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Abstract

The analysis of the genomic distribution of viral vector genomic integration sites is a key step in hematopoietic stem

cell-based gene therapy applications, allowing to assess both the safety and the efficacy of the treatment and to study

the basic aspects of hematopoiesis and stem cell biology. Identifying vector integration sites requires ad-hoc

bioinformatics tools with stringent requirements in terms of computational efficiency, flexibility, and usability. We

developed VISPA (Vector Integration Site Parallel Analysis), a pipeline for automated integration site identification and

annotation based on a distributed environment with a simple Galaxy web interface. VISPA was successfully used for the

bioinformatics analysis of the follow-up of two lentiviral vector-based hematopoietic stem-cell gene therapy clinical

trials. Our pipeline provides a reliable and efficient tool to assess the safety and efficacy of integrating vectors in clinical

settings.

Background
Viral vectors, due to their ability to permanently integrate

in a target genome, are used to achieve the stable genetic

modification of therapeutically relevant cells and their

progeny. In particular, γ-retroviral (γ-RVs) and lentiviral

(LVs) vectors are the preferred choice for hematopoietic

stem/progenitor cell (HSPC) gene therapy (GT) applica-

tions, having proved their efficacy in several preclinical

assays and clinical trials for inherited monogenic disorders

[1-4]. Since γ-RVs and LVs integrate in the cellular gen-

ome in a semi-random fashion [5-8], in a population of

vector marked cells each clone and its progeny harbor an

integrated vector in a unique genomic position that can

be used as a distinctive genetic identifier.

Studies aimed at investigating the genomic distribution

of integrating vectors in blood cells of GT patients are

fundamental to assess the safety and efficacy of the

therapy. Indeed, in some cases HSPC-GT was associated

to the potential emergence of severe adverse effects that

involve the perturbation of the expression of genes in

the proximity of the vector’s integration site (IS), a

phenomenon known as insertional mutagenesis (IM)

[1,9-12]. The identification of ISs on leukemic cells from

GT patients and preclinical models allowed identifying

the causes of IM and tracking the evolution of the

malignant clone over time [11-16]. State-of-the-art

strategies for the identification of ISs start with the

amplification, via polymerase chain reaction (PCR), of

the DNA portion that contains part of the proviral gen-

ome and of the flanking cellular genome. PCR products

are then sequenced and mapped to the reference host

genome to determine the genomic coordinates of the

ISs. More recently, next generation sequencing (NGS)

approaches have greatly enhanced the power of IS ana-

lysis, allowing to recognize clonal expansions caused by

in vivo selection of gain-of-function insertional mutants

even before they progress to overt malignancy. More-

over, IS analysis is useful to address clonal diversity dur-

ing hematopoietic reconstitution and the levels of HSPC

marking and activity after transplant, thus providing

readouts for efficacy. For these reasons, over the past

years there has been a constant increase in the amount

of sequencing and mapping of vector/genomic DNA

junctions, as well as an increasing diversification of
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tissue sources, cell types and time points during IS mon-

itoring. However, despite the advances brought forth by

NGS approaches and the higher level of detail provided by

the additional cell types and time points, there is still a

clear lack of computational tools that offer both a level of

performance capable of dealing with the huge amount of

data generated by sequencing platforms and sufficient

usability to make them accessible to investigators with

varying degrees of technological expertise.

Here we describe the design and implementation of

VISPA (Vector Integration Sites Parallel Analysis), a bio-

informatics pipeline for the identification of ISs built on a

scalable infrastructure with a simple graphical user inter-

face (GUI) based on the popular Galaxy framework [17].

VISPA has been successfully applied in several studies on

mouse and human genome [3,4,18,19]. In this work we

describe its performance on human IS datasets. This ana-

lysis allowed us to highlight critical points negatively

impacting the efficiency of IS retrieval and mapping and

provided hints to improve the whole process. VISPA is

available at [20].

Implementation
VISPA has been specifically designed to analyze DNA

fragments generated by linear-amplification (LAM) medi-

ated PCR [21], a technique used to retrieve and amplify

DNA fragments containing the junctions between the

integrated proviral and the cellular genome. Due to its

high sensitivity and accuracy, LAM-PCR is the current

standard for preclinical and clinical GT studies. The DNA

fragments generated with this method range from 100 to

1,000 bp in length, and contain the proviral long terminal

repeat (LTR), the flanking genomic DNA and a linker

cassette (LC). LAM-PCR products are then reamplified

by PCR with fusion primers containing a specific 6-

nucleotide sequence (barcode) that acts as a tag to allow

sample recognition after multiplexing. Barcoded frag-

ments are then purified, quantified, grouped into pools

and sequenced with either Roche 454 or Illumina MiSeq

platforms. As a result of this procedure, the sequencing

reads contain not only the genomic fragment needed for

IS identification, but also viral and artificial sequences that

must be trimmed out before alignment to the reference

genome. Finally, sequencing reads must be processed by a

bioinformatics pipeline that yields the final list of anno-

tated ISs (Figure 1).

Bioinformatics pipeline

The bioinformatics pipeline (Figure 1C) consists of several

sequential steps that lead from raw sequencing reads to

the annotated ISs. The first step converts reads from the

output format of the sequencer to the FASTA format;

sequencing data are then parsed to identify barcodes and

perform demultiplexing (that is, write a separate FASTA

file for each barcode); the LTR and LC sequences are sub-

sequently removed from each read to isolate genomic

fragments; in the next step, reads are mapped to the refer-

ence genome and several filters are applied to ensure

unambiguous alignment; after that, ISs that fall in the

same 3 bp window are merged together; finally, all ISs are

annotated by listing nearby genomic features (for example,

genes). In a subsequent postprocessing step, each IS is

associated to the LAM-PCR sample from which it was

originally derived, allowing its assignment to a source (for

example, peripheral blood, bone marrow and so on), cell

type (for example, CD4+ T cell, CD19+ B cell, and so on),

and time point after treatment.

Format conversion

In the data extraction step, standard flowgram format

(SFF, for the Roche 454) or FASTQ (for the Illumina

MiSeq) files are converted to the FASTA format with a

wrapper for the sff_extract program [22]. In the course of

our experiments, before running the pipeline, we also had

to convert paired-end FASTQ files from the Illumina

MiSeq to single-strand. In the case of Illumina paired-end

data, before running the pipeline, we converted the reads

to single-strand as follows: for each read, we determined

the LTR’s orientation to identify the starting nucleotide;

then, for overlapping reads, we merged the pair, while for

non-overlapping reads we only kept the one that con-

tained the LTR, which allows identifying the IS.

Demultiplexing

To avoid NGS capacity underutilization, several samples

are often sequenced at the same time, a technique called

multiplexing. To enable the redistribution of output

reads into separate groups (demultiplexing), samples are

tagged with individual ‘barcode’ sequences. Our demulti-

plexing tool, implemented in Python, identifies barcodes

and uses them to demultiplex sequence data, producing

a separate FASTA file for each barcode. To demultiplex

sequencing data, we developed a simple exact string pat-

tern matching: the input is a list of barcode sequences

that will be searched for at the beginning of each read,

while the output consists of a separate FASTA file for

each barcode (reads that do not contain any known tag

are discarded). To avoid biases due to the possible mis-

classification of similar sequences, no mismatches are

tolerated in this phase.

Trimming

Sequencing reads produced in the context of GT contain

both viral fragments and artificial sequences introduced as

a side effect of the procedure. In the trimming step, these

sequences (the LTR and LC) are identified and removed

to isolate the genomic fragments. Our implementation

consists of a Python program that integrates the BLAST
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Figure 1 IS analysis procedure for the Roche 454 sequencing platform. (A) DNA fragments containing the vector-cellular genome junctions

are retrieved and amplified from vector marked genomic DNA by LAM-PCR. (B) LAM-PCR products are processed by the NGS platform, yielding

sequencing reads that have to be processed in silico. (C) Bioinformatics pipeline, from FASTA extraction to IS identification and annotation.
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[23] alignment engine via a Boost.Python [24] wrapper

around the NCBI C++ Toolkit [25]. The program searches

for a subsequence consisting of the last 63 nucleotides of

the LTR, imposing an alignment homology of at least 89%

and a perfect match on the last 3 bases. If the LTR is

found, it is removed from the read and the resulting se-

quence is kept for further analysis to avoid mapping aspe-

cific amplification products. All reads that do not contain

the LTR are instead discarded. Reads that pass the above

filter are searched for the presence of the LC, which is also

trimmed out from the read. Note that the absence of the

LC does not imply that the read is the product of an aspe-

cific amplification reaction: thus, reads that do not contain

the LC are not eliminated from subsequent analysis, in

contrast with what happens to the LTR. Finally, all

trimmed sequences less than 20 bp long are discarded. As

shown in the Results section, this setup results in a highly

accurate identification of the junction point between the

LTR and the genomic sequence, which represents the IS

itself. Hereinafter, we will refer to the set of trimmed reads

as T.

Alignment and filtering

To find out where in the host DNA the viral vector has

integrated itself, sequencing reads must be mapped to a

reference genome. Our implementation consists of a

distributed version of BLAST with custom filters: for

each read in T, BLAST outputs a series of hits corre-

sponding to matching genomic regions, supported by

statistics such as alignment score, starting position, and

so on. Since an IS is defined as the junction between the

vector and the host genome, the part of the sequence

flanking the viral LTR must be identified as accurately

as possible, and reads must be univocally mapped to the

reference genome: these requirements are addressed by

a series of filtering procedures described in the rest of

this section.

In our experiments, to avoid mapping errors, we dis-

carded all hits with an identity score lower than 95% as

well as those with a starting alignment position beyond

the third base. The rationale behind the latter filter is

justified by PCR biases and biological changes for which

the position of a given IS can oscillate in a range of +/-

3 bases with respect to aligned reads [26,27]. Although

these are the recommended choices, both the minimum

identity score and the maximum starting position are

exposed as configurable parameters to the user. In the

following text, reads successfully mapped to the refer-

ence genome according to the above rules will be de-

noted as M, while discarded reads will be referred to as

N, so that |T| = |M| + |N|.

In order to univocally associate a genomic region to

each IS, sequencing reads that map equally well to mul-

tiple regions of the genome must be discarded: thus, reads

from M are subject to further filtering in order to isolate

unambiguous alignments. We here introduce the hom-

ology score hs that, for every mapping m of a given read i,

represents the percentage of aligned bases with respect to

the length of the read:

hsim ¼ 100 � qs−qej jim=li

where qs and qe are, respectively, the starting and end-

ing positions of the query (input read) in the alignment

as reported by BLAST, and l is the length of the read. A

read is classified as unambiguously aligned (U set) if its

best hit in terms of alignment score as has significantly

better values of both as and hs than the second best hit;

otherwise, it is discarded as ambiguously aligned (A set,

so that |T| = |U| + |A| + |N|). More specifically:

1. All hits for a given read are sorted in decreasing as

order as(1), as(2), … as(|M|);

2. If both |as(2) - as(1)| > ast and |hs(2) - hs(1)| > hst,

where ast and hst are predefined thresholds, the

alignment is classified as unambiguous. In our exper-

iments, we set ast and hst, respectively, to 15 and 20,

after a parameter tuning phase performed on a con-

trolled murine dataset.

Since the two LTRs present in the integrated proviral

form of LV are direct repeats, LAM PCR amplification

also generates a product containing part of the lentiviral

genome downstream the 5’ LTR. To detect viral se-

quences, we added a ‘dummy chromosome’ to the refer-

ence genome, corresponding to the vector genome: in

this way, NGS reads are also aligned to the vector

genome, and reads that map to both genomes are shown

in the BLAST output, enabling their removal from sub-

sequent steps. Finally, we applied an alignment quality

filter to the reads in U, discarding all alignments with a

BLAST identity score lower than 95% and hs less than

80%. The set of reads that pass this filter will be sub-

sequently denoted as R.

Integration site merging

Due to the possible presence of technical biases, we

applied a previously validated [6,26,27] 3 bp tolerance

window on the genomic position of the IS (that is, the

starting point of the alignment): all reads in R that lie in

the same window are merged into a single locus, repre-

sented by the first position in the window itself. This is

achieved by simply sorting reads by their starting

position on each reference chromosome and running a

sliding window [28] on the sorted list. We will refer to

the resulting set of distinct IS as L.
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Integration site annotation

The final step is the annotation of ISs, where each site is

associated to nearby genomic features such as genes,

miRNAs, and so on. We developed our own annotation

tool that takes as input two main parameters:

1. The L set, with each IS characterized by (at least)

its genomic location, that is, chromosome name

and position within the chromosome;

2. A browser extensible data (BED) file [29] containing

a list of genomic features, each characterized by

(at least) its name, the name of the chromosome on

which it is found, its starting and ending position on

the chromosome itself, and its orientation (plus or

minus strand). Examples of gene annotation BED

files are available in our Galaxy front-end in the

shared library area.

For each IS, the program finds the closest feature(s)

among those listed in the annotation file and, for each fea-

ture, outputs the following information: the (chromosome,

position) tuple that identifies the IS; the name and strand

of the feature as they appear in the BED file; the feature’s

starting and ending position; the distance of the IS from

the feature’s transcription start site (TSS); the relative

position of the IS with respect to the feature (upstream,

downstream or in-gene); the integration percentage for in-

gene integrations (from 0% when the IS coincides with the

TSS to 100% when the IS lies at the opposite end of the

feature).

Development

All tools in the pipeline were developed in Python, used

either exclusively or as a wrapper around foreign libraries

and external executable. For each tool, we built a Galaxy

[17] front-end that allows interacting with it through an

intuitive interface based on text boxes, drop-down menus,

and so on.

With the exception of the alignment and filtering step,

all programs have been implemented as ordinary execut-

able scripts depending on a common software library. The

alignment and filtering step, on the other hand, posed a

significantly greater challenge in terms of running time

and scalability. In our experiments, nearly 14 million input

reads had to be mapped to the whole human reference

genome: a task that, on a single processor, would have

taken an amount of time incompatible with the turn-

around requirements of the clinical trials. Since the map-

ping job is easily parallelizable on the set of input

sequences and a near-linear speedup can be achieved by

partitioning the input dataset set into a number of subsets

equal to that of available CPU cores (in the ideal case of

perfect load balancing), we implemented the tool as

an application for Apache Hadoop [30], a distributed

computing framework that handles dataset partitioning,

load balancing, and re-execution of failed task trans-

parently according to the MapReduce paradigm [31].

While Hadoop’s native API is in Java, to keep the code

base consistent with the rest of the pipeline we developed

the application with Pydoop [32], a Python API for

Hadoop developed at CRS4 (Figure 2).

From an architectural standpoint, the pipeline is struc-

tured as follows:

� A graphical web-based user interface built with

Galaxy;

� A job dispatcher and workflow manager, also based

upon Galaxy;

� A high-performance computer cluster where appli-

cations are actually run.

The Galaxy server runs on a node enabled for job sub-

mission on the cluster’s resource manager (RM). While

most pipeline tools are executed on single CPU cores

assigned to them by the RM, the distributed alignment

and filtering step runs concurrently on cluster sub-

sections managed by Hadoop (Figure 3).

Results and discussion
We performed a series of tests to evaluate VISPA’s reli-

ability in IS identification as well as its performance in

the analysis of large datasets. We generated an in silico

dataset of IS and used it to test our tool and other pub-

licly available software for IS analysis, as described in the

next subsection. In the following subsection, we charac-

terized the computational performances of our tool by

analyzing large datasets of real IS previously obtained

from two GT studies [3,4].

Figure 2 Simplified architecture of the distributed alignment,

filtering tool, control, and flow in the distributed

implementation. The MapReduce workers repeatedly call BLAST on

each query sequence in the input subset assigned to it by the

Hadoop framework. Each stream of BLAST results is then filtered

according to the specified rules: if there are no results left at this

point, the read is discarded (N set, no-hit); otherwise, remaining hits

are classified as either ambiguous (A set, repeats) or unambiguous

(U set). Finally, a local output collector opens all MapReduce output

files (one per worker) and merges them into three new files, one for

each category. In the course of the data analysis performed for our

clinical trials, the alignment and filtering step has been run on up to

240 CPU cores simultaneously.
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Reliability of VISPA and other tools for IS analysis

We assessed the reliability of our tool and other available

software (Mavric [33], SeqMap [34] and QuickMap [35]),

on an in silico dataset of 455 human sequences that simu-

late ISs with pre-determined genomic coordinates, charac-

terized by different length, sequence complexity and

mappability (see Additional files 1 and 2). We analyzed

this dataset with VISPA and the other selected tools com-

paring results with the expected outcome (see strategy in

Figure 4A). We exploited two of the most recent next gen-

eration sequencing (NGS) aligners, BWA [36] and GEM

[37], as reference to verify the mappability of the test

sequences on the target genome, thus allowing the classifi-

cation of each sequence as a repeat or not. The classifica-

tion of each sequence as repeat or unique position in the

genome can be computed using a ratio between the alter-

native/suboptimal alignment score and the optimal one

(for simplicity here called homology percentage or ratio).

Once an appropriate threshold has been set for the

homology ratio, input ISs are either accepted as un-

ambiguously mapped or rejected as repeats. Figure 4B

shows how classification results change as the homology

percentage threshold varies between 20% and 100%, thus

simulating a varying degree of stringency. For instance, in

our synthetic dataset, a 90% threshold (that means that

two alignments are considered repeats if and only if

the ratio the alternative alignment and the optimal

one is ≥ 0.9) leads to 449 accepted and six rejected ISs. For

all four tools, sequences passing homology filtering were

subsequently labeled as discarded (not identified as a

mapped IS), correctly matched (if the chromosome and

genomic position are correct within +/- 2 bp), or mis-

matched (wrong chromosome and/or genomic position). In

this framework we are able to use standard statistical mea-

sures to evaluate precision, sensitivity, specificity, accuracy,

and false discovery rate (FDR) by accounting for what we

expect to observe in our data (given an homology percent-

age ratio, or testing for an increasing value of homology

Figure 3 Schematic representation of the pipeline’s architecture. Interaction with the system happens through a Galaxy-based GUI: after

logging in to the web site, the user is able to upload data and customize the various parameters using a dedicated subsection of the Galaxy tool

panel (1). Although each pipeline step can be run as a stand-alone tool, Galaxy also allows to combine them in a single workflow, thus enabling

the automation of the entire process. When the user submits a job, Galaxy transfers all parameters chosen via the GUI to a driver script (2), which

schedules the actual computation on the computing cluster (3). In the case of the alignment and filtering step, actual processing is further

delegated to Hadoop (4), while the driver script acts as a final output collector. Finally, job output is returned to the graphical front end (5) that

presents final results to the user (6).

Calabria et al. Genome Medicine 2014, 6:67 Page 6 of 12

http://genomemedicine.com/content/6/9/67



20 30 40 50 60 70 80 90 100
0.0

0.2

0.4

0.6
0.6

0.7

0.8

0.9

1.0

Homology % for repeat classification

A
c

c
u

ra
c

y

Accuracy Analysis

20 30 40 50 60 70 80 90 100
0.00

0.02

0.04

0.06

0.08

0.10
0.2
0.4
0.6
0.8
1.0

Homology % for repeat classification

F
D

R

False Discovery Rate (FDR) Analysis

20 30 40 50 60 70 80 90 100
0.0

0.3

0.6

0.9
0.90

0.92

0.94

0.96

0.98

1.00

Homology % for repeat classification

P
re

c
is

io
n

Precision Analysis

20 30 40 50 60 70 80 90 100
0.0

0.2

0.4

0.6
0.6

0.7

0.8

0.9

1.0

Homology % for repeat classification

S
e

n
s

it
iv

it
y

Sensitivity Analysis

20 30 40 50 60 70 80 90 100
0.0

0.2

0.4

0.6

0.8

1.0

Homology % for repeat classification

S
p

e
c

if
ic

it
y

Specificity Analysis

VISPA
MAVRIC
SEQMAP
QUICKMAP

VISPA
MAVRIC
SEQMAP
QUICKMAP

A 

B 

D 

F 

C 

E 

G 

Selection of  
Genomic locations 

Random 
locations 

Sampling from 
Repeat masker 

annotation 

Sampling from 
Patients 

Sequence extraction 
and filtering 

Seq. extraction 
from hg19 

Restriction 
enzyme cut 

Seq. filtering by 
length (<20bp) 

Test dataset 
(FASTA) 

Tool testing 

BWA GEM 

Aligners 

VISPA Mavric

IS tools 

Seq
Map 

Quick 
Map 

Statistical Analysis 

Statistical 
measures 

assessment 

Comparative 
results 

410 

415 

420 

425 

430 

435 

440 

445 

450 

455 

20 30 40 50 60 70 80 90 100 

N
u

m
b

e
r 

o
f 

s
e

q
u

e
n

c
e

s
 

Homology % for repeat classification 

Repeats 

IS 

Classification of IS and Repeats along the alignment 
homology percentage 

Figure 4 Reliability evaluation of VISPA and other IS analysis tools. (A) Overall strategy for reliability assessment, from the generation of the

synthetic dataset to the final results. (B) Number of sequences classified as ISs or repeats for increasing homology percentage thresholds. (C-G)

Precision, FDR, sensitivity, accuracy, and specificity of all tested tools for increasing homology percentage thresholds.
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ratio) versus what we obtained from the tools. True

positives (TP) are actual ISs that are identified as such

by a tool; false positives (FP) are actual repeats that are

identified as ISs and mismatched ISs; false negatives

(FN) are actual ISs identified as repeats; true negatives

(TN) are actual repeats (discarded sequences) that are

identified as such.

Since the number of classified IS and repeats did not

changed up to the homology percentage value of 50

(Figure 4B), we compared statistical results of the IS

analysis tools in the neighborhood interval of 70%. In

terms of precision (Figure 4C) and FDR (Figure 4D),

VISPA and SeqMap resulted the best tools. In terms of

sensitivity (Figure 4E), VISPA and QuickMap performed

similarly (0.94 and 0.95, respectively) in top ranking po-

sitions, whereas MAVRIC and SeqMap achieved lower

values (less than 0.8); similar results were obtained for

the accuracy (Figure 4F). For the specificity (Figure 4G)

we observed for VISPA an increasing trend as the

homology percentage increased, reaching 1 at 90%

homology; only MAVRIC showed a similar trend, while

SeqMap and QuickMap presented an opposite behavior,

with the latter reaching 0 at 80% homology. For what

concerns the analysis of mismatched IS, MAVRIC

yielded an amount of 50 mismatched IS clustered in a

distance between 100 and 500 bp from the reference IS

position (Additional file 3A; in contrast, SeqMap pre-

sented only 1 mismatched IS, located in a different

chromosome; finally, QuickMap yielded 18 mismatched

ISs, the majority of them (12) within 10 bp from the

reference position (Additional file 3B).

Computational performance of VISPA on IS datasets from

GT studies

We analyzed the performance of VISPA in the context of

the analysis of 19,306,267 raw sequence reads obtained in

two GT previous studies [3,4]. After quality control and

barcode filtering, 18,874,038 total input reads were

selected, 13,786,956 of which contained a valid LTR

sequence (the previously introduced T set); these reads

were subsequently aligned to the human reference

genome (build hg19/GRCh37, February 2009) yielding

12,717,773 mappings (corresponding to the M set) and

1,069,183 unmatched reads (the N set); after the filtering

step, the M set was further split into the A and U subsets,

with a total amount of, respectively, 2,572,931 and

6,035,527 reads. LV detected reads were 4,109,315. The

alignment quality filter discarded 541,122 reads, leaving a

total amount of 5,494,405 redundant ISs (the R set). After

merging ISs according to the sliding window method de-

scribed above, the resulting 71,359 distinct ISs (the L set)

were finally annotated with nearby genomic features.

From this analysis we found that for all patients, despite

the large amount of sequences generated by the 454-Roche

or MiSeq Illumina platforms, after the sequential filtering

steps applied by our pipeline, the number of sequencing

reads univocally mapped on the genome was progressively

reduced to 30% of the initial number of sequencing reads.

Several reasons, although to a different extent, concurred

to this strong reduction.

The percentage of reads with correct barcodes ranged

from 96.61% to 99.23% of the total (Figure 5A). On the

other hand, about 30% of the sequencing reads was ex-

cluded after trimming (Figure 5B) due to the absence of

a valid LTR (12% on average) or because they were too

short to be mapped on the reference genome (15% on

average). The decrease in number of reads associated to

the first three filtering steps was comparable in all pa-

tients (Figure 5A, B). As shown in Figure 5C, the trim-

ming step modifies the distribution of the length of

sequencing reads by introducing a shift towards smaller

sizes and a slight change in its profile. After the align-

ment to the reference genome (Figure 5D) about 40% of

the initial reads was excluded from further analysis be-

cause: (1) lacking a valid match on the reference gen-

ome (6% on average); or (2) because these reads were

vector-only sequences (21% on average); or (3) repetitive

elements that could not be univocally mapped to the

reference genome (13% on average). Reads left after

quality-based filtering (the R dataset) were, on average,

90.87% of U reads, with a standard deviation of less than

1%. The sequence length distribution profile of the uni-

vocally mapped reads (the R dataset) was similar for all

patients of both clinical studies (Figure 6A). Finally by

applying the sliding window approach described above,

we identified all IS reads that fall in the same 3 bp inter-

val as belonging to the same integration event (the IS

merging step), the number of such reads can be seen as

a measure of the ‘signal power’ of the integration

(Figure 6B). To evaluate the precision of this approach,

we computed the percentage of IS positions (starting

covered bases) hit by an IS read within each window: as

shown in Figure 6B, over 60% of IS bases fall in the first

position (blue bar), while for other bases the percentage

decreases as the distance from the IS increases.

In summary, we found that four major steps account for

the observed strong reduction in the amount of sequence

reads: (1) LTR recognition; (2) short sequence reads; (3)

vector-only sequences; (4) repetitive elements. To increase

the yield of sequences with a recognizable LTR, further

optimization of the parameters for its recognition could

be adopted, carefully evaluating the possible impact on

the alignment quality and errors. To significantly reduce

the number of short length reads, optimization of the wet

procedures could be required, such as developing other

LAM-PCR protocols optimized for the amplification of

long products as well as the use of sequencing technologies

that allow the characterization of long fragments (that is,
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PacBio platform for single molecule real time sequencing).

Similarly, to reduce vector-only sequences, further techno-

logical improvements should be adopted. In particular, the

use of novel oligonucleotides for LAM-PCR amplification

annealing in non-repeated portions of the HIV genome

(thus avoiding the LTR) could drastically reduce or com-

pletely eliminate the presence of such non-informative

contaminant.

The issue of the presence of repetitive sequences that can-

not be mapped univocally to the reference genome is more

complex to solve but it would lead to a major improvement

of IS analysis procedures. Many of the analyses take into ac-

count the number of univocally mapped integration sites as

surrogate markers of clonality, including the tracking of

HSPC reconstitution and differentiation to estimate the

polyclonal hematopoietic repertoire in terms of population

diversity, as well as the number of active stem cells that

reconstituted the hematopoietic system. Therefore the

lack of precise information regarding the number of cell

clones that harbor integrations in repetitive regions could

have a detrimental impact on the overall picture of these

analyses. To solve this issue, novel PCR techniques that

increase the length of the sequence reads may be devel-

oped, thus increasing the mappability of PCR sequenced

products [8].

Conclusions
IS analysis is an essential step for assessing the safety

and efficacy of molecular therapies that use genetically-

modified hematopoietic stem cells via integrating viral
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vectors. Typically, for safety and efficacy studies, IS

analyses should preferably be performed on different

hematopoietic cell lineages that are purified and isolated

from the bone marrow and/or peripheral blood of GT

patients at different time points after transplantation.

VISPA was extensively used to monitor lentiviral inte-

grations in two clinical studies for the treatment of MLD

and WAS, enabling to efficiently extract IS information

from a large number of samples (N > 1,400) and sequen-

cing reads (N = approximately 20 × 10e6 reads) and to

verify the safety and efficacy of the treatments in various

aspects [3,4]. For the first time, we were able to observe

in vivo molecular patterns of human stem cell differenti-

ation and proliferation, opening new perspectives to

understand cell dynamics through population studies.

Moreover, even if IS analysis has not been fully stan-

dardized yet, drug administration agencies require to

perform IS analysis both in preclinical experimentations

and GT clinical trials to identify potential insertional

mutagenesis events. The emerging interest of the scien-

tific community on these studies highlights the great po-

tential of IS analysis and, consequently, of tools capable

of efficiently and reliably perform the associated compu-

tational steps such as the one presented here. Hence,

this further increases the importance of bioinformatics

tools such as VISPA, designed not only for accuracy and

efficiency, but also for usability by researchers without

higher level of informatics expertise.

Availability and requirements

� Project name: VISPA

� Project home page: https://github.com/crs4/vispa

� Operating system(s): Unix

� Programming language: Python

� Other requirements: Galaxy, Hadoop

� License: GNU GPLv3

� Any restrictions to use by non-academics:

commercial use is permitted, see the GPLv3 for

requirements

Additional files

Additional file 1: Generation of the test set and accuracy

evaluation setup. This document provides in-depth details on the

generation of the in silico dataset, and describes the experimental setup

used to assess the accuracy of VISPA and other three IS analysis tools

(MAVRIC, SeqMap and QuickMap). See http://genomemedicine.com/

content/supplementary/s13073-014-0067-5-s1.pdf.

Additional file 2: In silico dataset sequences and accuracy

assessment results. This is a Microsoft Excel file with two tabs, ‘FASTA

formatted sequences’ and ‘comparison’: the former contains the 455

sequences that make up the synthetic dataset in FASTA format, while the

latter provides detailed information and experimental results for each

sequence. Specifically, the ‘INPUT’ column group contains sequence

annotation; the ‘BWA’ and ‘GEM’ column groups list results for each

aligner; in the remaining columns, results are provided for VISPA and the

other three tested tools. See http://genomemedicine.com/content/

supplementary/s13073-014-0067-5-s2.xlsx.

Additional file 3: Analysis of mismatched IS. (A) Box plot of the

distances, in terms of genomic position (bp), between each mismatched

IS and the reference IS, for MAVRIC, SeqMap, and QuickMap. (B) Total

number of mismatched ISs for different bp intervals. See http://

genomemedicine.com/content/supplementary/s13073-014-0067-5-s3.pdf.

Abbreviations

API: Application programming interface; FDR: False discovery rate; GT: Gene

therapy; GUI: Graphical user interface; HSPC: Hematopoietic stem/progenitor

cell; IS: Integration site; LAM-PCR: Linear amplification mediated polymerase

chain reaction; LV: Lentiviral vector; MLD: Metachromatic leukodystrophy;

NGS: Next-generation sequencing; WAS: Wiskott-Aldrich syndrome; γ-RV:

γ-retroviral vector.
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