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Abstract

In this paper, we describe a modular software package, namg#, that allows fast de-
velopment of visual servoing applications. Visual sergodonsists in specifying a task as the
regulation of a set of visual features. Various issues hawe to be considered in the design of
such applications: among these issues we consider thetohtobots motion, visual features
modeling, and the tracking of the visual measurements. Gurament features a wide class
of control skills, a library for real-time tracking and a sitation toolkit.

1 Motivations

Several software packages or toolboxes written in varianguages have been proposed in order
to simulate robotic manipulator control: for example thetldla robotics Toolbox [8] allows sim-
ple manipulation of serial-link manipulator and Roboop][is4a manipulator simulation package
(written in C++). On the other hand, only few systems allovinapde specification and the execu-
tion of a robotic task on a real system. Some systems, thoagalways related to vision-based
robotics, have been however described in [9].

Visual servoing is a very important research area in robotizespite all the research in this
field, it seems that there was no software environment thawvalfast prototyping of visual ser-
voing tasks. The main reason is that it usually requiresiBpdr@rdware (the robot and specific
framegrabbers). The consequence is that the resultingcapphs are not portable and can be
merely adapted to other environments. Today’s softwaréydesllows us to propose elemen-
tary components that can be combined to build portable legélapplications. Furthermore, the
increasing speed of micro-processors allows the developaigeal-time image processing algo-
rithms on a simple workstation. A visual servoing toolboxk KeATLAB / Simulink [3] has been
recently proposed but it features only simulation capadédi

Chaumette, Rives and Espiau [6] proposed to constitutdeafy of canonical vision-based
tasks for visual servoing that contents the most classical lgg@that are used in practice. Toyama
and Hager describe in [32] what such a system should be iretfeeaf stereo visual servoing. The
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presented system (calle&®voOMATIC) is specified using the same philosophy as the XVision sys-
tem [16] and would have been independent from the robot amttalcking algorithms. Following
these precedents, I8P (MISP states for “Visual Servoing Platform”), the softwareissvment

we present in this paper, features all these capabilitrekependence with respect to the hardware,
simplicity, extendibility and portability. Moreover, I8P features a large library of elementary
tasks wrt. various visual features that can be combinedhegean image processing library that
allows the tracking of visual cues at video rate, a simujatarinterface with various classical
framegrabbers, etc. The platform is implemented in C++ uhdwix.

2 VISP Overview and major features

2.1 Control issue

Visual servoing techniques consist of using the data peavigdy one or several cameras in order
to control the motion of a robotic system [13, 19]. A largeiggr of positioning or target tracking
tasks can be implemented by controlling from one to all degjd freedom of the system. What-
ever the sensor configuration, which can vary from one cameranted on the robot end-effector
to several free-standing cameras, a set of visual feasuras to be designed from the visual mea-
surementx(t) (s = s(x(t))), allowing control of the desired degrees of freedom. A oariaw
has to be designed also so that these featureach a desired valug, defining a correct realiza-
tion of the task. A desired trajectosy(¢) can also be tracked [1, 29]. The control principle is thus
to regulate the error vecter— s* to zero.

Control law. To ensure the convergencest its desired value*, we need to model or approx-
imate the interaction matrikg that links the time variation of the selected visual featuthe
relative camera-object kinematics screvand which is defined by the classical equation [13]:

$ = Lev 1)
If we want to control the robot using the joint velocities, have:

) . Os

wherel, is the features Jacobian and wh%;erepresents the variation sfdue to potential motion
of the object (for an eye-in-hand system) or due to potentiaion of the camera (for an eye-to-
hand system). More precisely, if we consider an eye-in-lsgstem we have:

Js = Lscvnn']n(q) (3)
where

e "J,(q) is the robot Jacobian expressed in the end-effector frape



e °V, allows to transform the velocity screw between here the carftamerRz, and the end-
effector frameR,,. Itis given by :

cRn [Ctn] X cRn

VTL = 03 CRn (4)

where‘R,, and“t,, are the rotation and translation between framesind R,, and|[t]. is
the skew matrix related to. This matrix is constant if the camera is rigidly linked te@th
end-effector.

Now, if we now consider an eye-to-hand system we have:
Js = —LsV£7J,.(q) (5)
where
e 7J,(q) is the robot Jacobian expressed in the robot reference ffayne

e “V 1 allows to transform the velocity screw between coordinséenks (here the camera
frame R, and the robot reference franig-. This matrix is constant if the camera is motion-
less.

In all cases, a control law that minimizes the egoer s* is then given by:

q=-\I(s—s)— = (6)

where ) is the proportional coefficient involved in the exponentiehvergence of the error and

% Is an estimation of the object/camera motion.S¥ allows to consider both eye-in-hand and
eye-to-hand configurations. Finally let us note that a séapntaske, can be simply added (as
reported in Section 3.2.2) when all the degrees of freed@mat constrained by the visual task.
In that case, we have [13]:
q=-\ (W+WE(S —s)+(I- W+W)e2) +(I- W*W)% (7)
whereW* andI — W*W are projection operators that guarantee that the cameiamthie to
the secondary task is compatible with the regulatios tofs*.
If we consider here, without loss of generality, the casenoéye-in-hand system observing a
motionless target we have:
$ = Lgv (8)

wherev = “V,,"J,.(q) q is the camera velocity. If the low-level robot controlletoais v to be
sent as inputs, a simple control law can be obtained:

v=-A\L{(s—s") 9)
Wheref; is a model or an approximation of the interaction matrix.aih ®e chosen as [4]:
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o L, = LAS(s, r) where the interaction matrix is computed at the currenttjwrsof the visual
feature and the current 3D pose (denatgd it is available,

o L, = i\s(s*, r*) where the interaction matrix is computed only once at thé&e@position
of s andr,

oL, = %(i\s(s, r) + Lg(s", r*)) as reported in [23].

These possibilities have been integrated iV but other possibilities (such as a learning process
of the interaction matrix [18, 20, 21]) are always possibleugh they are not currently integrated
in the software. Let us point out that, in this case equatioarYbe rewritten by [13]:

v=—\ (W+WLAS+(S ) (I W+W)e2) (I W*W)%. (10)

A library of visual servoing skills.  With a vision sensor providing 2D measuremexts), po-
tential visual features are numerous, since as well 2D data such as coordinatestofdgaints
in the image can be considered, as 3D data provided by azataln algorithm exploiting the
extracted 2D measurements. It is also possible to combiren2C3D visual features to exploit the
advantages of each approach while avoiding their resgedtawbacks [24].

A systematic method has been proposed to derive analytitadl interaction matrix of a set
of visual features defined upon geometric primitives [136]5,Any kind of visual features can
be considered within the same formalism (coordinates aiftgpstraight line orientation, area or
more generally image moments, distance, etc.) Knowingetirgeraction matrices, the construc-
tion of elementary visual servoing tasks is straightfodvaAs explained in [6] a large library
of elementary skills can be proposed. The current versiovii&P has the following predefined
visual features:

e 2D visual features: 2D points, 2D straight lines, 2D ellgpse

e 3D visual features: 3D points, 3D straight linég,wherefl andu are the angle and the axis
of the rotation that the camera has to realize. These visaalifes are useful for 3D [34] or
2 1/2 D visual servoing [24].

Using these elementary visual features, more complex teashde considered by stacking the
elementary matrices.

For example, if we want to build a 2 1/2 D visual servoing taskried bys = (z, y, log(Z/Z*), Ou)
where(z, y) are the coordinates of a 2D poirt/Z* is the ratio between the current and the de-
sired depth of the point, and desired position and wifeaadu are the angle and the axis of the
rotation that the camera has to realize, the resultingastem matrix is given by:

L= | L, (11)



whereL,, L, andLy, have the following forms:

| -1/Z 0 /Z —(1+2?)
be = [ 0 -1z .f//Z liny —a:yx _ya; } (12)
L,=[00 -1/Z —y x 0], (13)
Low=[ 03 L, ]| with L, =1; _g ), + (1 — Ssilnncéﬁg) ? 14
2

All these elementary visual features are available i8R or can be simply built. The complete
code that allows to build this task is given in Section 3.Z18is way, more feature-based tasks can
be simply added to the library.

2.2 Vision-based tracking

Definition of objects-tracking algorithms in image sequenes an important issue for research
and applications related to visual servoing and more gépéoarobot vision. A robust extraction
and real-time spatio-temporal tracking of visual measemsx(¢) is one of the keys for success
of a visual servoing task. To consider visual servoing witlarge scale applications, it is now
fundamental to consider natural scenes without any fiduecgakers and with complex objects in
various illumination conditions. From a historical persiiee, the use of fiducial markers allowed
the validation of theoretical aspects of visual servoirggegch. If such features are still useful to
validate new control laws, it is no longer possible to limirgelves to such techniques if the final
objectives are the transfer of these technologies in thesitni@l world.

Most of the available tracking techniques can be divided imto main classes: feature-based
and model-based tracking (see Figure 1). The former apprfmamtises on tracking 2D features
such as geometric primitives (points, segments, ellips@spr object contours, regions of inter-
est,... The latter explicitly uses a 3D model of the trackbpbcts. This second class of methods
usually provides a more robust solution (for example, it cape with partial occlusions of the
object). If a 3D model is available, tracking is closely tethto the pose estimation and is then
suitable for any visual servoing approach. The main adgentd the 3D model-based methods
is that the knowledge about the scene allows improvemenmtafstness and performance by pre-
dicting hidden movement of the object and reducing the &ffetoutlier. Another approach may
also be considered when the scene is too complex (due taeextlack of specific object). This
approach is not based on feature extraction and trackingtag itwo other cases but on the analy-
sis of the motion in the image sequence. 2D motion computgtiovides interesting information
related to both camera motion and scene structure that aaseldevithin a visual servoing process.

Fiducial markers. Most of papers related to visual servoing consider verydasage pro-

cessing algorithms. Indeed the basic features consideréeicontrol law are usually 2D points
coordinates. Therefore, the corresponding object is lysaamposed of “white dots on a black
background”. Such a choice allows using various real-tilgerghms (e.g. [33]). The main ad-
vantage of this choice is that tracking is very robust ang yeecise. It is then suitable for all

5



Figure 1: Increasingly difficult examples of feature trakin visual servoing experiments.

visual servoing control laws (2D but also 2 1/2 D and 3D sifeegosition between camera and
target can easily be obtained using pose computation #igoyi From a practical point of view,
such algorithms are still useful to validate theoreticgleass of visual servoing research or for
educational purposes. Furthermore, in some critical im@lprocesses such a simple approach
ensures the required robustness (see Figure 2).

Figure 2: Visual servoing using fiducial markers for a graggask: image acquired by the camera
on the front and eye-in-hand camera on the back.

2D contour tracking. In order to address the problem of 2D geometric feature ingchkt is
necessary to consider at the low level a generic framewaak alows local tracking of edge
points. From the set of tracked edges, it is then possibleettbpn a robust estimation of the
features parameters using an Iteratively Reweighted |Smsares based on robust M-estimation.
For the first point, few systems allow real-time capabsiten a simple workstation. The
XVision system is a nice example of such systems [16]. In ase¢we decided to use the Moving
Edges (ME) algorithm which is adapted to the tracking of peatic curves [2]. It is a local
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Figure 3: Tracking 2D features using the Moving Edges atgoriwithin visual servoing experi-
ments: (a) 3D reconstruction of a sphere using active vigtrcontour following, (c) positioning
wrt. a cylinder with joint limits avoidance, (d) ellipsesitking (that correspond to the projection
of 3D straight lines in catadioptric images).

approach that allows to match moving contours. When deaiitiy low-level image processing,
the contours are sampled at a regular distance. At theseesaoipts, a one dimensional search
is performed to the normal of the contour for correspondidiges. Anorientedgradient mask is
used to detect the presence of a similar contour. One of tren#aes of this method is that it only
searches for edges which are oriented in the same diredithregparent contour. This is therefore
implemented with convolution efficiency, and leads to rigake performance.

Figure 3 shows several results of features tracking (limele; contours,...) in visual servoing
experiments that use the VISP library. The proposed trgckpproach based on the ME algorithm
allows a real-time tracking of geometric features in an imsgquence. It is robust with respect to
partial occlusions and shadows. However, as a local alguoriits robustness is limited in complex
scenes with highly textured environment.

Pose estimation. In particular visual servoing types (most of 3D visual sémgp some 2 1/2
D visual servoing and the 2D visual servoing where the demitrmation must be recomputed
at each iteration), the 3D pose of the camera with respedidcstene is required. This pose
estimation process has been widely considered in the canyiston literature. Purely geometric,
or numerical and iterative approaches may be considerdd [Linear approaches use a least-
squares method to estimate the pose. Full-scale non-loanization techniques (e.g., [22,
7, 12]) consists of minimizing the error between the obdewaand the forward-projection of
the model. In this case, minimization is handled using nucakiterative algorithms such as
Newton-Raphson or Levenberg-Marquardt. The main advantdghese approaches are their
accuracy. In YSP, various algorithms are available: mainly the iterasipproach proposed by



Dementhon [11] which is suitable for applications that ¢desfiducial markers, and a full scale
non-linear optimization based on the Virtual Visual Sengpapproach [27].

Figure 4: 2D 1/2 visual servoing experiment: in the imagedtacked object appears in green and
its desired position in blue.

Other tracking capabilities. VISP also features other tracking capabilities that can bsideon
ered within visual servoing experiments [28]. It integgate

e an algorithm to estimate an homography and camera dispi@ginom matched coplanar
or not coplanar points [25] ;

e aversion of the Hager Belhumeur [15] tracking algorithnt #dbows the matching of image
templates at video rate ;

Though not directly integrated into the software,SPP provides a direct interface with third-
party tracking or image processing algorithms. For exanvpéepropose interfaces

e with a point of interests tracker library. We have consideadracker, built on a differential
formulation of a similarity criterion: the well-known SAiemasi-Kanade algorithm [31].

e with a motion estimation algorithm (Motion 2D [30] availabih open Source) which has
been used for motion-based visual servoing [10]. Such inpageesssing algorithms can be
used to handle very complex images, as shown on Figure 1f@napplications dealing
with complex object tracking, stabilization of a camera mt@ad on a submarine robot, etc.

¢ with a 3D model-based tracking algorithm based on the Jixtisaal servoing approach [7].
In that case, the image processing is potentially very cerphdeed, extracting and track-
ing reliable contour points in real environment is a nonialivssue. In the experiment
presented in Figure 4, images were acquired and processelbatrate (50Hz). Tracking is
always performed at below frame rate (usually in less thans)O All the images given in
Figure 4 depict the current position of the tracked objedrgen while its desired position
appears in blue. The considered object is a video multiplekevas placed in a highly
cluttered environment. Tracking and positioning taskseanasrrectly achieved. Multiple
temporary and partial occlusions were made by a hand anougwork-tools.
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Simulation capabilities In order to allow fast prototyping of new control laws| S also pro-
vides simulation capabilities. 3D geometric primitivesidae forward-projected on the image
plane of a virtual camera and a virtual robot can then be oblett. In order to obtain realistic
simulation, it is possible to consider virtual robots wittesific Jacobian, joint limits, etc. Fur-
thermore noise can be added in measures computation andmaltion and in camera intrinsic
parameters. An advantage of this approach wrt. Matlab sitiaul (such as the Visual Servoing
Toolbox for MATLAB / Simulink [3] or the Matlab Robotics tobbx [8]) is that the written code
can then be used with only minor modifications on a real robtht kgal images. Figure 5 shows an
example of the simulation output. The display interface iigten using the Open Inventor library
(a C++ layer of Open GL).

(N}

b

Figure 5: MSP simulation module built using the Open Inventor librafg) external view (b)
view from the camera.

3 Implementation issues

As already stated, while developing this software, our gz to allow a portable (independent
from the hardware), fast and reliable prototyping of vissevoing applications. We also wanted
to provide a package that is suitable for real-time impletagon and that allows to perform both
simulations and real experiments from the same (or at lesxgt similar) code. Object-oriented
programming languages feature these qualities and threref® choose the C++ language for the
implementation of VSP.

The first part of this section presents the internal architecof the system and how it has
been implemented. Describing the full implementation @& #oftware is out of reach in this
paper, therefore, we will focus on the notion of extendipiand portability. The second part
describes how to use the available libraries from a endusiet of view. Let us note that all the
functionalities described in this section have been implet®d and aréully operational



3.1 An overview of theVISParchitecture

To fulfill the extendibility and portability requirementsge divided the platform into three different
modules: a module for visual features , visual servoingrobtaws and robot controller, a module
for image processing, tracking algorithms and other coempusion algorithms, and a module for
visualization dependent library. Figure 6 summarizes #s@dsoftware architecture and module
dependencies.

Tracking

external world --------- g Image processing

' Image Computer Vision
t

Visual servoing

AL 2 ) ( N

Robot | | . Trackers
Controller !
o«

‘ Dots ‘ ‘ Forward
projection
0
Visual | --F
servo Moving Model-based
Edges tracking
L v
Visual l
Features 1 )
T ‘ Pose Homography‘
A —

Transformation estimation
\ v

Figure 6: MSP software architecture.

Visual features and control law. Each specific visual feature is derived from a virtual class
vpBaseFeat ur es. This class mainly defines few variables (e.g., a vector destribes the
parameters) and a set of virtual members that are feature-dependeant {ee way to compute
the interaction matridg or the virtual function that allows the computation of theual features
s from the measurements in the imag@)). It is important to note that all the relations between
the control laws library and the visual features library and through this class. The virtual
functions defined ivpBaseFeat ur es can be directly used by the controllepSer vo even if
they are not yet defined. The consequence is that the cantodélss never knows the nature of
the manipulated features and manipulates only vectors atdo®s. Another consequence is that
it is not necessary to modify the controller library when iadda new feature. On the other hand,
when adding a new feature in the visual features libraryptiogrammer must define the number
of its component, the way to compute the interaction madti, This is done at a lower level (e.g.,
vpFeat ur ePoi nt , vpFeat ur eLi ne, ...). A generic featurgpGener i cFeat ur e allows
the user to simply define a new feature and to test easily itaber.

The controller (provided in thepSer vo class) itself provides therefore a generic interface
with the visual features. It computes the control law thatimizes the erros — s* as described
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in Section 2 according to a list of visual features that defithee task. Various control laws have
been implemented as proposed that consider the eye-indragke-to-hand systems and various
formulations of the model of the interaction matﬂi/)z. Along with the interaction matrid,
Jacobian], (that depends of a particular robot, see next paragraphif@pdeudo inversxi;\r and

its null space, the corresponding projection operaWr'(andl — W™W) are also computed if a
secondary task has to be added to the main visual task (sagaq).

Hardware portability. One of the challenges dealing with a visual servoing packageat it
has to deal with multiple robotic platforms as well as withiwas framegrabbers. Obviously the
package does not (and cannot) provide an interface withoaksiple robots and grabbers but we
built it in order to facilitate adding new hardware.

A new robot class can be derived from theRobot virtual class. AlthouglvpRobot defines
the prototypes of each member, it does not provide any axterfvith a real robot. The new class
that has to be implemented for each new robot redefines somevptual methods defined in
vpRobot such as robot motion orders or Jacobian computation géyepacific to a given robot)
and inherits all the methods and attributesypRobot (i.e., generic control issues). Simulated
robots are considered and can be controlled exactly asakats (specific Jacobian, inverse and
forward kinematics, joint limits and singularities can bedeled and simulated).

Similarly, dealing with framegrabbers, a genevigVi deo class has been developed from
which a particular framegrabber class can be derived. Sqive deo pure virtual methods have
to be defined within this new class (mainly initializatiorgaisition, closing methods). Such an
interface with MSP is very simple to add since such methods should already @xithe user’s
system. In the current version ofl 8P, some classical framegrabbers are already supportel (IE
1394, Video4Linux2, Matrox Meteor, IT ICcomp,...). Alongtivthese acquisition capabilities,
VISP provides various classes to display images using eltleeXil system or higher level li-
braries such as Open GL or QT.

Image processing and tracking. A template image classpl mage is provided. It has allowed
the development of the various trackers described in theiqure section. Along with elemen-
tary image processing functions, it provides an interfagl the images acquisition and display
classes. Dealing with the tracking algorithms, a virtuakslpTr acker is defined and is then
derived according to each particular tracking algorithArsinterface with the visual features class
is provided.

Matrices. Furthermore, C++ provides capabilities to handle matreggration using a “Matlab
like” syntax. Various numerical analysis algorithms (e®D and LU decompositions provided
by the GSL library) are widely used throughout.

3.2 VISPfrom a end-user point of view

Our other claim was that N5P is simple to use. We will therefore describe the softwaveen-
ment, from the end-user point of view, in the light of thremgle examples implemented using
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3.2.1 Build a basic 2D visual servoing task

Listing 1 defines a typical initialization process that canused in most programs using SP.
These lines define the framegrabber (here an IEEE1394 cartteralisplay system (here X11R6),
arobot (the 6 d.o.f Afma gantry robot of IRISA), a camera fvgtven calibration parameters) and
finally creates a task.

Listing 1: Typical code for VSP initialization

vpl mage<unsi gned char> | ;

vpl eeel394 grabber (VI DEO_PORT) ;
gr abber. open(1) ;
grabber.acquire(l) ;

vpDi spl ayX di splay(l,‘‘a new X11 wi ndow ') ;
vpDi spl ay: : di splay(l) ;

vpRobot Af ma6 rob ;
vpCaner aPar anet ers canm(u0, v0, px, py) ;

vpServo task ;

< code for a specific experinent >

Once these initializations have been achieved, the useadyrto define the tracker of the visual
cues and the visual servoing task. In this first example weshithe classical positioning task wrt.
four points using their andy coordinates in the image. Dealing with the tracking prociesthis
example we choose to track fiducial markerpDot ). The featurespFeat ur ePoi nt ) are
created from the tracked markexgpQot ) using member functions of thepFeat ur eBui | der
class (in this simple case, it mainly achieves a pixel-tdemeonversion). The desired values of
the visual feature* is also defined and a link between the current vakjei | ) of the visual
feature in the image and the desired valsd|(i ] ) is then createdsd is initialized using the
bui | dFr ommethod that allows to set andy 2D coordinates along with the desired depgth
that is used in the interaction matrix computation. EachtogheaddFeat ur e method creates
a2 x 6 interaction matrix which is “stacked” to the current one.tid end of this processsax 6
matrix and the corresponding error vector is then creatate 83 specifies that we consider an eye-
in-hand configuration with velocity computed in the camegarfe. Furthermore, the interaction
matrix will be computed at the desired positi@ = f;(s*,r*) (Line 39) and the control law
will be computed using the pseudo-inverse of the interactiatrix (other possibilities such as
considering the transpose bf also exist even if we do not recommend at all to use them).

Listing 2: An example of task definition: positioning wrt.uopoints
int nbpoint =4 ;
vpDot dot [ nbpoint] ;
vpFeat ur ePoi nt s[nbpoint], sd[nbpoint] ;
doubl e xd[ nbpoi nt], yd[nbpoint], Zd[nbpoint] ;
< initialize desired visual feature xd[], yd[], and zd[] >

for (i=0; i<nbpoint; i++)
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dot[i].initTracking(l) ;

vpFeat ureBuil der::create(s[i],cam dot[i])

s*

sd[i].buil dFrom(xd[i],yd[i],zd[i]) :

task. addFeature(s[i],sd[i]) ;

}
t ask. set Servo(vpServo: : EYEl NHAND CAMERA) ;

task.setInteracti onMatri xType(vpServo:: DESI RED, vpServo:: PSEUDO | NVERSE) ;

It is then straightforward to write the control loop itselft features the image acquisition
(line 43) and the current visual features computation fromresult of the dots tracking (line 46
and 47). The task is then automatically updated. Finallycth@rol law given in equation (9) is
computed and the result is sent to the robot controller.

Listing 3: Typical code for the visual servoing closed loop

t ask. set Lanbda(0. 2) ; A
while(...) {
vpCol Vector v(6) ;
gr abber. acquire(l) ;
for (i=0 ; i < nbpoint ; i++)
{
dot[i].track(l) ;
vpFeatureBuil der::create(s[i],cam dot[i]);

}

v = task.conputeControl Law() ;

robot . set Vel oci t y(vpRobot : : CAVERA_FRAME, V) ;

3.2.2 Introduce more complex image processing and a secongldask

Let us consider now a curve-following task [26]. This prablean be divided in two sub-tasks.
The primary task consists of servoing the tangent to thesc{ior instance maintaining this tangent
horizontal and centered in the image). The positioning gkiéd in this experiment is therefore a
2D line-to-2D line link and visual features used heresate (p, ) wherep andd are the cylindric
parameters of the straight line that is the tangent to theecuk secondary task can be added and
it has been specified as a trajectory tracking at a given antselocityV, in the X direction of
the camera frame (see Figure 7).

Image processing consists here in tracking a spline in tlag@sequence and in computing
the equation of the tangent to the curve from which we canrobttie camera motion. In our
software environment, there is no direct relation betwéentangent to a curve (that is, here, the
measuremenk) and a straight line (that is the visual featw)e As explained in the previous
example, V'SP usually allows the user to avoid an explicit access torduwker, but the number
of relationships among visual cues and control featuresrigally infinite. Therefore a direct
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Figure 7: Pipe following task: 3 images acquired during #ktwith tracked curve (red) and
tangent to the curve (green)

access to the trackers is necessary. In this example, tine $gzgicker is defined in Line 1 whereas
the visual features (represented by parameteasd ¢ of a straight line) are associated to this
tracker in Line 5. Then in the control loop, the spline is kedt in each frame and the new visual
features are computed (Line 14) and introduced in the tas&.secondary task is then considered
in Line 17 whereg = -V, correspond t@% in equation 7. For simplicity we have considered
thate; = X — X, — V.t is always equal to 0. This visual servoing task also featthhesuse
of a secondary task. Vectgr is combined with the primary task using the projection ofmera
I-WW.

This example allows us to show the importance of the threariies: the trackers library, the
visual features library, and the controller library and ey interact with each other.

Listing 4: Code for a curve following task: task definitiondavisual servoing closed loop

vpSpline S(CUBICSPLINE) ; // define a tracker (here track a spline using the M= algorithm
S.initTracking(l) ;

vpFeaturelLine L ; /'l define the visual feature: a line

L = S.tangent(0,0) ; /1 defined by the tangent to the spline

vpFeat ureLi ne Ld(0,PlI/2) ; /1 and that must be seen horizontal and centered in the inage
t ask. addFeat ure(L, Ld) ; /] define the visual task

while(...) {

vpCol Vector v(6), g(6)
grabber.acquire(l) ;

S.track(l) ; /'l Track the spline (visual cue)
L = S.tangent(0,0) ; /'l conpute the tangent
g[0] = -V ; /1 define secondary task

v = task.conputeControl Law( )+ task. addSecondaryTask(g) ; // v=-AWHtWL{ (s —s*)+ (I - WtW)g,

robot . set Vel oci t y(vpRobot : : CAMERA FRAME, V) ;

3.2.3 Building a 2 1/2 D visual servoing task

We now consider the 2 1/2 D visual servoing task presenteddti® 2.1, the visual featuresre
defined bys = (x,y,log Z/Z+,0u). To achieve this task one solution is to consider an estanati
of the 3D position of the point and the camera pose wrt. to thjeab. Listing 5 shows how to
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get the poséM, from a set of seven points (see Figure 8). The clgs#3ose provides functions
that compute the pose from a list of points (list built usihg &addPoi nt method). Different
methods can be considered to compute the pose. In this egarh first initialized using the
Dementhon-Davis [11] approach and improved using a naaliminimization method.

Figure 8: 2 1/2 D visual servoing task as implemented in se@®i2.3

Listing 5: An example of opse estimation

int nbPoint =7 ;
vpDot dot[nbPoint] ; // current visual feature associated with a tracker
/'l (here track 7 white dots)

/1 init the 3D coordinates (X Y,Z) of the points in object frane

vpPoi nt poi nt[ nbPoi nt]

poi nt[ 0] . set Wr | dCoordi nates(-L,-L,0) ; point[1].setWrldCoordinates(L,-L,0) ;
poi nt[ 2] .set Wrl dCoor di nat es(L, L, 0) ; poi nt[ 3] .set Wrl dCoordi nates(-L,L,0) ;
poi nt[ 4] . set Wr | dCoor di nat es(2*L, 3xL, 0); point[5].setWrl dCoordi nates(0, 3L, 0) ;
poi nt[ 6] . set Wr | dCoor di nat es(- 2L, 3xL, 0) ;

vpPose pose ;
for (i=0; i<nbPoint; i++)

{

dot[i].initTracking(l, cam ; // initialize the tracking process

dot[i].track(l) ; /'l get the 2D position of the point in neter

vpPi xel Met er Conver si on: : convert Point(cam dot[i], point[i])

/1 at this point the 2D coordi nates (x,y) and 3D coordinates (XY, 2)

/'l are avail abl e

pose. addPoi nt (point[i]) ; /'l consider this point in the pose conputation algorithm
}

vpHonogeneousMatri x cM ;
pose. conput ePose(vpPose: : DEMENTHON, cM) ;
pose. conput ePose( vpPose: : NON_LI NEAR, cM) ;

cout << ‘‘Pose’’ << cM << endl

Listing 6 shows how to build the 2 1/2 D visual servoing cohtaw. In a first time, we initial-
ized the current and desired value of the visual features. bHsic features related to a point and
to fu are available in the visual feature libranygFeat ur ePoi nt andvpFeat ur eThet aU).
However there is no predefined basic featurelégfZ/Z*). In such case it is possible to use a
genericvpGener i cFeat ur e feature. The user has then to compute, at each iteratiostdte
vector, the interaction matrix, and the error vector. Tis& ta then built by “stacking” the different
visual features using treddFeat ur e method. Let us note that dealing witlngZ andt u these
desired values are zero thus, we do not have to specify thamisgtimplicitly done). Line 68
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specifies that the interaction matrix will be computed atdheent positiorf; = f;(s, r). In the
closed loop itself, we find the point tracking that provides imeasurement necessary to compute
the pose and the position of the 2D point (Line 83). The pos@dated from these measurements
using a non-linear minimization method and the displacdriaralong with the deptl¥ of the
point are updated (let us note that operator * has been @adgtbto allows simple frame transfor-
mation: ‘P = “M,°P). The interaction matrix related tog Z/Z* has to be computed according
to equation (13) (see Line 97). The global task interactsothen updated and the control law
computed.

Listing 6: An example of a 2 1/2 D visual servoing task

vpFeaturePoint p, pd) ;
vpGenericFeature 10gZ(1) ;
vpFeatureThetaU tu ;

task. addFeat ure(p, pd) ;
task. addFeat ure(l ogz) ;

t ask. addFeat ure(tu) ; s = (z,y,log Z/Z*,0u) T

task. setInteracti onMatri xType(vpServo: : CURRENT) ;

vpCol Vect or cP = cdMo*poi nt [ 0]

doubl e Zd ; Zd = cP[2] ;
pd. set _x(cP[0]/zd) ; pd.set _y(cP[1]/zd) ;
while(l) {

g.acquire(l) ;

vpDi spl ay: : di splay(l) ;

pose. cl earPoint () ;

for (i=0; i < nbPoint ; i++) {
dot[i].track(l) ;
vpPi xel Met er Conver si on: : convert Poi nt(cam dot[i], point[i])
pose. addPoi nt (point[i]) ;

}
pose. conput ePose(vpPose: : NON_LI NEAR, cM) ;

cP =cM * point[0] ; Z =cP[2] ;
p. bui I dFrom(poi nt[0].get_x(), point[0].get_y(), 2 ;

| ogZ. set _s(log(z/ zd)) ;

vpMatrix Ll ogZ(1,6) ;

Ll ogZ[0][0] = LlogZ[0][1] = LlogZ[0][5] =0 ;

LlogZ[0][2] = -1/Z; LlogZ[O][3] = -p.get_y() ; LlogZ[0][4] = p.get_x() ;
| ogZ. setlnteracti onMatri x(LI ogZ) ;

cdMe = cdMoxcM. i nverse() ;
tu. bui | dFron{cdM) ;

v = task.conmputeControl Law() ;
robot . set Vel oci t y(vpRobot : : CAVERA_FRAME, V) ;
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In this example, to compute the depth of the reference poidithe rotation that the camera
has to achieve we have considered a pose estimation processis note that this can also be
achieved by the estimation of the homography between themuand the desired image (as
explained in [24]). ISP features also the capability to estimate such homognagihg various
algorithms [17, 24] and to extract from this homography thmera displacement and some useful
values such ag/Z*.

4 Conclusion

VISP is afully functionalmodular architecture that allows fast development of Jiseavoing
applications. The platform takes the form of a library wheaim be divided in three main modules:
two are dedicated to control issues (one for control praseasd one for canonical vision-based
tasks that contains the most classical linkages) and onieated to real-time tracking. Let us
finally note that VSP also features a virtual six dof robot that allows to sitalasual servoing
experiments.

VISP is developed within the INRIA Lagadic project and its letravailable under the Linux
system, is distributed using an Open Source license (QPanisig). Other modules such as the 3D
model-based tracker are subject to other licences. Til&P\Wvebsite is located at
http://ww.irisa.fr/lagadic/vi sp. The examples givenin the paper and many others
can be found in the software distribution.
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