
Informatics in Education, 2004, Vol. 3, No. 2, 267–288 267
 2004Institute of Mathematics and Informatics, Vilnius

Visual Algorithm Simulation Exercise System with
Automatic Assessment: TRAKLA2

Lauri MALMI, Ville KARAVIRTA, Ari KORHONEN,
Jussi NIKANDER, Otto SEPPÄLÄ, Panu SILVASTI
Department of Computer Science and Engineering, Helsinki University of Technology
P.O.Box 5400, 02015 HUT, Finland
e-mail: {lma,vkaravir,archie,jtn,oseppala,psilvast}@cs.hut.fi

Received: August 2004

Abstract. Interaction and feedback are key factors supporting the learning process. Therefore many
automatic assessment and feedback systems have been developed for computer science courses dur-
ing the past decade. In this paper we present a new framework, TRAKLA2, for building interactive
algorithm simulation exercises. Exercises constructed in TRAKLA2 are viewed as learning objects
in which students manipulate conceptual visualizations of data structures in order to simulate the
working of given algorithms. The framework supports randomized input values for the assignments,
as well as automatic feedback and grading of students’ simulation sequences. Moreover, it supports
automatic generation of model solutions as algorithm animations and the logging of statistical data
about the interaction process resulting as students solve exercises. The system has been used in two
universities in Finland for several courses involving over 1000 students. Student response has been
very positive.

Key words: algorithms, data structures, algorithm animation, algorithm simulation, automatic
assessment, computer science education.

1. Introduction

Many automatic assessment systems1 have been developed over the last decade to aid
grading of exercises in large computer science courses. The main application context
has been checking programming exercises (Benfordet al., 1993; Jackson and Usher,
1997; Luck and Joy, 1999; Saikkonenet al., 2001; Vihtonen and Ageenko, 2002). Other
applications include grading algorithm exercises (Bridgemanet al., 2000; Hyvönen and
Malmi, 1993; Korhonen and Malmi, 2000) and analyzing object-oriented designs and
flowcharts (Higginset al., 2002).

The main purpose of these systems has been to reduce the workload of human teach-
ers. However, there are other very important issues involved, as well. First, learners have
the freedom to submit exercises from any place and at any time, a feature of great value in
distance learning, as well as traditional environments. Second, most systems allow resub-
mission of exercises after feedback. This option can promote learning considerably, since

1We deliberately omit automatic checking of multiple choice questions here.



268 L. Malmi, V. Karavirta, A. Korhonen, J. Nikander, O. Seppälä, P. Silvasti

it supports independent self study and allows students to learn from and correct errors
in real time without waiting for feedback from the teacher (Malmiet al., 2002). Third,
automatic assessment allows personal variation of the exercises (Hyvönen and Malmi,
1993; Korhonen and Malmi, 2000), a feature that is impractical in large courses, in which
the teacher marks the exercises manually.

The interaction that results from automaticassessment and feedback with a resubmis-
sion option enhances student learning. Other forms of interaction can also be employed
for promoting learning. First, the environment can be designed to support various forms
of collaboration among learners and teachers,such as chat, email or discussion groups.
Second, the environment can incorporate active learning modules in the form of inter-
active applets that visualize or animate important concepts. A good example of this is
the Snapshots project by Ross and Grinder (2002). Such active learning applets typically
include simple forms of interaction, such as set-at-a-time control of a visualization with
arbitrary “undo” capability. They also allow students to change input parameters to the vi-
sualization system or to construct entirely new visualization models that can be animated.
Finally, advanced versions of these applets provide feedback regarding the correctness of
student-constructed models. Third, appletscan also be designed that provide students
with formative and summative feedback, both textually and visually, that aids them in
exploring the possible states of the system at hand.

In this paper we concentrate on the second and third advanced forms of interaction in
the context of algorithm exercises. We emphasize that in our exercises a learner actually
manipulates data structures using advanced context-sensitive visual operations instead of
viewing ready made visualizations. Our application is a web-based learning environment
for teaching data structures and algorithms.

At the Helsinki University of Technology (HUT) we have been developing software
for supporting the data structures and algorithms course since the early 1990’s, when
the first version of the TRAKLA system (Hyvönen and Malmi, 1993) was built. That
system was the first to implementcomputerized algorithm simulation exercises. In such
exercises, the student simulated the working of algorithms on a conceptual level by exam-
ining and manipulating diagrams of the data structures to which those algorithms applied.
Such manipulation was originally performed manually with pen and paper. The system
just checked the answers, that is, the final states of the simulations, which were submitted
to the system as email messages. An important issue in such exercises was that instead
of concentrating on the implementation details, this method concentrated on promoting
conceptual understanding of the algorithms involved. Moreover, each exercise wasindi-
vidualized for each learner by randomizing the initial values of the algorithm. The answer
consisted of a sequence of data structure states that had to be coded into a predefined for-
mat.

Email based submissions required textual formats, which were impractical and error-
prone. When the World Wide Web was introduced in mid 1990’s, it became obvious that
algorithm visualization methods could be incorporated into the system. This promised
to allow platform independent graphical representations of conceptual diagrams of data
structures and network to allow students to interact with them. A new system, WWW-
TRAKLA (Korhonen and Malmi, 2000) was then implemented. It was the first web-based



Visual Algorithm Simulation Exercise System with Automatic Assessment: TRAKLA2 269

learning environment to include algorithm simulation exercises. WWW-TRAKLA cou-
pled the algorithm simulation exercise concept with the best practise in the algorithm
visualization. Student interactions were based on direct manipulation of the visual repre-
sentation of the data structures (Stasko, 1991); students could also browse the generated
sequence of states forwards and backwards (Boroniet al., 1996). At the same time, an-
other very important feature was incorporated into the system: immediate feedback and
resubmission of solutions.

Graphical manipulation in algorithm exercises was a huge improvement over text-
based editing and evaluation by students was encouraging. However, feedback on solu-
tions was still returned to students by email in a textual form that was not very informa-
tive.

Moreover, implementing new exercises was time consuming on the part of the instruc-
tor and it required a lot of programming and testing. Furthermore, even though students
created answers graphically in terms of algorithm simulation, and were allowed to run
the exercises step by step backwards and forwards, the model answers generated by the
system were solely in textual form. Actually, they typically included only the final state
of the data structure in question.

Due to these limitations, WWW-TRAKLA did not realize the full power of algorithm
simulation; a new supporting framework was needed for TRAKLA. This new framework,
called Matrix, was developed by Korhonen and Malmi (Korhonen and Malmi, 2002). Ma-
trix is a general purpose framework for building algorithm animations and simulations.
The framework allows building applications in which the user for the first time hasfull
control of data structure manipulations through GUI interaction, using a method which
we callvisual algorithm simulation (Korhonen, 2003). Compared with direct manipula-
tion, visual algorithm simulation allows true interaction with the underlying data struc-
tures and on-line modification of them. Simulation operations are carried out by perform-
ing context-sensitive drag-and-drop operations, triggering menu commands, and pressing
push buttons. Thus, the user can modify, for example, the contents and relations of nodes,
activate operations on abstract data types, and use different visual representations for a
single data structure.

In this paper, we present the TRAKLA2 framework for the straightforward creation
and publishing of interactive exercises for data structures and algorithms. TRAKLA2
is based on Matrix and allows for the full power of Matrix in building different types
of visual algorithm simulation exercises. TRAKLA2 supports automatic assessment and
provides a well-defined schema for programming new exercises. Our experience shows
that new exercises can be built with the same or less time and effort as with the old sys-
tem. However, the newly created exercises are fully visual and include visual algorithm
simulation functionality and visual model solutions. This is much better than the old text
based system. Moreover, TRAKLA2 provides automatic logging of data generated by
user interaction with the system and automatic submissions (Silvastiet al., 2004; Malmi
and Korhonen, 2004). Thus, gathering data from exercise sessions for research purposes
is easy.

Some other systems also incorporate visual algorithm simulation in exercises, such as
PILOT (Bridgemanet al., 2000) and SALA (Faltin, 2002). However, no others include



270 L. Malmi, V. Karavirta, A. Korhonen, J. Nikander, O. Seppälä, P. Silvasti

automatic assessment in terms of grading and storing submitted answers. Thus, these
systems are more suitable for formative rather than summative assessment. For example,

PILOT allows stepwise execution of graphalgorithms, but provides feedback only
on a single step at a time and does not log nor grade a learner’s work. Moreover, PILOT
only works with graph algorithms, whereas TRAKLA2 can be used for exercises on basic
data structures, sorting, searching, hashing and graph algorithms. In addition, TRAKLA2
supports both summative and formative assessment.

In the following sections, we describe the TRAKLA2 framework, its architecture and
the process of creating new exercises. We also present some observations on TRAKLA2
exercises that were used in data structures and algorithms courses at the Helsinki Uni-
versity of Technology with a total enrollment of over 1000 students in years 2003 and
2004. The system has also been used at the University of Turku in a course of over 100
students.

2. Overview of TRAKLA2

TRAKLA2 (Korhonenet al., 2003b) is a framework for automatically assessingvisual al-
gorithm simulation exercises (Korhonenet al., 2003a). The system provides a Java applet
that can display a variety of algorithms and data structures. TRAKLA2 also distributes
individually tailored tracing exercises to students and automatically evaluates answers to
the exercises. In visual algorithm simulation exercises, a learner directly manipulates the
visual representation of the underlying data structures to which the algorithm is applied.
The learner manipulates these real data structures through GUI operations with the pur-
pose of performing the same changes on the data structures that the real algorithm would
do. The answer to an exercise is a sequence of discrete states of data structures resulting
from application of the algorithm, and the task is to determine the correct operations that
will cause the transitions between each two consecutive states.

Let us consider the exercise in Fig. 1. The learner has started to manipulate the visual
representation of the Binary Heap data structure by invoking context-sensitivedrag-and-
drop operations. In the next step, for example, he or she can drag the key C from aStream
of keys into the left subtree of R in the binary heap. After that, the new key is sifted up via a
swap with its parent until the parental dominance requirement is satisfied (the key at each
node is smaller than or equal to the keys of its children). The swap operation is performed
by dragging and dropping a key in the heap on top of another key. In addition, the exercise
applet includes a push button for activating the Delete operation. TheDelete button is
applied in the second phase of the exercise to simulate the deleteMin operation. Of course,
there are several correct ways to heapify the tree while inserting or deleting a key, thus
the drag-and-drop operations can also be targeted to “empty keys”, and the deleteMin
operation does not have to start by removing the root node (but by swapping it with
the last node, in which case the delete should be targeted to the key at the last node).
Thus, the delete operation is performed by selecting the target node before pressing the
corresponding push button.



Visual Algorithm Simulation Exercise System with Automatic Assessment: TRAKLA2 271

Fig. 1. TRAKLA2 applet page and the model solution window.

An exercise applet is initialized with properrandomized input data. The binary heap
exercise, for example, is initialized with 15 alphabetic keys (Stream of keys), that do
not contain duplicates. This means that the exercise can be initialized in more than1019

different ways. The learner canreset the exercise by pressing the Reset button at any time.
As a result the exercise is reinitialized with new random keys.

After attempting to solve the exercise, the learner canreview the answer step by step
using theBackward andForward buttons. Moreover, the learner canask feedback on
his or her solution by pressing theGrade button in which case the learner’s answer is
checked and immediate feedback is delivered.The feedback reports the number of correct
steps out of the total number of required steps in the exercise.

Fig. 2 shows an example of the feedback report. After the exercise is attempted, it
is possible for the student tosubmit the answer to the course database using the Submit
button. By default an answer to an exercise can be submitted unlimited times; however,
a solution for a specific instance of exercise with certain input data can be submitted



272 L. Malmi, V. Karavirta, A. Korhonen, J. Nikander, O. Seppälä, P. Silvasti

Fig. 2. TRAKLA2 feedback window. A graded solution can be submitted to the course data base or one can
cancel it and try to solve the exercise again with new input data values.

only once. In order to resubmit a solution to the exercise, the learner has to reset the
exercise and start over with new randomized input data, that is, with a new instance of
the exercise. Thus, it is not possible to grade the same solution and improve it arbitrarily
before submitting it. However, TRAKLA2 also includes an option to create exercises,
where improving the solution to the same exercise instance is allowed. In these cases, the
number of allowed submissions is limited.

A highly important feature of TRAKLA2 is that a learner canexamine the model
solution of an exercise. It is represented as an algorithm animation so that the execution
of the algorithm is visualized step by step. In Fig. 1, the model solution window is opened
in the front. The states of the model solution can be browsed using theBackward and
Forward buttons. For obvious reasons, after opening the model solution for given input
data, a student cannot submit a solution until the exercise has been reset and resolved with
new random data. Moreover, if in the exercise set-up the number of allowed submissions
has been limited (the user continues operating on the same data), the model solution
feature should be disabled before the submission deadline for the exercise is over.

TRAKLA2 was brought into production use in spring 2003 at the Helsinki University
of Technology and at the University of Turku in 2004. The associated textual learning
material is organized around the exercises, and each exercise is described in one page.
Each TRAKLA2 exercise page (e.g., Fig. 1) consists of a description of the exercise, an
interactive Java applet, and links to other pages that introduce the theory and examples of
the algorithm in question. The current exercise set covers almost 30 assignments on basic
data structures, sorting, searching, hashing, and graph algorithms. The complete list of
exercises is included in the supplement of this article.

3. Frameworks

TRAKLA2 is based on the Matrix algorithm visualization, animation, and simulation
framework (Korhonen and Malmi, 2002). Matrix provides the following reusablefunda-
mental data types (FDT) to be used in the algorithm simulation exercises: arrays, linked
lists, common trees, binary trees, and graphs. Fundamental data types are generic types
which impose no semantic meaning on the data stored in them. Thus, they allow for prim-
itive manipulations of structures, for example, changing keys and pointer values without



Visual Algorithm Simulation Exercise System with Automatic Assessment: TRAKLA2 273

any constraints. However, the Matrix framework also provides an extensive library that
includes ready-made implementations for many basic data types and abstract data types
such as stacks and queues, search trees, and priority queues. Different implementations of
these abstract data types, for example, as binary search trees, AVL trees, or radix search
tries are calledconceptual data types (CDT). They can be applied to provide more func-
tionality to the simulation process.

The separation of concepts FDT and CDT clarifies both the design of the system itself
and the range of possible simulation operations. Thus, the environment is not limited to
supporting simple operations only (e.g., changing keys or manipulating pointers), but it
also allows ways to implement and call more abstract operations, such as an insertion into
an AVL tree or a deletion from a stack with single drag-and-drop operations. However,
at the base all CDTs are implemented by reusing the FDTs. Thus, raising the level of
abstraction requires no additional work what comes to the visualization, animation, or
simulation. Moreover, for all reusable FDTs above (and thus also for the CDTs), there
exist visual counterparts that enable the visualization and animation of a structure, as
well as its simulation. We refer to these visualizations asrepresentations.

TRAKLA2 heavily employs the different kinds of data structures and their repre-
sentations provided by Matrix. When creating a new exercise for TRAKLA2, one can
choose to (re)use any combination of the Matrix structures. For example, the exercise
class (ExerHeap) in Fig. 1 uses an array FDT to hold the keys to be inserted into the
heap, and the array implementation of the binary tree FDT to implement the actual binary
heap CDT. The array implementation of the binary tree can thus be represented on the
computer monitor as a tree or as an array. Thus, through reuse of these abstractions, the
programmer does not have to implement any graphical objects to have a particular repre-
sentation or GUI interaction, but he or she can concentrate entirely on implementing the
essential parts of the exercise (e.g., the functionality of the binary heap).

The layout for the representation can be adjusted to better suit the exercise. For exam-
ple, one can choose for the layout of the binary heap an array representation or a binary
tree representation, as depicted in the Fig. 1. Both representations can be displayed si-
multaneously, allowing dual views of interaction with the data structure at the same time,
if desired.

3.1. Creating New Exercises

As explained in Section 2, each TRAKLA2 exercise is placed on an exercise page in the
web with the exercise description, links to related information, and an exercise applet.
The applet is the same for all the exercises. Only a single Java class for each specific
exercise distinquishes among exercises.

The framework provides much flexibility over the implementation of an exercise. To
ensure that the original idea of the lecturer is conveyed into the implementation, the pro-
cess of creating an exercise is usually begun by writing a detailed description. Based on
this exercise manuscript, a programmer should be able to implement the exercise in Java
using the features and components of the TRAKLA2 system. The resulting Java class
defines the elements of the exercise byimplementing several Java interfaces.



274 L. Malmi, V. Karavirta, A. Korhonen, J. Nikander, O. Seppälä, P. Silvasti

In general, each constructed exercise defines the following elements:

1) initialized data structures employed in the exercise (e.g., array, binary tree);
2) names for the visual representations (e.g., “Stream of keys”, “Heap”);
3) the layouts for GUI component placements and for each visual representation;
4) an algorithm for creating the model solution for a problem instance with the speci-

fied initial values (as well as a simple method to return the corresponding learner-
made solution);

5) push buttons for the exercise, if required;
6) the allowed/disabled user interface operations for a representation (e.g., to deter-

mine whether it is allowed to drag and drop keys into the structure).

Each exercise is implemented as a Java class that minimally implements methods for
items 1, 2, and 4. In the following we give a class definition for the example exercise
discussed of Fig. 1.

ExerHeap is basically a class for a standard heap implementation that reuses and
extends the Matrix library components (FDTs and CDTs). The overhead that comes from
this approach is that instead of using the standard Java array type one must use the Matrix
VirtualArray class to store the binary heap. The following example contains just the
code needed to produce abinary heap exercise.

public class HeapInsertDelete extends AbstractSimulationExercise,
ButtonExercise, ConfigureVisualType {
private ExerHeap studentHeap ;
private String randomInput ;

Each exercise has randomized input values. Although our example exercise could
be initialized withany set of keys, an exercise may have special requirements for the
input values (for example, to avoid too trivial solutions). The values are therefore tailored
by a particular initialization algorithm. The framework supports easy input creation by
providing reusable methods for creating different kinds of input data structures as in the
example at hand. In this case, instructor’s manuscript of theBinary Heap (size= 15)
exercise (described in Table 1) allowed no duplicate keys. The method was thus built to
return a table (new Table(randomInput)) containing 15 different random keys to
be inserted into the initially empty binary heap (studentHeap).

public FDT[] init() {
randomInput = RandomKey.createNoDuplicateUppercaseRandomKey(

new java.util.Random(seed), 15);
studentHeap = new ExerHeap (15);
return new FDT[] { new Table(randomInput), studentHeap};

}

The data structures returned by the initialization routine (as well as the model so-
lution) are named by text strings returned by another method shown below. There also
exists a method for delivering some additional information to the learner in form of text.
In the heap exercise, it is left empty.



Visual Algorithm Simulation Exercise System with Automatic Assessment: TRAKLA2 275

public String[] getStructureNames() {
return new String[] { “Stream of keys”, “Heap” };

}

public String[] getModelAnswerNames() {
return new String[] { “Binary Heap” };

}

public String getDescription() {
return ” ” ;

}

An implementation for the algorithm in question is essential for two reasons: to check
the learner’s answer, and to produce the model solution as an algorithm animation. In
this example, the algorithm uses the insertion and deletion routines that are already im-
plemented in theExerHeap class. These are just the standard implementations for ma-
nipulating a binary heap. The followingsolve method returns the model solution for
this exercise by invoking theinsert method for each key to be inserted and thereafter
performing adeleteMin three times. Each method invocation is encapsulated between
the annotated animator operations that define the boundaries of the animation steps, ef-
fectively setting the granularity of the animation. After thesolve method is run the
animator contains an animation sequence that can be traversed backward and forward.
Moreover, in each animation step the binaryheap can be visualized for the learner, if
he/she has requested to see the model solution.

public FDT[] solve() {
ExerHeap modelAnswer = new ExerHeap(15);
Animator animator = Animator.getActiveAnimator();
Table tbl = new Table(randomInput);

// First we insert all keys to the heap
for (int i = 0; i < tbl.size(); i++) {
animator.startOperation();
modelAnswer.insert(tbl.getObject(i));
animator.endOperation();
}
// Then we perform 3 deleteMin/Max operations to the heap
for (int i = 0; i < 3; i++) {
animator.startOperation();
modelAnswer.deleteMin();
animator.endOperation();
}
return new FDT[] { modelAnswer };

}

In constrast to the old TRAKLA system,there is no need to implement a checking
algorithm that evaluates solutions to an exercise. This is because TRAKLA2 evaluation
is based on running the implemented algorithm and comparing the model answer step
by step with the simulation sequence generated by the learner. Thus, TRAKLA2 only



276 L. Malmi, V. Karavirta, A. Korhonen, J. Nikander, O. Seppälä, P. Silvasti

requires the structures manipulated by the learner be returned when the learner requests
grading2.

public FDT[] getAnswer() {
return new FDT[] { studentHeap };

}

Drag-and-drop operations may not be suitable for all kinds of data structure manipu-
lations. For example, in the binary heap exercise the deleteMin operation is performed by
selecting the root node and pressing the Delete button depicted in Fig. 1. The following
two methods can be applied to gain such functionality.

public String[] buttonNames() {
return new String[] { ”Delete” };

}

public String[] buttonCommands() {
return new String[]

{ ”reflectSelectedVisualType(reflectEDT(deleteRoot))” };
}

The Matrix framework allows various user interface operations on the data structure
representations. Therefore, it is important to define which operations are enabled and
which are disabled for each structure in aTRAKLA2 exercise. For example, in Fig. 1,
the task of the learner is to drag and drop keysfrom the array representing the stream
of keysinto the binary heap. Therefore, dragging keys from the table must be enabled,
while dropping a key into the table must be disabled. The operations that can be enabled
(or disabled) for each visual representation include: dragging the component, dropping
the component, highlighting a component as the cursor is moved over it, and whether a
popup menu can be opened upon the component.

public VisualTypeConf[] conf() {
VisualTypeConf table = new VisualTypeConf();
table.enable(”matrix.visual.VisualKey”,

VisualTypeConf.HIGHLIGHT_OPERATION);
table.enable(”matrix.visual.VisualKey”,

VisualTypeConf.DRAG_OPERATION);
VisualTypeConf tree = new VisualTypeConf();
tree.enable(”matrix.visual.VisualKey”,

VisualTypeConf.HIGHLIGHT_OPERATION);
tree.enable(”matrix.visual.VisualKey”,

VisualTypeConf.DROP_OPERATION);
tree.enable(”matrix.visual.VisualKey”,

VisualTypeConf.DRAG_OPERATION);
tree.enable(”matrix.visual.VisualKey”,

VisualTypeConf.POP_UP_MENU_OPERATION);
tree.enable(”matrix.visual.VisualLayeredTreeComponent”,

VisualTypeConf.HIGHLIGHT_OPERATION);

2Providing a checking algorithm is possible in caseswhere the validity of the learner’s answer cannot be
evaluated in the way just described. For example, in the Faulty Binary Search Tree exercise the given checking
algorithm confirms that the student has managed to create an inconsistent state of the tree with the faulty tree
operations.



Visual Algorithm Simulation Exercise System with Automatic Assessment: TRAKLA2 277

tree.enable(”matrix.visual.VisualLayeredTreeComponent”,
VisualTypeConf.DROP_OPERATION);

return new VisualTypeConf[] { table, tree };
}

Finally, the TRAKLA2 exercise framework provides several functions that the exer-
cise programmer does not need to know about. For example, it does not matter whether
the example exercise is created only for trying things out or whether it is a compulsory
exercise on which student performance is collected. In both cases the exercise class de-
fined above would remain unchanged. An exercise can bepublished by adding it into a
web page using a Java applet provided with the framework. These issues are discussed
further in Section 4.

4. Learning Environment

All TRAKLA2 exercises are presented as applets that are merely user interfaces for algo-
rithmic exercises. The applet must be published by embedding it into a web page, which
contains the description of the assignment. In order to do this we have implemented a
completelearning environment around the TRAKLA2 exercises. This is a dynamic web-
based environment in which learners can solve exercises. The environment stores learn-
ers’ exercise results, and it allows learners to keep track of their progression and to access
additional material on the exercises.

4.1. Architecture

The general architecture of the learning environment is presented in Fig. 3. The environ-
ment consists of three independent modules: theRMI-server, theWWW-server and the
database. Furthermore, the system writes severallog files.

Fig. 3. Architecture of the TRAKLA2 learning environment.



278 L. Malmi, V. Karavirta, A. Korhonen, J. Nikander, O. Seppälä, P. Silvasti

The WWW-server is the heart of the system. It takes care of session handling, creation
of dynamic web pages (including the exercise pages), initialization of the TRAKLA2
exercise applets, and storing the learners’ results into the database. The WWW-server
also handles all communication between different modules of the system.

The web environment is created using Tapestry (Apache Software Foundation, 2004),
and Jetty (Mort Bay Consulting, 2004). Tapestry is a Java-based framework that allows
for easy creation of dynamic web applications. The Tapestry engine runs over the Jetty
web-server, which includes a servlet-engine as required by the Tapestry framework. The
Jetty web-server is also Java-based, making the whole learning environment Java-based.

The Tapestry engine hides most of the unpleasant technical details required to run
the learning environment. For example, it automatically handles the session control. Dy-
namic web pages are created from simple templates with the help of some Java code. The
page templates are HTML pages including some Tapestry-specific tags that are expanded
to more complex HTML definitions by the engine. All the Java code required for the cre-
ation of a single web page resides in a separate class file, which is linked to the HTML
template by Tapestry. TRAKLA2 applets are initialized using one page template, which
automatically includes all parameters required to run the exercise applet.

The RMI-server is a rather simple module that handles the communication between
the TRAKLA2 exercise applets and the environment. The applet and the server commu-
nicate using Java’s Remote Method Invocation (Sun Microsystems Inc, 2003) protocol.
The TRAKLA2 applet connects to the RMI-server when it is initialized, and the server
passes the applet a random seed for creating the randomized input data for the exercise.
Moreover, the RMI-server also receives the learners’ results. When a learner submits his
or her answer, the RMI-server stores the solution as serialized Java objects. The points
earned by the learner when a submission is graded are sent to the WWW-server using
XML Remote Procedure Call (XML-RPC) (UserLand Software, 2003) protocol. Finally,
the RMI-server also logs the data of the user interface operations the learner performs in
the applet. This will be explained in more detail in Section 4.3.

All the data needed by the system is stored in a database that only the WWW-server
accesses. The database contains user information, the results of learner’s submissions, and
information on the courses (exercises, deadlines, maximum points, grade limits, etc.). The
database runs on a PostgreSQL server. The communication between the WWW-server
and the database uses Java Database Connectivity (JDBC).

4.2. Using the System

When a learner starts to use the system, he/she is required to log in before accessing the
exercises. Currently learners are assumed to be students,each having a uniquestudent
identification number. The identification of users also provides necessary data for session
control.

After logging in the learner is directed to the main page, where he/she can view the
active course or courses in which he/she is registered. If the learner is not registrated
for any course, he/she is taken to the registration page. After registration the learner is
directed to the main page.



Visual Algorithm Simulation Exercise System with Automatic Assessment: TRAKLA2 279

On the main page (see Fig. 4) learners are shown the current status of his/her courses:
points gained from each exercise, the totalpoints gained from all exercises, the grade
awarded with current points, and the state ofeach exercise. Each exercise has one of the
three possible states. Exercises which the learner has not yet submitted are marked as
“not started”, the exercises the learner has submitted but has not received full points for
are marked “started”, and the exercises the learner has received full points for are marked
“completed”. The status of each exercise is shown by coloring the link to the exercise
with a different color. Furthermore, eachexercise is either open (the deadline has not
passed yet) or closed (the deadline has passed). By default the learner can return closed
exercises, but cannot receive any points for them.

From the main page a learner can select exercises. Each exercise is opened on its
own page, which includes the exercise description, a link to available material, and the
exercise applet itself. There are also navigation links to previous and next exercises as
well as a link to return to the main page.

Fig. 4. Main page of the learning environment.



280 L. Malmi, V. Karavirta, A. Korhonen, J. Nikander, O. Seppälä, P. Silvasti

4.3. Monitoring Students Performance

In general, the graphical user interface of TRAKLA2 exercises is fairly simple. All basic
operations – initialization of the exercise, opening the model answer, grading and sub-
mission – are the same in each exercise. The solutions are always defined in terms of
algorithm simulation operations, i.e., by through manipulation of visual representations
of data structures. The uniformity and simplicity of the user interface raises the possibil-
ity of collecting statistical data from the learner’s interactions with the interface to better
understand how learners interact with the system (Silvastiet al., 2004).

The technical solution for collecting data is based on creating Java objects corre-
sponding to the user interface operations. The objects are sent to a server through the
Java RMI protocol. The server saves basic information of the log entries into a text file
that is easy to analyze. A log entry is saved each time the applet is initialized, the model
answer window is opened or closed, and the exercise is graded or reset. The entry con-
tains a timestamp, course id, exercise id, student’s identification id, and the name of the
operation performed. A log entry is also saved each time the student is idle over 60 sec-
onds, and when the idle time ends in a user interface operation. For each grade operation
a snapshot dump of student’s answer, which is a sequence of data structure states, is saved
as a serialized Java object.

5. Experiences and Discussion

TRAKLA2 exercises were used for the first time in the basic data structures and algo-
rithms courses at Helsinki University of Technology (HUT) in spring 2003. There were
two versions of the course, one for CS majors and one for students of other engineering
curricula. The system was used in parallel with the old TRAKLA system so that in total
14 TRAKLA2 exercises and 24 TRAKLA exercises were used in both courses. In 2004
only TRAKLA2 was used and the total number of exercises was 26. During these two
years more than 1000 students used the system. In 2004, the University of Turku (UTU)
also adopted TRAKLA2 for their data structure course with more than 100 students. In all
of these courses TRAKLA2 exercises were a compulsory part of the course, and grading
points achieved from the exercises had an effect on the final grade of the courses.

As a whole the system has worked well with surprisingly good results. In 2004 30% of
the students at HUT achieved the maximum number of points for all of the 26 exercises,
and 55% achieved at least 90% of the maximum. Only 15% of the students failed to get
the required minimum of 50% of the points;in practice these were students who dropped
the whole course early. At UTU the results were even better, even though they had never
used the TRAKLA system before.

Students’ opinions of the system were determined through a web-based survey at
the end of the HUT course in 2003. 364 students answered. Their attitude towards the
system was very positive: 94% of the students thought that the system was very easy
to use. In addition, they considered the system a good learning aid: only 1% thought



Visual Algorithm Simulation Exercise System with Automatic Assessment: TRAKLA2 281

that the feedback provided by TRAKLA2 was not useful, and only 3% did not get any
help from the model solutions. Moreover, 96% of the students thought that the visual
representations of the data structures were fairly logical or very logical. Finally, 80%
gave an overall grade of 4 or 5 to the system in scale 0–5, where 5 was the best grade.
The feedback questionnaire for the UTU course in 2004 had different questions, but the
message was totally in line with the results at HUT. Students liked the system very much
and considered it useful for learning.

There were, however, some technical problems. First, the TRAKLA2 applet requires
a Java 2 compatible browser, and it appeared that in 2003 many popular browsers did not
support Java 2 well enough. The problem was reduced in 2004. However, even though
all HUT students were not able to get TRAKLA2 working on their home computers,
they were able to use the system in the computer classrooms at HUT, where TRAKLA2
worked well. Second, the communication between the TRAKLA2 applet and the server
did not work if there was a firewall blocking traffic on certain TCP ports at the client side.
This problem appeared only in cases where the student was trying to use TRAKLA2 at
his or her place of work. The security policy of acompany firewall is usually stricter than,
for example, at universities, libraries, and homes.

5.1. Data Logging

The data logging feature that is invisible to the exercise programmer is also very promis-
ing. We have gathered detailed information about the use of the applet and the model
solutions, including how much time a student spends on an exercise. This can be used to
test or verify hypotheses about the difficultiness of exercises, and to find out which phases
in the algorithms students find the most difficult. This allows us to direct the instruction
better to the actual needs. In this paper we do not present detailed results of our observa-
tions, but only point out with some sample cases what kind of information is possible to
get through the logging facility.

The number of performed GUI operations (i.e., resets, gradings, submissions, model
solution calls) provides information about the relative difficulty of the exercises. For ex-
ample, Fig. 5 highlights the differences among average number of performed operations
for some of the exercises in 2004. The error bars denote the 95% confidence range. The
six exercises correspond to one round of exercises in the course. Usually the students also
did their exercises in this particular order. The first two exercises (how binary and inter-
polation search algorithms proceed in a sorted array) were very similar in their look and
feel, as well as the following three exercises (the order in which the nodes are traversed
in a binary tree using different traversal algorithms). The last exercise dealt with preorder
traversal in a binary tree but required showing the contents of the auxiliary stack, which
complicated the exercise considerably.

At the first glance, the resuls may seem suprising. For example, binary search seems
more difficult than interpolation search and there are big differences between the traversal
algorithms. Therefore care must be taken to interpret the results. The largest differences
appear with the number of initializations. This is, however, strongly connected to the



282 L. Malmi, V. Karavirta, A. Korhonen, J. Nikander, O. Seppälä, P. Silvasti

Fig. 5. Average operation numbers in different exercises. The sample sizes and error bars are included in the
chart.

look and feel of the exercise. Students take their time to familiarize, how the exercises
should be technically solved, i.e., which operations are needed and how they are carried
out. Therefore they are likely to Reset a newtype of exercise a few times before actually
solving it. This can be clearly seen in the notable difference between the average numbers
of initializations and gradings for the first exercise in each set of new types of exercises
(i.e., exercises binary search, in order traversal and preorder traversal with stack). When
the user interface of the exercise is better known, students concentrate readily on solving
the exercise.

The relative difficulty of the exercises is better observed from the number of model
solution activations. For example, for interpolation search model solutions are requested
more ofhen than with binary search. For the traversal algorithms, when the students have
grasped the general principle involved, the average number of gradings, as well as the
correspoding need for viewing the model solution decreases. In other words, if you get
the full points in the first trial, there is no point in viewing the model solution.

We did a much more elaborated survey (Torvinen, 2003) of the data on exercises in
2003 to better understand the results. We found out that the following information was
consistently in line: how many times students had graded the solution, maximum points
of the exercises they had received, the totaltime (excluding idle time) they had used for
the exercises, and how many idle time stamps were recorded for the exercise. Thus, we
could clearly see that insertions into red-black trees and AVL trees were the most difficult
exercises among search trees (most gradings, least maximum points, most total time, and
idle time used). Some more detailed results can be found in (Malmi and Korhonen, 2004).

The model solution is an animation that consists of a discrete sequence of visual snap-
shots of data structure states. The learnercan browse the animation back and forth using
the backward and forward buttons as depicted in Fig. 1. Fig. 6 shows the number of visits



Visual Algorithm Simulation Exercise System with Automatic Assessment: TRAKLA2 283

Fig. 6. The counts of students’ visits in each state of the model solution animation of the heap insertion algorithm
exercise. The learner has to perform 15 insertions and 3 deleteMin-operations.

in each state of the model solution in the binaryheap exercise. The learner is to insert 15
keys into an initially empty binary heap and perform 3 deleteMin operations after that.
The figure confirms the assumption that the deleteMin-operation is more difficult to un-
derstand than the insert operation. This is seen in that the steps among delete operations
at the end of the model answer are viewed more often than the other states. The sample
is taken from 73 students that looked at the model solution an average of 1.9 times.

6. Conclusion

As a whole, we argue that TRAKLA works well. Student response has been positive.
Moreover, the implementation work on the exercises using the new framework has been
quite straightforward. Although the exercises include visual manipulation of complex
data structures, allow for automatic assessment, and provide model solutions as interac-
tive algorithm animations, the work required to implement a new exercise was typically
2–3 workdays for a competent Java programmer if the exercise was initially clearly de-
fined. A very important issue here is that the exercise programmer needs to have no deep
knowledge about the Matrix framework. Knowing the basic concepts and interfaces is
enough.

Actually the most challenging part has been designing the exercise specification
manuscript: what kind of operations should be provided for the student in each case,
which data structures – especially auxiliary data structures – should be shown on the
screen, and what operations can be invoked for each data structure. For example, design-
ing the quicksort exercise with a recursion stack was quite tricky. Several versions of the



284 L. Malmi, V. Karavirta, A. Korhonen, J. Nikander, O. Seppälä, P. Silvasti

exercise were implemented before we were satisfied with the overall user interface for
the exercise.

The data logging facility has already proven its worth. We now have a tool which pro-
vides excellent opportunities to research students’ learning processes, as we can monitor
their work in many ways. This research is still in its formative stage. Finally, we note
that such data logging might cause ethical problems if results on individuals were pub-
lished. This should never be done. Such research results should be purely statistical and
anonymous.

Acknowledgements

We thank Pekka Mård, Harri Salonen, Kimmo Stålnacke and Petri Tenhunen for design-
ing and implementing major parts of the TRAKLA2 framework and the exercises. We
also thank Rocky Ross for many valuable comments on the language of this paper.

References

Apache Software Foundation (2004).Tapestry – Java Framework for Creating Web Applications.
http://jakarta.apache.org/tapestry/

Benford, S., E. Burke, E. Foxley, N. Gutteridge and A.M. Zin (1993). Ceilidh: A course administration and
marking system. InProceedings of the 1st International Conference of Computer Based Learning. Vienna,
Austria.

Boroni, C.M., T.J. Eneboe, F.W. Goosey, J.A. Ross and R.J. Ross (1996). Dancing with Dynalab. In27th
SIGCSE Technical Symposium on Computer Science Education. ACM, pp. 135–139.

Bridgeman, S., M.T. Goodrich, S.G. Kobourov and R. Tamassia (2000). PILOT: An interactive tool for learning
and grading. InThe Proceedings of the 31st SIGCSE Technical Symposium on Computer Science Education.
ACM, pp. 139–143.

Faltin, N. (2002). Structure and constraints in interactive exploratory algorithm learning. In S. Diehl (Ed.),
Software Visualization: International Seminar. Springer, Dagstuhl, Germany, pp. 213–226.

Higgins, C., P. Symeonidis and A. Tsintsifas (2002). The marking system for CourseMaster. InProceedings of
the 7th Annual SIGCSE/SIGCUE Conference on Innovation and Technology in Computer Science Education.
ACM, pp. 46–50.

Hyvönen, J., and L. Malmi (1993). TRAKLA – a system for teaching algorithms using email and a graphical
editor. InProceedings of HYPERMEDIA in Vaasa. pp. 141–147.

Jackson, D., and M. Usher (1997). Grading student programs using ASSYST. InProceedings of 28th ACM
SIGCSE Technical Symposium on Computer Science Education. ACM, pp. 335–339.

Korhonen, A. (2003).Visual Algorithm Simulation. Doctoral thesis. Helsinki University of Technology, Labo-
ratory of Information Processing Science, Report TKO-A40.

Korhonen, A., and L. Malmi (2000). Algorithm simulation with automatic assessment. InProceedings of the
5th Annual SIGCSE/SIGCUE Conference on Innovation and Technology in Computer Science Education.
ACM, pp. 160–163.

Korhonen, A., and L. Malmi (2002). Matrix – Concept animation and algorithm simulation system. InProceed-
ings of the Working Conference on Advanced Visual Interfaces. ACM, pp. 109–114.

Korhonen, A., L. Malmi and P. Silvasti (2003a). TRAKLA2: a framework for automatically assessed visual
simulation exercises. InProceedings of the Third Finnish/Baltic Sea Conference on Computer Science Edu-
cation. pp. 48–56.

Korhonen, A., L. Malmi, P. Silvasti, J. Nikander, P.Tenhunen, P. Mård, H. Salonen and V. Karavirta (2003b).
TRAKLA2.
URL: http://www.cs.hut./Research/TRAKLA2/



Visual Algorithm Simulation Exercise System with Automatic Assessment: TRAKLA2 285

Luck, M., and M. Joy (1999). A secure on-line submission system.Software – Practice and Experience, 29(8),
721–740.

Malmi, L., and A. Korhonen (2004). Automatic feedback and resubmissions as learning aid. InProceedings of
4th IEEE International Conference on Advanced Learning Technologies, ICALT’2004. IEEE,pp. 186–190.

Malmi, L., A. Korhonen and R. Saikkonen (2002). Experiences in automatic assessment on mass courses and
issues for designing virtual courses. InProceedings of the 7th Annual SIGCSE/SIGCUE Conference on
Innovation and Technology in Computer Science Education, ITiCSE’02. ACM, pp. 55–59.

Mort Bay Consulting (2004).Jetty – Web Server & Servlet Container.
http://www.mortbay.org/jetty/

Ross, R.J., and M.T. Grinder (2002). Hypertextbooks: animated, active learning, comprehensive teaching and
learning resource for the web. In S. Diehl (Ed.),Software Visualization: International Seminar. Springer,
Dagstuhl, Germany, pp. 269–283.

Saikkonen, R., L. Malmi and A. Korhonen (2001). Fully automatic assessment of programming exercises. In
Proceedings of the 6th Annual SIGCSE/SIGCUE Conference on Innovation and Technology in Computer
Science Education, ITiCSE’01. ACM, pp. 133–136.

Silvasti, P., L. Malmi and P. Torvinen (2004). Collecting statistical data of the usage of a web-based educa-
tional software. InProceedings of the IASTED International Conference on Web-Based Education. IASTED,
pp. 107–110.

Stasko, J.T. (1991). Using direct manipulation to build algorithm animations by demonstration. InProceedings
of Conference on Human Factors and Computing Systems. ACM, USA, pp. 307–314.

Sun Microsystems Inc. (2003).Java Remote Method Invocation specification.
Available at: http://java.sun.com/j2se/1.4/docs/guide/rmi/spec/rmiTOC.html)

Torvinen, P. (2003). Tilastollinen analyysi algoritmisten harjoitustehtäväsovelmien käytöstä (in Finnish, Statis-
tical analysis of usage of algorithmic exercise applets). Helsinki University of Technology, Finland.

UserLand Software (2003).XML-RPC specification.
Available at: http://www.xmlrpc.com/spec

Vihtonen, E., and E. Ageenko (2002). Viope-computer supported environment for learning programming lan-
guages. InThe Proceedings of Int. Symposium on Technologies of Information and Communication in Edu-
cation for Engineering and Industry (TICE2002). Lyon, France, pp. 371–372.



286 L. Malmi, V. Karavirta, A. Korhonen, J. Nikander, O. Seppälä, P. Silvasti

Supplement: TRAKLA2 Exercises
Table 1

The visual algorithm simulation exercises in TRAKLA2system. The column name describes the topic and the
description characterizes the exercise. The roman numbers (i–iv) indicate the separate exercises and the number
of sub-topics.

Name Description

Insertion into (i) Binary search tree
and (ii) Digital search tree

The learner is to insert random keys into an initially empty search
tree by dragging and dropping the keys into the correct positions.

Binary search tree deletion The learner is to remove 4 keys from a binary search tree.

Faulty Binary Search Tree The learner is to show how to bring the following binary search
tree in an inconsistent state: duplicates are allowed and inserted
into the left branch of an equal key, but the deletion of a non-leaf
node relabels the node as its successor.

AVL tree (i) insertion,
(ii) single rotation, and
(iii) double rotation

The learner is to (i) insert 13 random keys into an initially empty
AVL-tree. The tree (i–iii) has to be balanced by rotations. The rota-
tion exercises (ii–iii) require pointer manipulation, while the inser-
tion exercise (i) provides push buttons to perform the proper rota-
tion at the selected node.

Red-black-tree insertion The learner is to insert 10 random keys into an initially empty Red-
Black-tree. The color of the nodes must be updated and the tree
must be balanced by rotations.

BuildHeap algorithm The learner is to simulate the linear time buildheap algorithm on 15
random keys.

Binary heap insertion and delete
min

The learner is to a) insert 15 random keys into a binary heap and
b) perform three deleteMin operations while preserving the heap
order property (see Fig. 1).

Sequential search: (i) Binary
search, and (ii) Interpolation search

The task is to show which keys the algorithm visits in the given
array of 30 keys by indicating the corresponding indices.

Tree traversal algorithms: (i) pre-
order, (ii) inorder, (iii) postorder,
and (iv) level order

The learner is to show which keys in a tree the algorithm visits by
indicating the keys in the required order.

Preorder tree traversal with stack The learner is to simulate how the stack grows and shrinks during
the execution of the preorder algorithm on a given binary tree.

Fundamental Graph algorithms:
(i) Depth First Search, and
(ii) Breadth First Search

The learner is to visit the nodes in the given graph in DFS, and BFS
order.

Minimum spanning tree algo-
rithms: Prim’s algorithm

The learner is to add the edges into the minimum spanning tree in
the order that Prim’s algorithm would do.

Shortest path algorithms: Dijkstra’s
algorithm

The learner is to add the edges to the shortest paths tree in the order
that Dijkstra’s algorithm would do.

Open addressing methods for hash
tables: (i) linear probing,
(ii) quadratic probing, and
(iii) double hashing

The learner is to hash a set of keys (10–17) into the hash table of
size 19.

Sorting algorithms: (i) Quicksort,
and (ii) Radix Exchange sort

The learner is to sort the target array using the given algorithm.



Visual Algorithm Simulation Exercise System with Automatic Assessment: TRAKLA2 287

L. Malmi is a professor of computer science in Helsinki University of Technology
(HUT). He received his Doctor of Technology diploma in HUT in 1997. His main re-
search area is computer science education including software visualization, automatic
assessment, new educational methods, and evaluating how they improve learning.

V. Karavirta is a MSc student at Helsinki University of Technology. He has worked as
a research assistant in the Matrix project forover two years. His research interests are in
data structure and algorithm visualization and web-based learning environments.

A. Korhonen is a researcher at Helsinki University of Technology (HUT). He received
his DSc (computer science) in 2003 at HUT. His research includes data structures and
algorithms in software visualization, various applications of computer aided learning en-
vironments, and automatic assessment in computer science education.

J. Nikander is a MSc student at Helsinki University of Technology. He has worked as
a research assistant in the Matrix project for three years, and has been assisting on the
introductory data strctures and algorithms course during this time. His research interests
are in data structures and algorithm visualization, and he is currently working with his
master’s thesis on the administrator’s interface to the TRAKLA2 environment.

O. Seppäläis a researcher and a DSc student at Helsinki University of Technology. His
research interest lies with the use of automatic program visualization and debugging tools
in CS education.

P. Silvasti is a DSc student at Helsinki University of Techonology (HUT). He received
his MSc (computer science) in 2003. His research interests are in educational technology
for computer science education.



288 L. Malmi, V. Karavirta, A. Korhonen, J. Nikander, O. Seppälä, P. Silvasti

Algoritmavimo užduoči ↪u automatinio vertinimo simuliacinė sistema
TRAKLA2

Lauri MALMI, Ville KARAVIRTA, Ari KORHONEN, Jussi NIKANDER,
Otto SEPPÄLÄ, Panu SILVASTI

Interaktyvumas bei gr↪ižtamasis ryšys yra esminiai veiksniai, grindžiantys mokymosi proces↪a.
Per pastar↪aj↪i dešimtmet↪i buvo sukurta nemaža automatinio vertinimo ir gr↪ižtamojo ryšio sistem↪u,
skirt ↪u informatikai ar informacini↪u technologij↪u dalykams mokyti. Šiame straipsnyje supažindi-
nama su nauja sistema – TRAKLA2, skirta interaktyviam algoritm↪u simuliavimui ir interaktyvioms
užduotims kurti. Užduotys, sukurtos naudojantis TRAKLA2, pateikiamos kaip mokymosi objektai,
kurie suteikia studentams duomen↪u strukt̄ur ↪u koncepcin↪e vizualizacij↪a ir leidžia imituoti pateikt↪u
algoritm ↪u funkcionavim↪a. Sukurtoji sistema turi automatin↪i gr ↪ižtam↪aj↪i ryš↪i, be to pripaž↪ista atsi-
tiktines ↪ivedimo reikšmes, pateikiamas vertinant, bei pati vertina student↪u sukurt↪u algoritm↪u simu-
liacinius fragmentus. Sistema turi ir automatin↪i sprendim↪u generavim↪a, pateikiam↪a kaip algoritm↪u
animacij↪a, taip pat registruoja statistinius duomenis, susijusius su interaktyvumu. Sistema išbandyta
dviejuose Suomijos universitetuose su daugiau nei 1000 student↪u. Student↪u atsiliepimai buvo itin
palank̄us.


