Cohen. The lumigraph. In Proceedings of the
23rd annual conference on Computer graphics and interac-
tive techniques, 1996.

[16] Pengsheng Guo, Miguel Angel Bautista, Alex Colburn,
Liang Yang, Daniel Ulbricht, Joshua M. Susskind, and Qi
Shan. Fast and explicit neural view synthesis. In WACV,
2022.

[17] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016.

[18] Han Hu, Zheng Zhang, Zhenda Xie, and Stephen Lin. Local
relation networks for image recognition. In ICCV, 2019.

[19] Wonbong Jang and Lourdes Agapito. CodeNeRF: Disentan-
gled neural radiance fields for object categories. In ICCV,
2021.

[20] Mohammad Mahdi Johari, Yann Lepoittevin, and François
Fleuret. GeoNeRF: Generalizing nerf with geometry priors.
arXiv:2111.13539, 2021.

[21] Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ra-
mamoorthi. Learning-based view synthesis for light field
cameras. ACM TOG, 35(6):1–10, 2016.

[22] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neu-
ral 3D mesh renderer. In CVPR, 2018.

[23] Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Gir-
shick. PointRend: Image segmentation as rendering. In
CVPR, 2020.

[24] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3D object representations for fine-grained categorization. In
4th International IEEE Workshop on 3D Representation and
Recognition (3dRR-13), Sydney, Australia, 2013.

[25] Marc Levoy and Pat Hanrahan. Light field rendering. In Pro-
ceedings of the 23rd annual conference on Computer graph-
ics and interactive techniques, 1996.

[26] Kai-En Lin, Lei Xiao, Feng Liu, Guowei Yang, and Ravi
Ramamoorthi. Deep 3D mask volume for view synthesis of
dynamic scenes. In ICCV, 2021.

[27] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2022.

[28] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-
umes: Learning dynamic renderable volumes from images.
ACM TOG, 38(4), 2019.

[29] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3D reconstruction in function space. In CVPR,
2019.

[30] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view syn-
thesis with prescriptive sampling guidelines. ACM TOG,
2019.

[31] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020.

[32] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3D representations without 3D supervision. In
CVPR, 2020.

[33] Simon Niklaus, Long Mai, Jimei Yang, and Feng Liu. 3D
ken burns effect from a single image. ACM TOG, 38(6):1–
15, 2019.

[34] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In CVPR, 2019.

[35] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz
Kaiser, Noam Shazeer, Alexander Ku, and Dustin Tran. Im-
age transformer. In ICML, 2018.

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In
NeurIPS. 2019.

[37] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan
Bello, Anselm Levskaya, and Jon Shlens. Stand-alone self-
attention in vision models. In NeurIPS, 2019.

[38] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vi-
sion transformers for dense prediction. In ICCV, 2021.

[39] Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler,
Luca Sbordone, Patrick Labatut, and David Novotny. Com-
mon objects in 3D: Large-scale learning and evaluation of
real-life 3D category reconstruction. In ICCV, 2021.

[40] Konstantinos Rematas, Ricardo Martin-Brualla, and Vittorio
Ferrari. Sharf: Shape-conditioned radiance fields from a sin-
gle view. arXiv:2102.08860, 2021.

[41] Shunsuke Saito, , Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned
implicit function for high-resolution clothed human digitiza-
tion. arXiv:1905.05172, 2019.

[42] Mehdi S. M. Sajjadi, Henning Meyer, Etienne Pot, Urs
Bergmann, Klaus Greff, Noha Radwan, Suhani Vora,
Mario Lucic, Daniel Duckworth, Alexey Dosovitskiy, Jakob
Uszkoreit, Thomas Funkhouser, and Andrea Tagliasacchi.
Scene Representation Transformer: Geometry-Free Novel
View Synthesis Through Set-Latent Scene Representations.
CVPR, 2022.

[43] Jonathan Shade, Steven Gortler, Li-wei He, and Richard
Szeliski. Layered depth images. In Proceedings of the
25th annual conference on Computer graphics and interac-
tive techniques, 1998.

[44] Meng-Li Shih, Shih-Yang Su, Johannes Kopf, and Jia-Bin
Huang. 3D photography using context-aware layered depth
inpainting. In CVPR, 2020.

[45] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias
Nießner, Gordon Wetzstein, and Michael Zollhofer. Deep-
Voxels: Learning persistent 3D feature embeddings. In
CVPR, 2019.

[46] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
zstein. Scene representation networks: Continuous 3D-
structure-aware neural scene representations. In NeurIPS,
2019.

[47] Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia
Schmid. Segmenter: Transformer for semantic segmenta-
tion. In ICCV, 2021.

[48] Rick Szeliski and Polina Golland. Stereo matching with
transparency and matting. volume 32, pages 45–61, July
1999.

[49] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
conference on machine learning, pages 6105–6114. PMLR,
2019.

[50] Alex Trevithick and Bo Yang. GRF: Learning a general ra-
diance field for 3D scene representation and rendering. In
arXiv:2010.04595, 2020.

[51] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia
Polosukhin. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
NeurIPS, 2017.

[52] Dan Wang, Xinrui Cui, Xun Chen, Zhengxia Zou, Tianyang
Shi, Septimiu Salcudean, Z Jane Wang, and Rabab Ward.
Multi-view 3D reconstruction with transformers. In ICCV,
2021.

[53] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srini-
vasan, Howard Zhou, Jonathan T. Barron, Ricardo Martin-
Brualla, Noah Snavely, and Thomas Funkhouser. IBRNet:
Learning multi-view image-based rendering. In CVPR, 2021.

[54] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pyra-
mid vision transformer: A versatile backbone for dense pre-
diction without convolutions. In ICCV, 2021.

[55] Ross Wightman. Pytorch image mod-
els. https://github.com/rwightman/
pytorch-image-models, 2019.

[56] Shangzhe Wu, Christian Rupprecht, and Andrea Vedaldi.
Unsupervised learning of probably symmetric deformable
3D objects from images in the wild. In CVPR, 2020.

[57] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir
Mech, and Ulrich Neumann. Disn: Deep implicit surface
network for high-quality single-view 3d reconstruction. In
NeurIPS, 2019.

[58] Zexiang Xu, Sai Bi, Kalyan Sunkavalli, Sunil Hadap, Hao
Su, and Ravi Ramamoorthi. Deep view synthesis from sparse
photometric images. ACM TOG, 38(4), July 2019.

[59] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelNeRF: Neural radiance fields from one or few images.
In CVPR, 2021.

[60] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018.

[61] Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Exploring
self-attention for image recognition. In CVPR, 2020.

[62] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: Learning view syn-
thesis using multiplane images. In ACM SIGGRAPH, 2018.

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

