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Abstract

Centrality analysis determines the importance of ver-
tices in a network based on their connectivity within
the network structure. It is a widely used technique
to analyse network-structured data. A particularly
important task is the comparison of different central-
ity measures within one network. We present three
methods for the exploration and comparison of cen-
trality measures within a network: 3D parallel coor-
dinates, orbit-based comparison and hierarchy-based
comparison. There is a common underlying idea to all
three methods: for each centrality measure the graph
is copied and drawn in a separate 2D plane with ver-
tex position dependent on centrality. These planes
are then stacked into the third dimension so that
the different centrality measures may be easily com-
pared. Only the details of how centrality is mapped
to vertex position are different in each method. For
3D parallel coordinates vertices are placed on vertical
lines; for orbit-based comparison vertices are placed
on concentric circles and for hierarchy-based compar-
ison vertices are placed on horizontal lines. The sec-
ond and third solutions make it particularly easy to
track changing vertex-centrality values in the context
of the underlying network structure. The usability
of these methods is demonstrated on biological and
social networks.

Keywords: network analysis, centralities, visualisa-
tion, graph drawing, biological networks, social net-
works.

1 Introduction

Network analysis methods support the study of struc-
tural properties in networks. One important method
is centrality analysis which determines the relative
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importance of vertices in a network based on their
connectivity within the network structure. It is par-
ticularly useful in analysing social and biological net-
works. In social network analysis, a methodology
which uses graph-theoretic concepts to analyse and
understand the structure and behaviour of social net-
works (Wasserman & Faust 1994), centrality is a well
known individual-level network analysis method. It
measures the importance or prominence of the actors
in a social network. For instance, in a research collab-
oration network, one can identify the most prominent
and influential researchers in a particular research
area. In a citation network, one can identify the most
important and influential papers as cited by other sci-
entists.

In the life sciences centrality measures help scien-
tists to understand the underlying biological processes
and have been successfully applied to different bio-
logical networks. Central vertices in protein-protein
interaction networks are often functionally impor-
tant and the removal of such vertices is related to
lethality (Jeong, Mason, Barabási & Oltvai 2001).
In metabolic networks metabolites with highest de-
gree, i.e. with the highest number of neighbours, may
belong to the oldest part of the metabolism (Fell
& Wagner 2000) and are main metabolites in well-
known pathways (Wuchty & Stadler 2003). Closeness
centrality, a centrality that ranks vertices depending
on the sum of their shortest paths to all other vertices
is another method for identifying central metabolites
in metabolic networks (Ma & Zeng 2003). Wuchty
and Stadler applied different types of centralities to
metabolic, protein-protein-interaction and domain-
sequence networks to identify central network ele-
ments (Wuchty & Stadler 2003).

There are many different centrality mea-
sures (Bonacich 1972, Freeman 1977, Freeman
1979, Freeman, Borgatti & White 1991, Koschützki,
Lehmann, Peeters, Richter, Tenfelde-Podehl &
Zlotowski 2005, Newman 2003, Wasserman &
Faust 1994) which can be used to analyse networks,
and choosing the “right” measure for a specific
problem is usually a difficult task. For example,
in biological networks correlations between specific
centrality measures and functionally important prop-
erties have been shown for some networks (Jeong
et al. 2001, Wuchty & Stadler 2003). However, it has
also been shown that the degree of a vertex alone
is not sufficient to distinguish lethal proteins from
viable ones (Wuchty 2002); that in protein networks
there is no relation between network connectivity and
robustness against amino-acid substitutions (Hahn,
Conant & Wagner 2002); that different centrality
measures for metabolic networks identify different
sets of central metabolites (Ma & Zeng 2003); and



that for biological network analysis several centrality
measures have to be considered (Koschützki &
Schreiber 2004, Wuchty & Stadler 2003). Further-
more, usually there is not enough data about the
functional properties of network elements available to
determine “good” centrality measures and centrality
analysis is often used to simply explore a biological
network to discover potentially important parts. A
common approach to analysing such networks is
therefore to compare different centralities within one
network, build a hypothesis concerning discovered in-
teresting “central” elements and test this hypothesis
by experimental approaches.

In Table 1 and Figures 1 and 2 typical methods
for the comparison of different centrality measures
are shown using a protein-protein interaction (PPI)
network as an example: correlation (Kendall’s corre-
lation coefficient τ), scatterplot and parallel coordi-
nates (Inselberg & Dimsdale 1990). This PPI net-
work is based on Mus musculus (mouse) data from
the DIP-database (Salwinski, Miller, Smith, Pettit,
Bowie & Eisenberg 2004), release 26-01-2005 and
shows the largest connected component of the net-
work.

Ce Cc Cλ Cd Cr

eccentricity closeness eigen- degree rwbet-

vector weenness

Ce 1.00000 0.85319 0.52707 0.35398 0.36017
Cc 0.85319 1.00000 0.58717 0.42786 0.46054
Cλ 0.52707 0.58717 1.00000 0.44396 0.43527
Cd 0.35398 0.42786 0.44396 1.00000 0.74693
Cr 0.36017 0.46054 0.43527 0.74693 1.00000

Table 1: Kendall’s correlation coefficient τ for the
centrality ranks of the M. musculus PPI-network

Figure 1: Scatterplot matrix of the centrality rank of
the Mus musculus PPI-network. To the right and top
of each square are vertices with high centrality. The
different centrality measures used in this example are
explained in Section 2

These commonly used methods for comparing cen-
tralities in biological networks have several disadvan-
tages. Correlation coefficients only describe how well
different centrality measures correlate without show-
ing which parts of the networks are similar or dif-

Figure 2: Parallel coordinates of the centrality rank
for the same PPI network analysed in Figure 1

ferent. Scatterplots and parallel coordinates allow
the comparison of the centrality of single vertices and
show a general trend in correlation, but it is difficult
to investigate larger sets of vertices even if colours
are used. Furthermore, such methods do not support
the investigation of the network structure to explore,
for example, the distribution of centrality values or to
find clusters of vertices with high centrality.

There are several approaches supporting such a
structure-centred analysis. Centrality values of ver-
tices can be visualised using the size of the vertices
or by constraining their positions to fixed distances
from the centre or the bottom of the drawing, see for
example the Visone (Brandes & Wagner 2004) and
Pajek systems (Batagelj & Mrvar 2004). To compare
different centrality measures within one network such
methods could be combined, e.g. by representing one
centrality with different vertex sizes and another cen-
trality with the positions of the vertices constrained to
centrality-dependent distances from the centre. How-
ever, this solution is restricted to the comparison of
only a few centralities. Further on, it does not show
very well how the centrality value of a vertex changes
from one centrality measure to the next.

The exploration and comparison of different cen-
tralities within one network is important, however,
existing methods inefficiently support such tasks.
This paper deals with three methods to assist scien-
tists in the exploration and comparison of centrality
measures within a single network. These three meth-
ods are based on a common underlying idea: for each
centrality measure the graph is copied and drawn in
a separate 2D plane such that the vertex positions
depend on their centrality values. These planes are



then stacked into the third dimension. If the central-
ity value of a vertex does not change its position in the
next plane with respect to the position in the previous
plane it is stable. Changes of centrality values can be
additionally emphasised by edges between the planes.
The result is that different centrality measures can be
easily compared.

This general idea of stacking 2D network infor-
mation into the third dimension, also called 21

2D vi-
sualisation, has been demonstrated to be useful in
several applications (Brandes & Corman 2002, Bran-
des, Dwyer & Schreiber 2004, Dwyer & Eades 2002,
Koike 1993), but to the best of our knowledge, 21

2D
techniques have not previously been applied to the
study of network centrality. The details of how cen-
trality is mapped to vertex position are different in
our three methods. For 3D parallel coordinates ver-
tices are placed on vertical lines; for orbit-based com-
parison vertices are placed on concentric circles and
for hierarchy-based comparison vertices are placed
on horizontal lines. The second and third solutions
make it particularly easy to track changing vertex-
centrality values in the context of the underlying net-
work structure.

This paper is organised as follows: in Section 2
we define the graph model on which we operate and
introduce five centrality measures which are used as
examples. Section 3 discusses the visualisation meth-
ods. These methods are applied to a biological and
a social network in Section 4. Finally, Section 5 con-
tains general discussion.

2 Definitions

In this section we define the graph model, introduce
five centrality measures and discuss the comparison
of such centrality measures.

2.1 Graphs

An undirected graph G consists of a finite set V of ver-
tices and a set E of two-element subsets of V called
edges. An edge e = {u, v} ∈ E connects two vertices
u and v. The vertices u and v are said to be incident
with the edge e and adjacent to each other. The num-
ber of vertices and edges of G is given by n = |V | and
m = |E|, respectively. The set of all vertices which
are adjacent to u is called the neighbourhood of u. A
graph is called loop-free if no edge connects a vertex
to itself. An adjacency matrix A of a graph is an
(n×n) matrix, where aij = 1 if and only if {i, j} ∈ E
and aij = 0 otherwise. The adjacency matrix of any
undirected graph is symmetric.

The degree deg(v) of a vertex v is the number of
its incident edges. Let (e1, . . . , ek) be a sequence of
edges in a graph G. This sequence is called a walk if
there are vertices v0, . . . , vk such that ei = {vi−1, vi}
for i = 1, . . . , k. If the edges ei are pairwise distinct
and the vertices vi are pairwise distinct the walk is
called a path. The length of a walk or path is given
by the number of involved edges k = |(e1, . . . , ek)|.
A shortest path between two vertices u, v is a path
with minimal length. The distance dist(u, v) between
two vertices u, v is the length of a shortest path be-
tween them. Two vertices u, v of a graph are called
connected if there exists a walk from vertex u to ver-
tex v. If any pair of different vertices of the graph is
connected, the graph is called connected. A random
walk between u and v is a walk which starts at vertex
u, chooses uniformly at random one of the incident
edges of the current vertex until it finally reaches the
target v.

In the remainder of this paper we consider only
undirected, loop-free, connected, non-trivial (at least

two vertices and one edge) graphs. This restriction
is required to be able to use all centrality measures
defined in the following paragraph. Note that sev-
eral centralities can easily be expanded to cover di-
rected or unconnected graphs. Even an extension for
weighted edges is possible.

2.2 Centralities

A centrality is a function C which assigns every vertex
v ∈ V of a given graph G a value C(v) ∈ R. As we are
interested in the ranking of the vertices of G we choose
the convention that a vertex u is more important than
another vertex v iff C(u) > C(v).

Degree An obvious order of the vertices of a graph
can be established by sorting them according to
their degree. The corresponding centrality mea-
sure degree-centrality (Cd) is defined as Cd(v) :=
deg(v). Freeman gives a long list of references to
the usage of degree-centrality in social network
analysis (Freeman 1979). For biological network
analysis, for example, proteins with high degree-
centrality have been shown to be important in
PPI-networks (Jeong et al. 2001).

Eccentricity This and the two subsequent central-
ity definitions operate on the concepts of paths
within the given graph. A simple definition uses
the distance between vertices. The eccentric-
ity ecc of a vertex u is defined as ecc(u) :=
maxv∈V dist(u, v) and the eccentricity-centrality

(Ce) as Ce(u) := 1
ecc(u) . The reciprocal of ecc(u)

is used to ensure that more central vertices have a
higher value of Ce, since such central vertices are
the ones with the smallest eccentricity value. An
application of eccentricity within the biological
context is shown by Wuchty and Stadler (Wuchty
& Stadler 2003).

Closeness In contrast to eccentricity, closeness-
centrality uses not the maximum distance be-
tween the vertex of interest and all other ver-
tices but the sum of the distances of this vertex
and all other vertices. The closeness-centrality
Cc(u) is defined as Cc(u) := 1

sumdist(u) with

sumdist(u) =
∑

v∈V dist(u, v). Closeness-based
centrality measures are used in social (Freeman
1979) and biological (Wuchty & Stadler 2003)
network analysis.

Random Walk Betweenness Within networks a
communication between two vertices u, v may be
visible to a third vertex w if this vertex lies in
the path of the communication between u and v.
To measure the centrality of a vertex the ability
to observe communication is a feasible approach.
Different methods to model communication are
conceivable, e.g., over shortest paths, paths with
maximum flow and random walks. All of these
are potential models for betweenness (Freeman
1977, Freeman et al. 1991, Newman 2003). New-
man’s random walk approach models informa-
tion transmission and therefore matches prob-
lems often modelled in biological networks. For
the random-walk betweenness centrality (Cr) the
centrality of a vertex w is equal to the number
of times that a random walk from u to v goes
through w, averaged over all u and v.

Bonacich’s Eigenvector Centrality A different
approach to order the vertices of a graph was sug-
gested by Bonacich (Bonacich 1972). It is based
on the assumption that the value of a single



vertex is determined by the values of the neigh-
bouring vertices. In contrast to the previous
measures not only the position of a vertex within
the graph is considered but also the centrality
values of its neighbours. Bonacich suggested the
following definition: Cλ(u) :=

∑
v∈N(u) Cλ(v).

Considering the adjacency matrix represen-
tation of the graph this is equivalent to
Cλ(vi) :=

∑n

j=1 aijCλ(vj). This leads directly
to the well known problem of eigenvector com-
putation λS = AS and the eigenvector of the
largest eigenvalue is the eigenvector-centrality
(Cλ := S) (Bonacich 1972).

2.3 Correlation and Ordering

Given a graph and a set of centrality measures our
method for the exploration and comparison of the dif-
ferent centralities is based on the stacking of copies
of the graph, one for each centrality, into the third
dimension. An important task is to compute an ap-
propriate ordering of these copies. We want to order
them such that those which are similar with respect to
the correlation, i.e., which have a correlation close to
1.0, are close to each other. This is similar to Keim’s
one-dimensional ordering of dimensions (Keim 2000).
The correlation τ(Ci, Cj) between the centralities Ci

and Cj is our similarity measure with large values
(close to 1.0) meaning high similarity, whereas low
or negative values mean dissimilarity. In detail we
use Kendall’s correlation coefficient τb as this correla-
tion coefficient is known to behave better than other
coefficients (e.g. Spearman’s ρ) in the case of ties,
e.g., values which are equal for several objects. The
definition and the details of the computation are be-
yond the scope of this paper and can be found in the
literature (Lienert 1973, Press, Teukolsky, Vetterling
& Flannery 1992).

Let C1, . . . , Ck be the centralities under consider-
ation. The optimal ordering of the centralities and
therefore the corresponding copies of the graph is a
permutation {π(1), . . . ,π(k)} of the centralities such

that
∑k−1

i=1 τ(Cπ(i), Cπ(i+1)) is maximal. Note that the
computation of an optimal ordering is NP-hard. In
our example with five centralities we can compute the
optimal ordering, for larger sets of different centrali-
ties several ordering heuristics exists.

3 Visualisation

In this section we discuss briefly the overarching visu-
alisation concept and present our three visualisation
approaches.

3.1 General Visualisation Method

The common idea behind the different visualisation
approaches is that there is a copy of the graph for
each centrality. Each copy is drawn in a separate 2D
plane such that central vertices are easily detectable.
The planes are then stacked into the third dimension
in an optimal ordering and an arrangement of vertices
within planes is computed with the goal of supporting
comparison of centralities.

3.2 3D Parallel Coordinates-based Compari-
son

Parallel coordinates techniques have been used suc-
cessfully for the visualisation of multi-dimensional or
multivariate data (Inselberg & Dimsdale 1990). How-
ever, from our experiments with biological and social
networks we observed that vertices in the network can

frequently share the same centrality value. Note that
in standard two-dimensional parallel coordinates as
in Figures 2 it is rather difficult to show each vertex
separately, in particular where two or more vertices
have the same centrality value.

This motivates the use of the additional dimension
to display all the vertices which have the same cen-
trality value in a horizontal line simultaneously. The
main idea of our 3D parallel coordinates is very sim-
ple. Each two dimensional plane contains the infor-
mation for a particular centrality and several central-
ities are stacked in the third dimension. For each cen-
trality we use horizontal lines to place vertices with
the same centrality values. See Figures 4 for an ex-
ample.

More specifically, for each centrality measure we
use a vertical line and several horizontal lines within
the plane. That is, the vertical line represents the
range of centrality values from the lowest centrality
value to the highest. For each centrality measure all
vertices belonging to exactly the same centrality value
are placed on a horizontal line to separate the vertices.
The ordering of planes is decided using the method
described in Section 2.3. Note that two vertices may
overlap if their centrality values are very close; how-
ever this problem can be solved by adjusting the size
of the vertices.

Next, we add inter-plane edges between two ad-
jacent planes, where each plane represents one cen-
trality measure, such that the same vertices of the
graph are connected by inter-plane edges. This helps
to trace vertices between two different planes. Note
that to reduce visual complexity it is possible to show
edges only when its centrality difference is greater
than a given threshold.

Finally, we need to decide the ordering of the ver-
tices on each horizontal line, i.e. the ordering of ver-
tices which have the same centrality value. We want
an ordering which minimises the total edge length of
inter-plane edges between the two planes, as the use
of long edges will increase the visual complexity and
thus decrease ease of comparison. Similarly, the or-
dering should avoid edge crossing. This problem can
be solved easily considering the position of the same
vertex in the previous plane. For tie-breaking, we use
the difference in height.

Overall, the time complexity of comparison based
on the 3D parallel coordinates is linear if the central-
ity values for each centrality measure and the optimal
ordering of the different centrality measures are given.
Thus, this method may scale well for large networks.

3.3 Orbit-based Comparison

The objective of our graph drawing algorithm for
orbit-based comparison is to find coordinates for each
vertex of the graphs G1, . . . , Gk such that:

1. all vertices of graph Gi have the same z-
coordinate (plane constraint);

2. the order of z-coordinates corresponds with the
computed order of the graphs, see Section 2.3;

3. all vertices of graph Gi are constrained to lie on
concentric circles (orbits) depending on the cen-
trality value of the vertex. That is, each vertex
v is assigned an orbital constraint with radius
r = f(C(u)) where f is typically a partitioning
such that there are only a small number of dis-
tinct radii;

4. the centre of the concentric circles for all graphs
has the same x- and y-coordinate;



5. all vertices of graph Gi have x- and y-coordinates
such that the distance of a vertex to its neigh-
bours is as close to the optimal distance d as
possible; and

6. each vertex of Gi should be as close as possible
to the same vertex of the adjacent graphs.

A formulation for the “stress” of a graph layout
is (Borg & Groenen 1997, Gansner, Koren & North
2004): ∑

i<j

wij(‖ Xi − Xj ‖ −dij)
2 (1)

where Xi and Xj are the positions of the ith and jth

vertices of a graph G, dij is the ideal distance between
these vertices (typically a function of the graph theo-
retic distance between them) and wij is a normalisa-

tion constant (for example: d−2
ij ). A “good” layout is

said to be one that minimises this stress function.
Since the plane constraints are constant and in-

dependent of the layout within planes, our layout
scheme with plane and orbital constraints can be re-
duced to a 2D layout problem. That is, we seek to

find an arrangement for the union graph G =
⋃k

i=1 Gi

and we augment the edges of G with a set of inter-
plane edges {{u, v}| where u and v are the equivalent
vertices in adjacent levels Gi and Gi+1}. The fifth
objective in the list above is met by setting the ideal
length d = 0 for such inter-plane edges. By restating
this “stress” function in polar coordinates we can pre-
cisely define the orbital constraints of this new layout
problem:

∑

i<j

wij(‖ ri(cos θi, sin θi) − rj(cos θj , sin θj) ‖ −dij)
2

(2)
where ri and rj are constants corresponding to the
radii of the orbit constraints for vertices i and j re-
spectively. While Kamada and Kawai (Kamada &
Kawai 1989) showed that an approximate solution
for (1) could be found by iteratively fixing all but
one vertex and solving the resulting convex quadratic
form, and Gansner et al. (Gansner et al. 2004) were
able to bound the global function with a quadratic
form using functional majorisation, the cyclical na-
ture (and hence non-convexity) of (2) means that no
such simplification is readily apparent. For this rea-
son Brandes et al. (Brandes, Kenis & Wagner 2003)
chose a simulated annealing solution for a similar ra-
dial layout problem. Instead, we have had reason-
able success adapting a näıve Fruchterman and Rein-
gold (Fruchterman & Reingold 1991) force-directed
method.

A standard force-directed method works by com-

puting a “force” vector &f for each vertex u from the
sum of attractive forces between u and all v where
there exists an edge {u, v} and repulsive forces be-
tween u and all other vertices in G. Each vertex is
then moved by a small amount in the direction of this
force, for example a vertex at position p is moved to

p′ = p+c&f where c is a constant. The process repeats
iteratively until the total length of all force vectors for
an interaction falls below some threshold. We aug-
ment the standard force-directed layout method with
orbital constraints by moving vertices only by the pro-

jection of &f on the orbital constraint arc. That is, to
satisfy the orbital constraint centred about o with ra-

dius r the above vertex is placed at o + r| &op′|, see
Figure 3.

To aid comparison of centralities it is more im-
portant that inter-plane edge lengths are minimised
than the length of edges within each plane. Thus,

p’

o

p

cf

r

q

Figure 3: Calculating the new position q of a ver-
tex at position p due to force f subject to an orbital
constraint of radius r

we run the force-directed placement to completion in
several stages. First, inter-plane attractive forces are
activated; then forces within each plane are added,
one plane at a time. This tends to avoid local min-
ima of (2) with long inter-plane edges. Also, repulsive
forces between vertices on different planar levels are
not considered.

3.4 Hierarchy-based Comparison

In this section we describe a centrality comparison
method based on a drawing algorithm which uses a
hierarchy to display centrality values. More specifi-
cally, we use horizontal lines to represent centrality
values. As with the previous methods, a drawing in
each plane displays different centrality measures, and
the ordering of the planes is decided based on the
method described in Section 2.3.

To draw each graph in a plane by displaying cen-
trality as hierarchy we first divide the vertices into
layers depending on their centrality value. That is
the vertices in the upper layers have higher centrality
values than the vertices in the lower layers. Then
we place each vertex in the layer on a horizontal
line. Note that this method is different to the well-
known Sugiyama method (Battista, Eades, Tamassia
& Tollis 1999, Sugiyama, Tagawa & Toda 1981) for
drawing hierarchical graphs as a layered drawing, in
the sense that the layering is not based on a traversal
of a directed graph and that there may exist edges
between vertices in the same layer.

Inside each layer, we can define a few different or-
dering methods to order the vertices. For example,
we can choose an ordering of vertices such that the
vertices are ordered from the left to the right based on
their centrality value in a decreasing way. Further, it
may be possible to choose a different ordering of ver-
tices in the layer with different optimisation criteria.
For example, one may choose an ordering which min-
imises the length of edges between each plane. This
problem can be easily solved as in the 3D parallel co-
ordinates method. Alternately, one may choose an
ordering which minimises the edge crossings in each
plane. This problem is relatively well-studied in graph
drawing literature, it is NP-hard even if there are
only two layers (Eades & Whitesides 1994). How-
ever, there are several fast heuristics such as the Me-
dian and the Barycenter method available (Battista



et al. 1999).
To reduce edge crossings between to adjacent lay-

ers within one plane we use a modification of the
Barycenter method. More specifically, the position of
a vertex is averaged over the positions of all the neigh-
bours on upper layers, not necessarily just one level
above. This considers edges which span more than
two layers. Alternatively, these edges can be handled
by introducing dummy vertices, as in the traditional
Sugiyama method.

Finally, to reduce the total number of edge cross-
ings in each plane, we perform a layer-by-layer sweep
heuristic (Battista et al. 1999), that is, the algo-
rithm sweeps from the top layer to the bottom layer,
and then sweeps from the bottom layer to the top
layer. We had reasonable success when this process
was repeated ten times. Note that we can further
combine these two different optimisation criteria. A
simple heuristic is to use a variation of the Barycen-
ter method, now also considering the position of the
neighbour in the previous plane.

This hierarchy-based comparison method can be
implemented in linear time, as the Barycenter heuris-
tic can be implemented to run in linear time. Thus
it can scale better than the orbit-based comparison
method for large networks. Examples of this method
are shown in Figures 6 and 7.

Again, as in the previous methods, we use filtering
for displaying inter-plane edges to reduce cognitive
load. That is we display the inter-plane edges only
when the difference between the two centrality val-
ues of the same vertices differ more than some given
threshold.

4 Implementation and Results

We implemented the presented methods in GEOMI
(Geometry for Maximum Insight), a visual analy-
sis tool for the visualisation and analysis of large
and complex networks such as social networks, bi-
ological networks, scale-free networks and dynamic
networks (Ahmed, Dwyer, Forster, Fu, Ho, Hong,
Koschützki, Murray, Nikolov, Taib, Tarassov & Xu
2005). GEOMI is based on WilmaScope (Dwyer
& Eckersley 2004). We used it for the analysis of
the Mus musculus PPI network introduced in Sec-
tion 1 and a social network based on Padgett’s Flo-
rentine families marital relation data (Wasserman
& Faust 1994). The PPI network from the DIP-
database consists of 49 vertices and 54 edges. The
social network has 16 vertices and 40 edges.

Figures 4-7 show some layouts generated using the
three methods. In Figure 4 the biological network is
presented with 3D parallel coordinates as described
in Section 3.2. Each vertex of the network represents
a protein and each edge a protein-protein-interaction.
Each vertical column in the layout represents a spe-
cific centrality measure. If vertices have the same cen-
trality value within one centrality measure they are
placed on a horizontal line. The similarity to com-
mon 2D parallel coordinates makes this representa-
tion easy to understand. If viewed from the front
the picture would look like a conventional 2D parallel
coordinate visualisation as shown in Figure 2.

Even though it is easier to compare single vertices
in the 3D representation than in common 2D par-
allel coordinates, there is still the disadvantage that
centrality values and network structure cannot be ex-
plored within one representation. The orbit-based
and the hierarchy-based comparisons overcome this
disadvantage. Figure 5 shows the different central-
ities of the biological network with the orbit-based
method described in Section 3.3. Each plane shows
the network with the vertices placed on different or-

bits depending on their centrality values. If the orbit
of a vertex changes between adjacent planes an edge
is shown. Additionally in the small window the plane
highlighted by the water-layer is displayed in a two di-
mensional representation. By moving the water-layer
up and down it is easy to navigate through the differ-
ent centralities and to see how the centrality values of
a vertex change (move in and out) or are stable (a sta-
ble vertex has nearly the same x- and y-coordinates in
each layer). In Figure 6 the biological network is pre-
sented with the hierarchy-based comparison described
in Section 3.4.

As an example of social-network analysis we
used Padgett’s Florentine families marital relation
data (Wasserman & Faust 1994). Each vertex in the
network represents a family in 15th century Florence,
Italy and each edge represents marital relations be-
tween the families. The 16 families are chosen for
analysis from a larger collection of 116 leading Flo-
rentine families due to their historical prominence,
such as the Medicis and Strozzis. Figure 7 shows a
visual comparison of centralities for Padgett’s Floren-
tine families marital relation data. From the drawing,
it is easy to see that Medici always belongs to the
top rank in any centrality measure. Clearly, one can
see the marital relations between the families in one
plane and then compare the difference between differ-
ent centrality measure.

5 Conclusion

We have demonstrated three different methods for the
analysis and visualisation of centrality measures of a
network. All methods represent the information in
three dimensions and two of them allow the simul-
taneous visualisation of both the network structure
and the ranking of vertices based on the centrality
measures. All three visualisation methods support
the exploration of different centrality measures for
the same network. In this paper we presented the
comparison of centrality measures, however, the vi-
sualisation methods could be also used to represent
other multidimensional numerical data within an un-
derlying network.

Our methods work well with networks of up to
a hundred vertices. An important question is the
scalability of our approach to larger networks with
thousands of vertices. Larger networks result in very
dense visualisations which are difficult to read and
understand. To deal with such networks abstraction
methods have to be applied before any of the methods
described may show a useful result. The definition of
such abstraction methods should be a focus for fur-
ther work. Another issue is a formal user study to
compare the different proposed methods with each
other and with well-known 2D techniques.
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