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ViSOM—A Novel Method for Multivariate Data Projection and Structure
Visualization

Hujun Yin

Abstract—When used for visualization of high-dimensional
data, the self-organizing map (SOM) requires a coloring scheme
such as the U-matrix to mark the distances between neurons. Even
so, the structures of the data clusters may not be apparent and their
shapes are often distorted. In this paper, a visualization-induced
SOM (ViSOM) is proposed to overcome these shortcomings. The
algorithm constrains and regularizes the inter-neuron distance
with a parameter that controls the resolution of the map. The
mapping preserves the inter-point distances of the input data on
the map as well as the topology. It produces a graded mesh in the
data space such that the distances between mapped data points on
the map resemble those in the original space, like in the Sammon
mapping. However, unlike the Sammon mapping, the ViSOM can
accommodate both training data and new arrivals and is much
simpler in computational complexity. Several experimental results
and comparisons with other methods are presented.

Index Terms—Dimension reduction, multidimensional scaling,
multivariate data visualization, nonlinear mapping, self-orga-
nizing maps (SOMs).

I. INTRODUCTION

SAMMON [1] pioneered the nonlinear mapping algorithm
for visualization of multivariate data, when the linear prin-

cipal component analysis (PCA) was the primary tool for di-
mension reduction. The objective of the Sammon mapping is to
minimize the differences between interpattern distances in the
original space and interpattern distances in the projected space.
The projection of data from an invisible high-dimensional space
to a low perceptible one (usually two dimensions) can reveal
the data structures and cluster tendency. Sammon mapping has
been shown to be superior to PCA for data structure analysis
[1]. However, the Sammon algorithm is a point-to-point map-
ping, which does not provide the explicit mapping function and
cannot accommodate new data points [1], [2]. For any additional
data, the projection has to be recalculated from scratch based on
all data points. This proves difficult or even impossible for many
practical applications where data arrives sequentially, the quan-
tity of data is large, and/or memory space for the data is limited.
The Sammon mapping does not have any generalization ability
[2].

Neural networks present another approach to nonlinear data
analysis. They are biologically inspired learning and mapping
methods and can learn complex nonlinear relationships of vari-
ables in a system from sample data. Mao and Jain have given a
comprehensive overview on this subject [2]. Kohonen’s SOM is
an abstract mathematical model of the mapping between nerve
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sensory (especially retina) and cerebral cortex (especially visual
cortex) [3], [4]. As the inputs to the SOM are often drawn from
a high-dimensional space, the algorithm has been used as a vi-
sualization tool for dimensional reduction (e.g., [5], [6]). One
of greatest properties of the SOM is that it is a topology pre-
serving mapping, i.e., close points in the input space will be
mapped to nearby neurons in the map space. Such properties
can be employed in visualizingrelative or qualitativemutual
relationships among the input. The SOM is also an abstraction
process and it usually uses fewer representatives for often a large
number of data points. Its distribution and convergence proper-
ties show that the SOM, when the neighborhood diminishes, is
naturally an optimal vector quantizer (VQ) in minimizing the
mean-square error between reference vectors and data points
they represent [7]–[9]. The algorithm has found a wide range
of applications in VQ, pattern classification, data mining and
visualization, knowledge discovery, and information retrieval.

When the SOM is used for visualization, however, as the
inter-neuron distances are not directly visible or measurable on
the map, one has to use a coloring scheme such as the U-matrix
[5], [6], or interpolation [10], to mark relative distances between
the weights of neighboring neurons referred in the input space.
Even so, the structures of data clusters may not be apparent and
often appear distorted. For example, if a square SOM is used to
visualize data drawn from two separate two-dimensional (2-D)
spherical Gaussians, then one half of the lattice will represent
one of the Gaussians, in rectangular, triangle, or other shape
but never in spherical. The other half will be similar. If we had
not known the distributions of the data, it would be impossible
to depict them from the learned map. The SOM does notdi-
rectly apply to multidimensional scaling, which aims to repro-
duce proximity in (Euclidean) distance on a low-dimensional
visualization space [11], [12].

In this paper, a new algorithm, namely the visualization in-
duced self-organizing map (ViSOM), is proposed. The ViSOM
projects the high-dimensional data in an unsupervised manner
as does the SOM, but constrains the lateral contraction force and
hence regularizes the inter-neuron distance to a parameter that
defines and controls the resolution of the map. It preserves the
data structure as well as the topology as faithfully as possible.
The ViSOM is a nonlinear projection but of a simple computa-
tional structure. The analysis and experimental results show that
the ViSOM may offer attractive advantages over the commonly
used SOM, PCA, and Sammon mapping. These key projection
algorithms are briefly reviewed in the following section for the
purpose of structure visualization. The details of the ViSOM are
then presented in Section III, followed by illustrative examples
demonstrating the principle of the algorithm and comparisons
with other methods. Conclusions are given in Section V.
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II. DATA PROJECTIONMETHODS

Searching for better and suitable data projection methods has
always been an integral objective of pattern recognition and data
analysis. Such a method will enable us to observe and detect un-
derlying data distributions, patterns, and structures. A great deal
of effort has been devoted to this subject and a number of useful
methods have been proposed and consequently applied to var-
ious applications. In the following, we give a brief review of
some key methods and algorithms currently used in data visu-
alization and analysis.

A. PCA

PCA is a classic linear data analysis method aiming at finding
orthogonal principal directions from a set of data, along which
the data exhibit the largest variances. By discarding the minor
components, the PCA can effectively reduce data variables and
display the dominant ones in a linear low-dimensional subspace.
It is the optimal linear projection in the sense of the mean-square
error between original points and projected ones, i.e.,

(1)

where is the -dimensional input vector,
are orthogonal vectors rep-

resenting principal directions. They are the first principal
eigenvectors of the covariance matrix of the input. The second
term in the above bracket is the reconstruction or projection of

on these eigenvectors. The term represents the projec-
tion of onto the th principal dimension. Traditional methods
for solving the eigenvector problem involve numerical methods.
Though fairly efficient and robust, they are not usually adap-
tive and often require the entire data set. Several Hebbian-based
learning algorithms and neural networks have been proposed for
performing PCA such as Oja’s subspace network [13], Sanger’s
generalized Hebbian algorithm [14], and Rubner and Tavan’s
network [15]. The limitation of linear PCA is obvious, as it
cannot capture nonlinear relationships defined by higher than
the second-order statistics. If the input dimension is much higher
than two, the projection onto a linear principal plane will pro-
vide only limited visualization power.

The extension to nonlinear PCA, however, has not been
straightforward, due to the lack of a unified mathematical
structure and an efficient and reliable algorithm, in some cases
due to excessive freedom in selection of representative basis
functions [16]. Principal curves and principal surfaces [17],
[12] were primary nonlinear extensions of PCA, but a valid
algorithm is required for a good implementation. Several
networks have been proposed for nonlinear PCA such as, the
five-layer feedforward associative network [18], the generalized
Hebbian algorithm-based method [19], and the kernel-based
principal component analysis [20].

B. Sammon Mapping

A traditional subject related to dimension reduction and data
projection is multidimensional scaling (MDS), which includes
PCA as one of the projection methods. The MDS searches for

a mapping to a low (usually two-) dimensional plot, on which
inter-point distances of projected points resemble those inter-
point distances in the original space [11], [12]. A general fitness
function or so-calledstresscan be described as

(2)

where represents the distance (usually Euclidean) between
mapped pointsand in the new space, represents the prox-
imity or dissimilarity of points and in the original space.
is a monotonic transformation function.

There is no exact and unique procedure to find the projec-
tion. Instead, the MDS relies on an optimization algorithm to
search for a configuration that gives as low stress as possible. A
gradient method is commonly used for this purpose. Inevitably,
various computational problems such as local minima and diver-
gence may occur to the optimization process. The methods are
also often computationally intensive. The final solution depends
on the starting configuration and parameters used in the algo-
rithm [21]. Sammon proposed a recursive learning algorithm
using the Newton optimization method for the optimal configu-
ration [1]. It converges faster than the simple gradient method,
but the computational complexity is even higher. It still has
the local minima and inconsistency problems. For the Sammon
mapping intermediate normalization (of the original space) is
used to preserve better local distributions and the transforma-
tion function is simply the (Euclidean) distance between points

and in the original space. The Sammon stress is then ex-
pressed as

(3)

where is the distance between pointand in the original
input space.

In addition to being computationally costly and not adaptive,
another major drawback of MDS methods including Sammon
mapping is the lack of an explicit projection function. Thus for
any new input data, the mapping has to be recalculated based on
all available data. These methods become impractical for appli-
cations where data arrive consecutively and/or predictions are
needed for new data points. Mao and Jain have proposed a feed-
forward neural network to parameterize the Sammon mapping
function and a backpropagation algorithm has been derived for
training of the network and minimizing the Sammon stress [2].

C. SOM

The SOM is an unsupervised learning algorithm that uses a
finite grid of neurons to map or frame the input space. The SOM
tends to cluster the data points, find the representatives or fea-
tures, and minimize the mean-square error between features and
the data points they represent

(4)
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where denotes that node or its weight is closest
to input . and is the neighborhood function of neuron

and its neighbor . represents the map grid andis the
neighborhood region.

As the map is often arranged in a low-dimensional, e.g., 2-D,
grid, it can be used for visualization of potentially high-dimen-
sional data. In the SOM, a neighborhood learning is adopted to
form a topological ordering among the neurons in the map. The
close data points are likely to become projected to nearby nodes.
Thus the map can be used to show the relative relationships
among the data points. However, the SOM does not directly
show the inter-neuron distances on the map. When the SOM is
used for visualization, assistance from some coloring schemes
such as the U-matrix is needed to imprint the inter-neuron dis-
tances so that the boundaries between clusters can be marked.
Even so, the cluster structures often appear in distorted and un-
natural forms. The SOM is a VQ and tries to accommodate the
data points only onto a grid. There will be few or no neurons in
regions of low or no data density. The entire data set, regardless
of its distribution and structure, will be crammed onto the grid.
The SOM can serve as a visualization map to show the relative
closeness and relationships among data points and clusters. In
many cases, however, a more faithful display of structure shapes
and distributions of the data set is more desirable in visualiza-
tion. In the next section, a new mapping algorithm based on the
SOM is proposed to overcome some shortcomings of the SOM
for high-dimensional projection and structure visualization.

III. ViSOM

In order for the map to capture the data structure naturally and
faithfully, the distance quantity must be preserved on the map,
along with topology. Ideally the nodes should be uniformly and
smoothly placed in the nonlinear manifold of the data space, so
that the inter-neuron distances of any two neighboring neurons
are approximately the same. The interneuron distances between
a neuron and its far neighbors increase proportionally and reg-
ularly according to the structure of the map grid. Then the map
can be seen as a smooth mesh embedded into the data space,
onto which the data points are mapped and the inter-point dis-
tances are approximately preserved.

A. ViSOM Structure and Derivation

The ViSOM uses a similar grid structure of neurons as
does the SOM. It usually consists of an array of nodes ar-
ranged in a low-dimensional rectangular or hexagonal grid.
Fig. 1 shows an example of 2-D maps. Each node(index

for a 2-D map) has an associated weight vector,
. The dashed encirclement denotes

a neighborhood of a winner (marked as shaded), within which
the learning takes place.

At time step , an input is drawn randomly from the data
set or data space. A winning neuroncan be found according
to its distance to the input, i.e.,

(5)

(a) (b)

Fig. 1. 8� 10 maps. (a) Rectangular. (b) Hexagonal. Dotted lines indicate
grid structure or neighboring relations rather than real connections. Dashed lines
denote the neighborhood regions surrounding the winners shown in dark nodes.

Then the SOM updates the weight of the winning neuron ac-
cording to

(6)

where is the learning rate at time.
In the SOM, the weights of the neurons in a neighborhood of

the winner are updated by

(7)

where is the neighborhood function, which is mono-
tonically decreasing with . The second term in (7), es-
pecially the updating force , can be rearranged and
decomposed into two forces

(8)

This can be shown in Fig. 2. The first force, , represents
the updating force from the winner to the input , which is
the same as that used by the winner in (6). It adapts the neu-
rons toward the input in a direction that is orthogonal to the
tangent plane of the winner. While the second force is a
lateral force bringing neuron to the winner , i.e., a contrac-
tion force. It is this contraction force that brings neurons in the
neighborhood toward the winner and thus forms a contraction
around the winner on the map at each time step. In the ViSOM,
this lateral contraction force is constrained through regularizing
the distance between a neighboring neuron to the winner. If the

is far from under a prespecified resolution, this force
remains, otherwise an opposite force applies, until they are in
proportion. The scale of the force is controlled by the normal-
ized distance between these two weights.

B. ViSOM Algorithm

The details of the proposed ViSOM algorithm are given
below.

1) Find the winner from (5).
2) Update the winner according to (6).
3) Update the neighborhood according to

(9)

where and are the distances between neurons
and in the data space and on the unit grid or map,

respectively, and is a positive prespecified resolution
parameter. It represents the desired inter-neuron distance
(of two neighboring nodes) reflected in the input space.
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Fig. 2. Decomposition of the SOM updating force.

The smaller the value of, the higher resolution the map
can provide.

4) Refresh the map by randomly choosing the weights of
the neurons as the input at a small percentage of updating
times (e.g., 10% iterations). This step can be optional.

The procedure is repeated until the map converges. Although
the ViSOM has the same ability of forming topological order
among neurons, the initial map does not have to be randomly
ordered. This can save a lot of time in untangling the map, which
is unnecessary for visualization purposes. Principal components
can be used to initialize the map. For example, for a 2-D map,
one can place it onto the plane crossed by the first two principal
eigenvectors. A refresh phase is added to speed up the map’s
smooth expansion to the areas where there are few or no data
points. The ViSOM is a smooth mesh grid stretching through the
data space. The higher the resolution, then more nodes will be
needed. Some nodes seldom win from the input. Refreshing is
to keep these nodes active and also to regularize the inter-neuron
distances among nodes.

The key feature of the ViSOM is that the distances between the
neurons on the map (in neighborhoods) reflect the corresponding
distances in the data space. That is, the distant measure is pre-
served on the map. When the map is trained and data points are
mappedon themap, thedistancesbetweenmappeddatapointson
the map will resemble approximately those in the original space
(subject to the resolution of the map). This makes visualization
more direct, quantitatively measurable, and visually appealing.
The size or effective range of the neighborhood function should
decreasefromaninitially largevaluetoafinalvalue,whichshould
not be just the winner. The rigidity of the map is controlled by the
ultimate size, , of the neighborhood. The larger this size is the
flatter will be the final map in the data space.

The resolution parameterdepends on the size of the map,
data variance and required resolution of the map. If a high reso-
lution is required, small should be used. Consequently a large
map is expected, depending on the data range. Although the size
of the map and the resolution are usually prespecified, they can
both be made adaptive during the training in order for the map
to effectively cover the entire data region.

IV. EXPERIMENTAL RESULTS

To demonstrate the applications of the proposed ViSOM and
its distance-preserving and structure-revealing properties, sev-
eral experiments and results are presented. The examples chosen
are for the purpose of illustration. The results of other mapping
methods such as PCA, SOM, and Sammon mapping are also
presented for comparison.

A. Two Illustrative Data Sets

The first data set consists of 24 2-D points. The scatter of
the points is shown in Fig. 3 as circles. An SOM and a ViSOM,
both of a 50-neuron chain, were trained on this data set. The ini-
tial weights for both chains were set randomly. Both have suc-
cessfully untangled the chain and formed a topology preserved
mapping. After a few thousand iterations, their positions in the
data space are shown in Fig. 3(a) and (b), respectively. The final
neighborhood size was set to six in the ViSOM. The resolution
parameter, , was set to 0.16. The total length that this ViSOM
chain can cover is approximately 0.1650 8 units. In this
simple case, the refresh step was not used as the data are not too
scarce compared to the number of neurons.

As can be seen, both SOM and ViSOM can place a non-
linear map into the input space, but their results differ dramati-
cally. As the SOM is similar to a VQ, it tends to place neurons
around data points regardless of the distances between them.
The ViSOM, however, preserves the distances between neurons,
so that the distances between mapped points on the map will re-
semble those in the data space. If the trained chains are used to
visualize the data, then the ViSOM gives a much better presen-
tation of data distribution and a more accurate projection of the
data.

In the second data set, 100 points were randomly drawn
from each of two Gaussian sources. Their mean vectors are

and , respectively, and their covariance
matrices are and , respectively. The scatter
of these points is shown in both Fig. 4(a) and (b) as circles.

A 20 20 SOM and a 20 20 ViSOM were applied
to learn the data. Both networks used random initial states,
and both used exponential neighborhood functions, i.e.,

, where and denote node and
winner , respectively, denotes the index distance
between these two nodes, andrepresents the neighborhood
size. was decreased from a large size (e.g., ten for this case)
to eventually one for the SOM and four for the ViSOM. The
resultant maps after 10 000 iterations are shown in Fig. 4(a) and
(b). The ViSOM places a fine mesh grid through data points
and extrapolates smoothly. The projections of the data points
on both maps are shown in Fig. 4(c) and (d). They are the
maps used for the visualization purpose. It shows clearly that
the ViSOM outperforms the SOM in capturing and showing
the data and its structure. The mapped data points on the SOM
do not reveal the distribution and structure of the data, while
those on the ViSOM preserve their original distribution well.
The map’s resolution parameterwas set 0.5 in this example.
Larger maps should be used for more accurate projections.

B. Iris Data Set

The well-known Fisher’s Iris data set is made of 150 4-D
points from three categories, each of which has 50 points [22].
Many data clustering and visualization experiments have used
this data set as a benchmark. A 100100 hexagonal ViSOM
has been applied to the data set and the result, i.e., the pro-
jected data on the map, is shown in Fig. 5(d). For comparison, a
SOM of the same size and structure has also been used to map
the data and the result is presented in Fig. 5(c), together with
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(a) (b)

Fig. 3. (a) A 50-node SOM chain in the data space, (b) A 50-node ViSOM chain in the data space, data points are marked with “+,” while nodes are marked
with circles.� = 0:16, � = 6.

(a) (b)

(c) (d)

Fig. 4. (a) A trained 20� 20 SOM in data space. (b) A trained 20� 20 ViSOM in data space. (c) Appearance of data on the SOM. (d) Appearance of data on
the ViSOM. The squares and triangles in (c) and (d) indicate the data points from two Gaussians.� = 0:5; � = 1.

the results of the PCA and Sammon mapping in Fig. 5(a) and
(b). The initial states of both SOM and ViSOM were placed on
a plane spanned by the first two principal components of the
data. The results shown were after 10 000 iterations. The final
neighborhood size for the ViSOM was set to four, and resolu-
tion .

From the results, it can be seen that the Sammon method is
better than the linear PCA, as it reveals structure details better.
While the ViSOM is even better in the sense that it has not only
preserved the inter-cluster structures but also captured more
details of intra-cluster and inter-point distributions. Another
important point is that the ViSOM can provide the projection
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(a) (b)

(c) (d)

Fig. 5. Mappings of Iris data set: (a) PCA, (b) Sammon Mapping, (c) SOM, (d) ViSOM. Map sizes for SOM and ViSOM are 100� 100, and� = 0:075; � = 4.

function, i.e., the discrete map, so that any new data points
can find their places on the map, while the Sammon mapping
cannot. Moreover, the Sammon mapping is computationally
more costly, since it requires both first- and second-order
derivatives of the stress function at each iteration [1], [21]. The
standard SOM can also form the mapping function. However,
the SOM preserves the topology only and can only provide
relative relationships among data points. It is hard for the SOM
to reveal both inter-cluster and intra-cluster distribution.

V. CONCLUSION

In this paper, a new mapping method, ViSOM, is proposed
for visualization and projection of high-dimensional data. The
ViSOM is similar in structure to the SOM, but constrains the
lateral contraction forcewithin the updating neighborhood. As
a result, the map preserves the inter-neuron distances as well
as topology as faithfully as possible. The ViSOM produces a
smooth and regularly graded mesh through the data points and
enables a quantitative, direct, and visually appealing measure
of inter-point distances on the map. Thus it can provide a better
visual exhibition of data points and their structure and distribu-

tion on the map than the SOM can. The ViSOM is as simple an
algorithm as the SOM is.
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